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Abstract

We show that, for a connected reductive algebraic group G over an alge-
braically closed field of zero or good characteristic, the parts, called strata,
in the partition of G recently introduced by Lusztig are unions of sheets of
conjugacy classes. For G simple and adjoint we refine the parametrization
of such sheets obtained in previous work with F. Esposito. We give a simple
combinatorial description of strata containing spherical conjugacy classes,
showing that Lusztig’s correspondence induces a bijection between unions
of spherical conjugacy classes and unions of classes of involutions in the
Weyl group. Using ideas from the Appendix by M. Bulois, we show that the
closure of a stratum is not necessarily a union of strata.
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1 Introduction
The sheets for the action of an algebraic group on a variety X are the maximal
irreducible subsets of X consisting of points whose orbit has fixed dimension.
Many important invariants of such actions are preserved along sheets. Sheets for
the action of a complex connected reductive algebraic group on its Lie algebra
are very well understood [3, 2]. Along similar lines, a parametrization and a
description of sheets of conjugacy classes in a connected reductive algebraic group
G over an algebraically closed field of zero or good characteristic has been given
in [9].
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G. Lusztig defined in [29] a partition of a connected reductive algebraic group
G over an algebraically closed field into certain unions of conjugacy classes of the
same dimension. The parts of this partition are called strata. They are the fibers
through a map φG from G to a subset of the set Irr(W ) of isomorphism classes
of irreducible representations of the Weyl group W of G. On unipotent classes,
the map φG coincides with Springer correspondence (with trivial representation
of the component group). Lusztig observes that for G = GLn(k) sheets coincide
with strata but, for other groups, sheets no longer form a partition and strata are
in general not connected. The first result of this paper is Theorem 2.1, stating
that in zero or good characteristic every stratum is a union of sheets. In other
words, the extension φG of Springer’s correspondence is constant along sheets.
This is a direct consequence of the results in [9] together with compatibility of
induction of unipotent conjugacy classes with truncated induction [30]. The image
of φG contains more irreducible representations of W than those obtained by the
Springer correspondence for a trivial local system: this shows once more that, as
opposed to the Lie algebra case, where every sheet contains a unique nilpotent
orbit [3], not every sheet of conjugacy classes contains a unipotent one. As a
consequence of Theorem 2.1, we show that strata are locally closed, answering a
question of Lusztig.

Sections 3 and 4 are devoted to the refinement of some results in [9]. There,
sheets were parametrized by G-conjugacy classes of triples (M,Z(M)◦s,O),
where M is the connected centralizer of a semisimple element s ∈ G; Z(M)◦s
is a suitable coset in Z(M)/Z(M)◦; and O is a rigid unipotent conjugacy class
in M . A sheet contains a unipotent conjugacy class (up to a central element) if
and only if M is a Levi subgroup (of a parabolic subgroup) of G and if this is
the case, it is unique. In order to provide a suitable replacement for the missing
unipotent class in a sheet, we show in Proposition 3.1 that every sheet of con-
jugacy classes contains so-called isolated conjugacy classes (cf. [26, Definition
2.6]). These are finitely many for every semisimple group, they include unipotent
classes and coincide with them (only) if all simple factors inG are of typeAn. Iso-
lated classes play a role both in the generalized Springer correspondence and in
the representation theory of quantum groups at the roots of unity [14], where they
are called exceptional. Isolated classes in a sheet are far from being unique and if
two sheets intersect non-trivially, then the intersection contains at least an isolated
class. Using injectivity of Springer correspondence we show that two sheets con-
taining a unipotent class meet if and only if they contain the same unipotent class
(Proposition 3.4).

The proof of Theorem 2.1 shows that φG depends only on the G-class of the
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pair (M, O), where M and O are as above. This fact suggests that the second
term in the triple parametrizing sheets could be dropped. Indeed, Theorem 4.1
states that for G simple of adjoint type sheets are parametrized by G-classes of
such pairs. Since G-classes of connected centralizers of semisimple elements are
classified in [35] and rigid unipotent classes are listed in [36], we obtain a simpler
parametrization of sheets in G.

A natural question is which sheets lie in a given stratum. There is one family
of sheets for which the answer is particularly clear: these are the sheets containing
spherical conjugacy classes. We recall that a conjugacy class is called spherical
if a(ny) Borel subgroup B of G acts on it with a dense orbit. The property of
being spherical is preserved along sheets [1]. We show in Section 5 that a similar
property holds for strata and we describe strata consisting of spherical sheets in
combinatorial terms. More precisely, such strata are in bijection with conjugacy
classes in the Weyl group W containing a maximum wm, and a spherical conju-
gacy class γ lies in such a stratum if and only if BwmB ∩ γ is dense in γ. This
result is a consequence of the combinatorial description of spherical conjugacy
classes [5, 6, 8, 24] and the alternative description of strata in terms of the Bruhat
decomposition of G in [29]. Through this alternative description it is proved in
Theorem 5.8 that spherical strata correspond to unions of classes of involutions in
W having wm as a maximum.

In the Appendix by M. Bulois it is shown that, for sheets of adjoint orbits in
a Lie algebra, the closure of a sheet is not necessarily a union of sheets. Making
use of his counterexamples we show that, even in the spherical case, the closure
of a stratum is not necessarily a union of strata. We give two counterexamples:
one for each construction of the strata.

