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Abstract 

Drought limits the long-distance transport of water in the xylem due to the reduced leaf-to-

soil water potential difference and possible embolism-related losses of conductance, and of 

sugars in the phloem due to the higher viscosity of the dehydrated sugary solution. This 

condition can have cascading effects in water and carbon fluxes that may ultimately cause 

tree death. We hypothesize that the maintenance of xylem and phloem conductances is 

fundamental for survival also under reduced resource availability, when trees may produce 

effective and low C cost anatomical adjustments in the xylem and phloem close to the treetop 

where most of the hydraulic resistance is concentrated.  

We analyzed the treetop xylem and phloem anatomical characteristics in coexisting 

Scots pine trees symptomatic and non-symptomatic of drought-induced dieback. We selected 

the topmost 55 cm of the main stem and selected several sampling positions at different 

distances from the stem apex to test for differences in the axial patterns between the two 

groups of trees. We measured the annual ring area (RA), the tracheid hydraulic diameter (Dh) 

and cell wall thickness (CWT), the conductive phloem area (PAcond) and the average lumen 

diameter of the 20 largest phloem sieve cells (Dph).  

Declining trees grew less than the non-declining ones, and despite the similar axial 

scaling of anatomical traits, had larger Dh and lower CWT. Moreover, declining trees had 

wider Dph. 

Our results demonstrate that even under drought stress, maintenance of xylem and 

phloem efficiencies is of primary importance for survival, even if producing fewer larger 

tracheids may lead to a xylem more vulnerable to embolism formation. 
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Introduction 

Drought events and heat waves are increasing worldwide in frequency and intensity due to 

the effects of climate change (Dai 2013). The resulting soil water shortage and high 

evaporative demand impose serious limitations to leaf transpiration and C uptake, inducing 

challenging conditions for the survival of trees. Indeed, an increased frequency of forest 

dieback and tree mortality events has been reported worldwide in the last decades (Allen et 

al. 2015).  

Tree survival is dependent on the maintenance of a positive C balance, i.e., the 

difference between C uptake through photosynthesis and C used for all the different 

physiological processes including growth and respiration. Maintenance respiration consumes 

approximately 50% of the total C fixed with photosynthesis (Waring et al. 1998). Other 

significant amounts of C (>20% of the total C fixed with photosynthesis) are transferred to 

the soil as root exudates and to the atmosphere as volatile organic compounds (VOCs) 

(Preece et al. 2018, Ameye et al. 2018). 

Gas exchange mainly occurs through the stomata. While CO2 diffuses from the 

atmosphere inside the mesophyll, where is fixed by photosynthesis, the water evaporating 

from the mesophyll cell walls diffuses to the atmosphere. The water lost with 

evapotranspiration needs to be replaced by water absorbed by roots and flowing along the 

xylem transport system to the leaves. According to the Darcy’s law (F=ΔΨ×K) (Tyree & 

Ewers 1991), the water flow (F) sustaining leaf transpiration is proportional to the difference 

of water potential between leaves and roots (ΔΨ=ΨLEAF-ΨSOIL) and to the total xylem 

conductance (K). K depends on the hydraulic contribution of every single xylem conduit 

constituting the water transport system. Since K cannot be promptly modified because xylem 

conduits are dead hollow cells, a reduction in ΔΨ due to soil drought (i.e., lower ΨSOIL) can be 
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limiting for F, and therefore for gas exchange. If this situation persists until the tree depletes 

all the C reserves, decline and finally death by C starvation would occur.  

Another major mechanism of canopy dieback and tree death implies widespread 

xylem embolism leading to plant desiccation by hydraulic failure (McDowell et al. 2008). 

The evaporation from cellular interstices in the leaf mesophyll cavities implies that water 

flows along the xylem at sub-atmospheric pressure and therefore in a metastable liquid phase 

(Cohesion Tension Theory: Dixon & Joly 1894). When water potential drops below a certain 

threshold, air bubbles can penetrate and expand into a xylem conduit, which becomes air-

filled and no longer conductive (Cochard 2006). Vulnerability of conduits to embolism 

formation is variable and depends on different anatomical structures (e.g., pit size and 

number) (Tixier et al. 2014). In general, embolism resistance decreases with increasing 

conduit size (Hacke et al. 2006, Sperry et al. 2006), especially at the intraspecific level 

(Larter et al. 2017). Accordingly, the smallest xylem conduits along the roots-to-leaves 

hydraulic path are found at the stem apex (e.g., Petit et al. 2010), where the water potential is 

the lowest due to the proximity to the sites of evaporation (i.e., leaves) (Venturas et al. 2017). 

Below the apex, conduits increase progressively until the stem base according to a universal 

axial pattern across species, sizes, and environments (Anfodillo et al. 2013). 

In parallel to water flowing upwards to the leaves along the xylem, the solution of 

sugars produced with photosynthesis flows along the phloem, where sieve elements increase 

in diameter from the stem apex to base similarly to the axial pattern of xylem conduits (Petit 

& Crivellaro 2014, Jyske & Hölttä 2015, Savage et al. 2017). The flow occurs under the 

positive pressure between the sites of sugar loading (leaves, with higher sugar concentration) 

and sink sites, where sugars are consumed (De Schepper et al. 2013). This drop of positive 

pressure is sustained by sugar loading at the leaf level. Consequently, sugar transport is 

dependent on C assimilation and thus on leaf transpiration (Hölttä et al. 2006). Under 
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drought, not only the reduced photosynthesis following stomatal closure can negatively affect 

the source-to-sink pressure difference and thus limit the transport of sugars, but also overall 

phloem hydraulic efficiency (i.e., conductance) can be further limited by the higher sap 

viscosity due to tissue dehydration (Sevanto 2014). 

What mechanism is mostly involved