1.1 Notation
Unless otherwise stated, G is a connected, reductive algebraic group over an alge-
braically closed field k of zero or good characteristic. Let T be a fixed maximal
torus of G, and let Φ be the associated root system. Let B ⊃ T be a Borel sub-
group with unipotent radical U , let ∆ = {α1, . . . , αn} be the basis of Φ relative
to (T, B). If Φ is irreducible, we denote by −α0 the highest positive root in Φ.
The Weyl group of G is denoted by W , ` is the length function on W and rk is
the rank in the geometric representation of W . For Π ⊂ ∆, we denote by WΠ the
parabolic subgroup of W generated by the simple reflections with respect to roots
in Π, by wΠ its longest element, and by ΦΠ be the root subsystem of Φ generated
by Π. The groups Sp2n(k) and SOn(k) will fix a bilinear form whose associated
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matrix with respect to the canonical basis is anti-diagonal. The numbering of the
simple roots is chosen as in [4].

Let G act regularly on an irreducible variety X . A sheet for this action is
an irreducible component of any of the locally closed subsets X(n) = {x ∈
X | dimG · x = n}, and it is a union of G-orbits. For a subset Y ⊂ X , if
m is the maximum integer n for which Y ∩X(n) 6= ∅, the intersection X(m) ∩ Y
will be denoted by Y reg. Let V be a variety and let x ∈ V . We shall denote by
Vx the connected component of V containing x so that, if V is an algebraic group,
we have V1 = V ◦. When we write g = su for g ∈ G, we mean that su is the
Jordan decomposition of g, with s semisimple and u unipotent. If s ∈ Hreg for a
subgroup H of G, then (Hreg)s is well defined, we have (Hreg)s = (Hs)

reg and
we denote it by Hreg

s . The action of g ∈ G on an element x ∈ G by conjugation
is indicated by g · x. The centralizer of x in G is denoted by Gx. Let, for H a
connected reductive algebraic group ρHy be Springer’s representation of the Weyl
group of H associated with the unipotent element y ∈ H and trivial local system.
If s ∈ G is semisimple, Ws denotes the Weyl group of Gs◦ embedded into W
as in [29]. Finally, for finite subgroups W1 ≤ W2 of W , we denote by jWW1

the
j-induction functor in [30, §3.2], whenever it is well-defined.

1.2 Acknowledgements
G.C. was partially supported by Grants CPDA105885 and CPDA125818/12 of the
University of Padova. She thanks Francesco Esposito for pleasant and interesting
discussions and the referee for helpful comments and remarks.

2 Lusztig’s strata are union of sheets
In this section we will show that the parts in Lusztig’s partition of G in [29] are
union of sheets.

We recall that the Jordan class J(g) of an element g = su in G is the set
G · ((Z(Gs◦)◦s)regu). Jordan classes were introduced in [26, §3.1], where it is
shown that they form a partition of G into locally closed irreducible smooth G-
stable subsets. In the same paper the group L = CG(Z(Gs◦)◦) for a semisimple
element s ∈ G is introduced. It is the minimal Levi subgroup of a parabolic
subgroup containing Gs◦. These objects are crucial in the description of sheets.

Theorem 2.1 Let G be a connected reductive group in good or zero characteris-
tic. Then, every Lusztig’s stratum is a union of sheets.
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Proof. By [9], a sheet S of G contains a unique dense Jordan class J = J(su),
and, for L = CG(Z(Gs◦)◦) we have

S =
⋃

z∈Z(Gs◦)◦

G · (szIndG
zs◦

Lzs◦ (L
zs◦ · u))

where Ind denotes induction of conjugacy classes as in [30, §1.2]. We recall that
if p is good for G then it is good for any connected centralizer of a semisimple el-
ement in G [31, Proposition 16], and that the algorithm in [36, II.7] for describing
induction in classical groups and the tables for exceptional groups are uniform in
good characteristic [36, p. 176]. On the one hand, Gs◦ ⊂ CG(Z(Gs◦)◦) ∩Gzs◦ ⊂
Lzs for any z ∈ Z(Gs◦)◦. On the other hand, if x ∈ Lsz◦ ⊂ L ∩ Gzs◦, then x
commutes with s and zs, hence Lzs◦ ⊂ Gs◦. Therefore

S =
⋃

z∈Z(Gs◦)◦

G · (szIndG
sz◦

Gs◦ (Gs◦ · u)).

The parts in the partition in [29] are given by the fibers through a map φG : G →
Irr(W ). This is defined on g = su ∈ G as φG(g) = jWWs

ρWs
u . We shall compute

the image of x lying in a sheet S such that S = J(su). Since the map φG is
constant on conjugacy classes we may assume x = zsv for v ∈ IndG

sz◦

Gs◦ (Gs◦ · u)
and z ∈ Z(Gs◦)◦. Then, φG(x) = jWWzs

ρG
zs◦

v . By [30, Theorem 3.5], [25, §6] we
have

φG(x) = jWWzs
ρG

zs◦

v = jWWzs
jWzs
Ws

ρG
s◦

u = jWWs
ρG

s◦

u

which depends only on s and u, yielding the claim. �

Corollary 2.2 Lusztig’s strata and sheets are locally closed.

Proof. Let X be a stratum. By Theorem 2.1 X =
⋃l
j=1 Sj for some sheets

Sj = J(gj)
reg

. As X ⊂ G(n) for some n, we have Sj = J(gj) ∩ G(n) for every
j. We recall that J(gj) ⊂

⋃
m≤nG(m) = G(n) so G(>n−1) :=

⋃
m>n−1G(m) is

open. Then, X =
(⋃l

j=1 J(gj)
)
∩ G(>n−1) is locally closed. The same argument

for l = 1 proves the result for sheets. �

3 Isolated elements
By [9, Theorem 5.6] the map S = J(su)

reg
7→ (Gs◦, Z(G)Z(Gs◦)◦s,Gs◦ · u)

induces a bijection between the set of sheets in G and G-conjugacy classes of
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triples (M, Z◦Z(G)s,O) where: M is a pseudo-Levi subgroup of G, i.e., the
connected centralizer of a semisimple element s in G; Z is the centre of M ; the
coset Z◦Z(G)s s a generator of the cyclic group Z/Z◦Z(G); and O is a rigid
unipotent conjugacy class in M . In contrast to the Lie algebra case, where sheets
always contain a unique nilpotent orbit, sheets of conjugacy classes do not always
contain a unipotent one. Indeed, a sheet contains a unipotent class up to a central
element if and only if the term M in the corresponding triple is the Levi subgroup
of a parabolic subgroup. If this is the case, such a class is unique. Following [26]
we will say that an element g = su ∈ G is isolated if CG(Z(Gs◦)◦) = G, or,
equivalently, if Z(Gs◦)/Z(G) is finite. Unipotent classes are clearly isolated and,
for G simple of type An, the two definitions coincide.

Proposition 3.1 Every sheet S = J(su)
reg

contains an isolated conjugacy class.

Proof. It is enough to prove the statement for G simple of adjoint type. We
assume s ∈ T and that the root system of Gs◦ relative to T has a basis J in
∆ ∪ {α0}. If Gs◦ is a Levi subgroup there is a unipotent conjugacy class in S.
Assume this is not the case, so J 6⊂ ∆. If |J | equals r, the semisimple rank of
G, then s is isolated and there is nothing to prove. Otherwise, we consider any J̃
such that J ⊂ J̃ ⊂ ∆ ∪ {α0} and |J̃ | = r. Then, J̃ generates the root system
of a pseudo-Levi subgroup M containing Gs◦. By construction, Gs◦ is a Levi
subgroup of M so Z(Gs◦)◦s = tZ(Gs◦)◦ for some t ∈ Z(M) [31, Lemma 33].
Thus, Gt◦ ⊃ M , and since t 6∈ Z(G) because Gs◦ is not a Levi subgroup, we
have M = Gt◦. Hence t is an isolated semisimple element in Z(Gs◦)◦s and any
element in tIndG

t◦

Gs◦(G
s◦ · u) is an isolated element in S. �

Remark 3.2 The isolated element in a sheet S is not unique, even up to a central
element. For instance, we may consider G = Sp10(k) and the diagonal ma-
trix s = diag(−1, a, b, b, 1, 1, b−1, b−1, a−1,−1) with a 6= b ∈ k∗ \ {±1}. Then
M := Gs◦ ' Sp2(k) × SL2(k) × Sp2(k) is of type C1 × Ã1 × C1 and corre-
sponds to the roots 2(α1 + α2 + α3 + α4) + α5, α3 and α5. Let S = J(s)

reg

be the sheet associated with (M, sZ(M)◦, 1). There are g = rv and h = r′v′

in S with semisimple parts r = diag(−1,−1, 1, 1, 1, 1, 1, 1,−1,−1) and r′ =
diag(−1, 1, 1, 1, 1, 1, 1, 1, 1, 1,−1). Both g and h are are isolated. More pre-
cisely, Gr◦ ' Sp4(k)× Sp6(k) corresponds to the roots 2(α1 + α2 + α3 + α4) +
α5, α1, α3, α4 and α5 and Gr′◦ ' Sp2(k) × Sp8(k) corresponds to the roots
2(α1 + α2 + α3 + α4) + α5, α2, α3, α4 and α5
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Remark 3.3 By [9, Proposition 48] the regular part of the closure of any Jordan
class J(su) = G · (Z(Gs◦)◦s)regu equals

(3.1) J(su)
reg

=
⋃

z∈Z(Gs◦)◦

G · zsIndG
zs◦

Gs◦ (Gs◦ · u).

The argument of Proposition 3.1 shows that J(su)
reg

contains isolated elements.

Any sheet is an irreducible component of the stratum containing it, thus if two
sheets have non-empty intersection the stratum containing them is not smooth. It
is not hard to see that two sheets in a Lie algebra meet if and only if they contain
the same nilpotent orbit. The following proposition is an analogue of this fact.

Proposition 3.4 If the intersection of two sheets S1 and S2 in G is non-empty,
then it contains an isolated class. If, in addition, O1 ⊂ S1 and O2 ⊂ S2 for some
unipotent classes O1 and O2, then O1 = O2.

Proof. Let S1 = J(g1)
reg

and S2 = J(g2)
reg

be two sheets in G(n) having non-
empty intersection and let G · su ⊂ S1 ∩ S2. Since the closure of a Jordan class
is a union of Jordan classes ([26, 9]), the Jordan class J(su) containing G · su
satisfies

J(su) ⊂ S1 ∩ S2 = J(g1) ∩ J(g2) ∩G(n)

and therefore

J(su)
reg

= J(su) ∩G(n) ⊂ S1 ∩ S2 = J(g1) ∩ J(g2) ∩G(n),

so the first statement follows from Remark 3.3. For the second one we observe
that if S1 ∩ S2 6= ∅ then φG(x) = φG(y) for every x ∈ O1, y ∈ O2 and we invoke
injectivity of the Springer correspondence on unipotent classes. �

4 A refinement of the parametrization of sheets
The proof of Theorem 2.1 shows that the image of φG depends only on the terms
M andO in the triple corresponding to a sheet. This suggests that the parametriza-
tion in [9] may be improved, and this is in fact the case. We show that the second
term in the triple parametrizing sheets may be dropped when G is simple and of
adjoint type. The conjugacy classes of pseudo-Levi subgroups can be deduced
from [35, §2.2] and rigid unipotent classes are classified in [36, §II.7&II.10], thus
a classification of sheets in G follows from these data.
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Theorem 4.1 LetG be simple and of adjoint type. The sheets inG are in bijection
with theG-conjugacy classes of pairs (M,O) whereM is a pseudo-Levi subgroup
and O is a rigid unipotent conjugacy class in M .

Proof. We show that the G-conjugacy class of a triple (M, Z◦s, O) where: M
is a pseudo-Levi subgroup of G with centre Z; the coset Z◦s is a generator of
the cyclic group Z/Z◦; and O is a rigid unipotent conjugacy class in M , is com-
pletely determined by the pair (M,O). We may always assume that s ∈ T , so
Z◦s ⊂ T , and that M is generated by T and by the root subgroups ranging
in a subset Π of the extended Dynkin diagram, and their opposites. The map
(M,Z◦s,O) 7→ (M, O) induces a well-defined and surjective map on the set of
G-conjugacy classes of triples as above.

We shall assume G to be of exceptional type because by [31, Lemma 33],
m = |Z/Z◦| ≤ 2 in classical groups.

By [35, Proposition 7] any pair of cosets generating Z/Z◦ are conjugate by
some w ∈ W preserving Π, whence preserving M . The statement is given when
the ground field has characteristic 0 but the proof holds in good characteristic.

We consider two distinct representatives of elements in the fiber of the G-
class of (M,O). It is not restrictive to assume that they are (M,Z◦s,O) and
(M,Z◦r,O) with s ∈ T , r = ws, and w as above. Since G is of exceptional
type, w necessarily preserves the unique, if existing, component of type different
from type A. Rigid unipotent conjugacy classes in simple algebraic groups are
characteristic ([2, 4.5]), and they are trivial in type A. Thus, wO = O and the
induced map is injective. �

5 Spherical sheets and involutions in the Weyl group
In this section we shall assume that G is simple for convenience. Theorem 2.1
raises the problem of describing which sheets lie in a given stratum. Using an
alternative description of the partition, to be found in [29, §5], we provide a com-
binatorial answer for strata containing a spherical conjugacy class, showing that
they correspond to certain unions of conjugacy classes of involutions in W . We
recall that a transitive G-space is called spherical if it has a dense B-orbit. We
shall denote by Gsph the union of all spherical conjugacy classes in G. For a con-
jugacy class γ in G, let mγ be the uniquely determined Weyl group element such
that γ∩BmγB is dense in γ. We set Cγ = W ·mγ . By construction, mγ is a max-
imal length element in Cγ . By [8, Theorem 2.13], it is also a maximum in Cγ with

8



respect to the Bruhat ordering. We have dim γ ≥ `(mγ) + rk(1−mγ) and equal-
ity implies that γ is spherical, [5, Theorem 5]. By construction, if γ ∩ BwB 6= ∅
then w ≤ mγ . Similarly, for S a sheet of conjugacy classes, there is a unique
element mS in W such that BmSB ∩ S is dense in S. Then, for every σ ∈ W
with BσB ∩ S 6= ∅ we have σ ≤ mS in the Bruhat ordering. Therefore, if γ lies
in S, thenmγ ≤ mS . It follows from [10, Lemma 3.1] thatm2

γ = 1 for every class
γ. The same argument shows that m2

S = 1 for every sheet S.
It has been shown in [1] that, for char(k) = 0, the property of being spherical

is preserved along sheets. As the classification of spherical conjugacy classes in
good and odd characteristic [7] has the same combinatorics as for char(k) = 0, it
follows from the combinatorial description of sheets that the same property holds
for conjugacy classes in good and odd characteristic. We will deal now with the
case char(k) = 2 for Φ of type An. The result below has already been proved,
with different methods, in unpublished work by Mauro Costantini.

Lemma 5.1 Assume char(k) = 2. Then the spherical elements in G = SLn(k)
are either involutions up to a scalar or semisimple matrices with at most two
eigenvalues. For a spherical conjugacy class γ we have dim γ = `(mγ) + rk(1−
mγ) and the property of being spherical is constant along sheets.

Proof. The argument in [1, Proposition 1] shows that if for a sheet S = J(g)
reg

we
have S ∩Gsph 6= ∅ then J(g) ⊂ Gsph. In SLn(k) the Jordan classes that are dense
in a sheet are precisely those consisting of semisimple classes. The only spherical
semisimple elements in SLn(k) are those with at most two eigenvalues [22, Table
1]. Therefore the only non-semisimple spherical classes lie in J(s)

reg
for some

semisimple element s with at most two distinct eigenvalues. Such sheets contain
only semisimple elements and unipotent elements (up to a scalar) corresponding
to a partition of type (2a, 1n−2a). The latter are spherical and the dimension for-
mula holds for them [13, 3.1.1]. The dimension formula for spherical semisimple
classes follows from a direct computation as in [5, Theorem 15]. �

By abuse of notation the sheets contained in Gsph will be called spherical
sheets. We will prove that mγ is constant along spherical sheets.

Lemma 5.2 Let w, σ be two involutions inW such that w ≤ σ and `(w)+rk(1−
w) = `(σ) + rk(1− σ). Then w = σ.

Proof. By [18, 19, 20] for the classical groups and [21, Theorems 4.2, 4.8] in the
general case, the poset of involutions in a Weyl group is graded with rank function

9



ρ(w) = 1
2
(`(w)+ `a(w)) where the absolute length `a of w is the minimal number

of reflections inW needed to express w as a product of reflections. Thus, ifw ≤ σ
then ρ(w) ≤ ρ(σ) and equality holds only if w = σ. By a result of Kostant in [32]
we have `a(w) = rk(1− w), whence the statement. �

Proposition 5.3 Let S be a spherical sheet. Then, for every conjugacy class γ
lying in S we have mγ = mS .

Proof. Let γ, γ′ be conjugacy classes in S, with γ′∩BmSB 6= ∅. Then,mγ′ = mS

because mγ′ is maximal among the Weyl group elements whose Bruhat double
coset meets γ′. Since γ and γ′ are spherical we have dim(γ) = `(mγ)+rk(1−mγ)
and dim(γ′) = `(mγ′) + rk(1−mγ′) by [5, 24, 6] if char(k) 6= 2 and Lemma 5.1
if char(k) = 2. Since γ and γ′ lie in the same sheet we have

`(mγ) + rk(1−mγ) = `(mγ′) + rk(1−mγ′)

and mγ ≤ mγ′ = mS . Lemma 5.2 applies. �

Remark 5.4 For k = C and γ a spherical conjugacy class, mγ is strictly related
to the G-module decomposition of C[γ]. Indeed, it is well-known that C[γ] is
multiplicity-free. In addition, the highest weights occurring with multiplicity 1
generate a finite index sub-lattice among those integral weights λ such thatmγλ =
−λ and −w0λ = λ ([5, 12]). Broadly speaking, Proposition 5.3 may be seen as a
discrete analogue to [3, Theorems 3.5, 3.8] for spherical conjugacy classes.

We recall the alternative approach to strata in [29, §2]. The G-orbits of pairs
of Borel subgroups in G are parametrized by the elements of W . We denote such
orbits by Ow. For w ∈ W , let

Gw = {g ∈ G | (B′, gB′g−1) ∈ Ow, for some Borel subgroup B′ of G}.

In other words, Gw is the union of all conjugacy classes γ in G such that γ ∩
BwB 6= ∅. For C a conjugacy class in W , let Cmin (Cmax, respectively) denote
its set of minimal length elements (maximal length elements, respectively). For
w,w′ ∈ Cmin we have Gw = Gw′ by [27, 1.2(a)] and [17, 8.2.6(b)]. We denote
by GC the set Gw for w ∈ Cmin. Let δC be the minimal dimension of a conjugacy
class γ contained in GC and let GC be the union of all classes in GC of dimen-
sion exactly δC . According to [29, Theorem 5.2], whose proof is announced for
classical groups and explicit for exceptional groups, the set GC is a stratum and
all strata can be described this way.
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Let Winv be the set of involutions in W and for a conjugacy class C in W , let
WC be the union of conjugacy classes C ′ in W such that GC = GC′ . We set

T := {Π ⊂ ∆ | w0(α) = wΠ(α), ∀α ∈ ΦΠ}.

For C a class in Winv, all elements in Cmax are of the form wwΠ for some Π ∈ T ,
[33, Theorem 1.1(ii)]. For Π,Π′ ∈ T we have w0wΠ ≤ w0wΠ′ if and only if
Π ⊃ Π′. We also set

M := {Π ∈ T | w0wΠ is the unique maximal length elements in its W -class}.

Lemma 5.5 Let Π ∈ T \M. Then

1. The set of elements Π′ in M satisfying Π′ ⊂ Π has a maximum MΠ with
respect to inclusion.

2. Π is the union of MΠ and some isolated simple roots orthogonal to MΠ.

Proof. The list of elements inM is given in [10, Lemma 3.5]. A straightforward
verification gives 1. and 2. �

Lemma 5.6 Let γ be a conjugacy class in G such that γ ∩ Bw0wΣB 6= ∅ for
some Σ ∈ T , and let Π = Σ ∪ Σ′ ∈ T for some Σ′ = {β1, . . . , βl} ⊂ ∆ with
(βi, β) = 0 for every i and for every β ∈ Π \ {βi}. Then γ ∩Bw0wΠB 6= ∅.
In particular, if γ ∩Bw0wMΠ

B 6= ∅ for some Π ∈ T , then γ ∩Bw0wΠB 6= ∅.

Proof. The proof is by induction on l, the case of l = 0 being trivial. Assume the
statement is proved for l = i. Let Σi = Σ ∪ {β1, . . . , βi}, α = βi+1 and assume
γ ∩ Bw0wΣiB 6= ∅. Then, there exists x = ẇ0ẇΣixα(t)v ∈ γ ∩ ẇ0ẇΣiU ∩ γ
for some ẇ0ẇΣi ∈ N(T ) representing w0wΣi , some t ∈ k and some v ∈ P u

α ,
the unipotent radical of the minimal parabolic subgroup of G associated with α.
Assume that the parametrization of the root subgroup xα(k) is chosen as in [37,
Lemma 8.1.4]. There is η ∈ k∗ such that x−α(ξ)ẇ0ẇΣi = ẇ0ẇΣixα(ηξ) for
every ξ ∈ k. We choose ξ ∈ k satisfying ηξ2 + tξ − 1 = 0. Then, for y :=
x−α(ξ)xx−α(−ξ) ∈ γ and v′ = x−α(ξ)vx−α(−ξ) ∈ P u

α we have

y = ẇ0ẇΣixα(ηξ + t)vx−α(−ξ) = ẇ0ẇΣixα(ξ−1)x−α(−ξ)v′
∈ w0wΣisαTxα(−ξ−1)v′ ⊂ Bw0wΣi+1

B

where we have used [37, Lemma 8.1.4(22)]. Last statement follows from Lemma
5.5 (2). �
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Lemma 5.7 Let C be a class in W and γ be a spherical class in SLn(k) such
that γ ⊂ GC . Then

1. C ⊂ Winv

2. BwB ∩ γ 6= ∅ for every w ∈ C.

Proof. 1. For char(k) 6= 2 this is [6, Theorem 2.7]. If char(k) = 2, then Φ is of
type A and spherical classes are described in Lemma 5.1. If γ is the class of an
involution there is nothing to prove. Let thus γ be a semisimple class in SLn(k)
with two eigenvalues of multiplicity m and q = n −m, respectively, for m ≥ q.
Let w ∈ Cmin, so BwB ∩ γ 6= ∅. If w has no fixed points (elliptic case), we may
take w = (1, 2, . . . , i1)(i1 + 1, . . . , i1 + i2) · · · (i1 + i2 + · · ·+ ir−1, . . . , n). Then
[10, Lemma 4.1] gives r ≥ m ≥

[
n
2

]
, forcing ij ≤ 2 for every j.

Assume now that the set of fixed points of w is K = {k1, k1 + k2, . . . , k1 +
· · ·+ kt}, i.e., w lies in the parabolic subgroup of W isomorphic to Sk1−1× · · · ×
Skt−1 × Sn−k1−···−kt , where some of the factors are possibly trivial. Arguing as in
[27, 1.1], see also [34, Theorem 5.2] for different notation, we see that if γ has
minimal dimension in GC then γ ∩ L ∩ BLwBL 6= ∅, where L is the standard
Levi subgroup of a standard parabolic subgroup associated with the simple roots
indexed by {1, . . . , n} \ {k1, k1 + 1, k1 + k2 − 1, k1 + k2, . . . k1 + · · · kt − 1, k1 +
· · · + kt} and BL = L ∩ B. Then, L = Z(L)◦L1 · · ·Lt+1 where Lj ' SLkj(k)
and some of the factors are possibly trivial. We work componentwise. As each
component of w has no fixed points, we may reduce to the elliptic case.

2. If char(k) = 2, Φ of type A and γ is semisimple, C ⊂ Winv by 1, so [10,
Theorem 4.2] applies. In all other cases [8, Lemma 2.2] applies. �

Theorem 5.8 Let C be a conjugacy class in W , and let WC and GC be as above.

1. If γ ⊂ Gsph, then γ ⊂ GCγ ⊂ Gsph ∩
(⋃

γ′⊂G
mγ′=mC

γ′
)

where γ′ runs through

the conjugacy classes in G.

2. If C has a maximum mC , then

(5.2) GC = Gsph ∩
( ⋃

γ⊂G
mγ=mC

γ
)

= Gsph ∩
( ⋃

S⊂G
mS=mC

S
)

where the γ’s are conjugacy classes and the S’s are sheets in G.
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3. If GC ∩Gsph 6= ∅ then C ⊂ Winv.

4. If C ⊂ Winv then GC = GCγ ⊂ Gsph, for some class γ and mγ = w0wMΠ

(notation as in Lemma 5.5) for one (hence for every) w0wΠ ∈ Cmax.

5. If GC ∩ Gsph 6= ∅ then WC has a maximum which equals mγ for every
γ ⊂ GC .

6. If C is a class with a maximum mC , then

(5.3) WC = Winv ∩
( ⋃

C⊂W
mC=w0wMΠ

for w0wΠ∈C
′
max

C ′
)
.

Proof. 1. Certainly γ ∩BmγB 6= ∅. Since γ is spherical, BσB ∩ γ 6= ∅ for every
σ ∈ Cγ , [8, Lemma 2.2], [10, Theorem 4.2]. Thus γ ⊂ GCγ . Let γ′ ⊂ GCγ . By
[10, Propositions 2.8, 2.9], (a reformulation of [16, §2.9] ,[15, Proposition 5.3.4]),
we have γ′ ∩ BmγB 6= ∅. Therefore, dim γ′ ≥ `(mγ) + rk(1 − mγ) = dim γ,
where the equality on the right follows from the main result in [5, 6, 24] and
Lemma 5.1. Hence, dim γ′ = dim γ, γ ⊂ GCγ , γ′ is spherical by [5, Theorem 5]
and mγ′ = mγ .

2. We claim that for every class C with a maximum mC there always exists
a spherical conjugacy class γ0 such that mγ0 = mC . If char(k) 6= 2 this is [10,
Remark 3]. If char(k) = 2 then Φ is of typeA. In this case the classes inW having
a maximum coincide with the classes of involutions, and the correspondence γ 7→
mγ is a bijection between the set of spherical unipotent classes and the set of
classes of involutions in W . Hence, the first inclusion ⊂ follows from 1. On the
other hand, if γ′ is spherical and mγ′ = mC then C = Cγ′ and again by 1., we
have γ′ ⊂ GC and the first equality of sets follows. Combining with Proposition
5.3 yields the second one.

3. If γ is spherical and char(k) 6= 2 then γ ⊂
⋃
w2=1 BwB by [6, Theorem

2.7]. For char(k) = 2, Φ is of type A and we invoke Lemma 5.7(1).
4. Let γ ⊂ GC so γ ∩ BwB 6= ∅ for some w ∈ Cmin. By [10, Propositions

2.8, 2.9], we have γ ∩ BσB 6= ∅ for some σ ∈ Cmax. Then σ = w0wΠ for some
Π ∈ T . If Π ∈ M this is statement 3. so we may assume Π 6∈ M. Let MΠ as in
Lemma 5.5. We have σ ≤ w0wMΠ

≤ mγ and so

(5.4) `(w0wMΠ
) + rk(1− w0wMΠ

) ≤ `(mγ) + rk(1−mγ) ≤ dim γ.
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Let C ′ = W · w0wMΠ
and let γ′ ⊂ GC′ . By Lemma 5.6 we have γ′ ∩

Bw0wΠB 6= ∅. On the other hand γ′ is spherical by statement 2., so γ′∩BwB 6= ∅,
by [8, Lemma 2.2] and Lemma 5.7 (2). Therefore γ′ ⊂ GC and

(5.5) `(w0wMΠ
) + rk(1− w0wMΠ

) = dim γ′ ≥ dim γ.

Thus, the inequalities in (5.4) and (5.5) are equalities, γ ⊂ Gsph, mγ = w0wMΠ
,

and GCγ ⊂ GC . By 2., GC = GCγ , whence the statement.
5. By 3. and 4, GC = GCγ ⊂ Gsph, so mγ ∈ WC . Therefore it is enough to

show that γ ∩ BwB 6= ∅ for every w ∈ WC : this is Lemma 5.7 in type A and [8,
Lemma 2.2] otherwise.

6. (⊂). If C ′ ⊂ WC then by 2. and 5. we have

Gsph ∩
( ⋃
mγ=mC

γ
)

= GC = GC′ = Gsph ∩
( ⋃

mγ=w0wMΠ
forw0wΠ∈C

′
max

γ
)

whence the first inclusion. (⊃). If C ′ ⊂ Winv and mC = w0wMΠ
for w0wΠ ∈

C ′max, then by the argument in 4., for γ ⊂ GC we have GC′ = GCγ = GC so
C ′ ∈ WC . �

Let (G/∼) denote the set of strata of the form GC and (W/∼) denote the set
of subsets WC of W . Theorem 5.8 implies the following fact.

Corollary 5.9 Lusztig’s bijection induces bijections

(Gsph/∼)←→M←→ (Winv/∼).

where the correspondence GC ↔ WC is given by (5.2) and (5.3).

Remark 5.10 The closure of a stratum is in general not a union of strata, not
even in the case of spherical strata. We provide 2 counterexamples, stemming
from the counterexamples in the Appendix. The first one uses the description of
the partition of G in terms of the Bruhat decomposition, the second one uses the
description in terms of the map φG.

1. Let G = SO8(k), and let X be the spherical stratum corresponding to
w0 as in Theorem 5.8. By the classification in [5, 7], X is the union of 3
classes: the rigid unipotent class O1 with partition [3, 22, 1]; O1 multiplied
by the non-trivial central element −I in G; and the conjugacy class of an
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orthogonal diagonal matrix s = diag(1, 1,−1,−1,−1,−1, 1, 1). In other
words, it is the union of the sheets corresponding to the triples (G, 1,O1),
(G,−I,O1) and (M, s, 1), whereM is the pseudo-Levi of typeD2×D2 cor-
responding to the simple roots α1, α1 + 2α2 + α3 + α4, α3 and α4. Hence,
X \X consists only of unipotent classes, up to a central element. In partic-
ular, this set contains the unipotent class O2 corresponding to the partition
[3, 15], which is spherical and not rigid. ThenO2 lies in a non-trivial spher-
ical sheet, hence in a non-trivial stratum which cannot be contained in X .

2. Let G = SLn(k). Then sheets coincide with strata by [29, 1.16] and we
may use counterexample (2) in the Appendix.

G. CARNOVALE

Dipartimento di Matematica - Università degli Studi di Padova
via Trieste 63 - 35121 Padova - Italy
email: carnoval@math.unipd.it

Appendix by Michaël Bulois
In this Appendix we answer to a frequently asked question. We focus on the case
of sheets for the adjoint action of a semisimple group G on its Lie algebra. We
give two families of examples of sheets whose closure is not a union of sheets in
this setting.

Let g be a semisimple Lie algebra defined over an algebraically closed field
k of characteristic zero. Let G be the adjoint group of g. For any integer m, one
defines

g(m) = {x ∈ g | dimG · x = m}.

In this case a sheet is an irreducible component of g(m) for some m ∈ N. We refer
to [3, 2] for elementary properties of sheets. An important one is that each sheet
contains a unique nilpotent orbit.

There exists a well known subdivision of sheets which forms a stratification.
The objects considered in this subdivision are Jordan classes and generalize the
classical Jordan’s block decomposition in gln. These classes and their closures are
widely studied in [2]. Since sheets are locally closed, a natural question is then
the following.

If S is a sheet, is S a union of sheets?
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The answer is negative in general. We give two families of counterexamples be-
low.

1. A nilpotent orbit O of g is said to be rigid if it is a sheet of g. Rigid orbits
are key objects in the description of sheets given in [2]. They are classi-
fied in [36, §II.7&II.10]. The closure ordering of nilpotent orbits (or Hasse
diagram) can be found in [36, §II.8&IV.2]. One easily checks from these
classifications that there may exists some rigid nilpotent orbit O1 that con-
tains a non-rigid nilpotent orbit O2 in its closure. Then, we set S = O1 and
we get O2 ⊂ S ⊂ N (g) where N (g) is the set of nilpotent elements of g.
Since O2 is not rigid, the sheets containing O2 are not wholly included in
N (g). Therefore, the closure of S is not a union of sheets.

Here are some examples of such nilpotent orbits. In the classical cases, we
embed g in gln in the natural way. Then, we can assign to each nilpotent
orbit O, a partition of n, denoted by Γ(O). This partition defines the orbit
O, sometimes up to an element of Aut(g). In the case g = so8 (type D4),
there is exactly one rigid orbit O1, such that Γ(O1) = [3, 22, 1]. It contains
in its closure the non-rigid orbit O2 such that Γ(O2) = [3, 15]. Very similar
examples can be found in types C and B.

In the exceptional cases, we denote nilpotent orbits by their Bala-Carter
symbol as in [36]. Let us give some examples of the above described phe-
nomenon.

• in type E6 (O1 = 3A1 and O2 = 2A1),

• in type E7 (O1 = A2 + 2A1 and O2 = A2 + A1),

• in type E8 (O1 = A2 + A1 and O2 = A2),

• and in type F4 (O1 = A2 + A1 and O2 = A2).

2. In the case g = sln of type A, there is only one rigid nilpotent orbit, the
null one. Hence the phenomenon depicted in 1 can not arise in this case.
Let S be a sheet and let λS = (λ1 > · · · > λk(λS)) be the partition of n
associated to the nilpotent orbit OS of S according to the size of the blocks
in the Jordan form of an element ofOS . Let λ̃ be the dual partition of λ, i.e.
λ̃i = #{j | λj > i} (see, e.g., [23, §2.2]) and let lS be the standard Levi
subalgebra whose size of the blocks are the parts of λ̃S .

As a consequence of the theory of induction of orbits, cf. [2], we have

(5.6) S = G · hS
reg
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where hS is the centre of lS . In particular, the map sending a sheet S to its
nilpotent orbit OS is a bijection.

An easy consequence of (5.6) is the following (see [23, Satz 1.4]). Given
any two sheets S and S ′ of g, we have S ⊂ S ′ if and only if hS is G-
conjugate to a subspace of hS′ or, equivalently, lS′ is conjugate to a subspace
of lS . This can be translated in terms of partitions by defining a partial
ordering on the set of partitions of n as follows. We say that λ � λ′ if there
exists a partition (Ji)i∈[[1,p(λ)]] of [[1, p(λ′)]] such that λ̃i =

∑
j∈Ji λ̃

′
j . Hence,

we have the following characterization.

Lemma 5.11 S ⊂ S ′ if and only if λS � λS′ .

One sees that this criterion is strictly stronger than the characterization of
inclusion relations of closures of nilpotent orbits (see, e.g., [11, §6.2]). More
precisely, one easily finds two sheets S and S ′ such that OS ⊂ OS′ while
λS � λS′ . Then, OS ⊂ S ′, S is the only sheet containing OS and S 6⊂
S ′. For instance, take λS′ = [2, 2], λS = [2, 1, 1]. Their respective dual
partitions being [2, 2] and [3, 1], we have λS � λS′ .
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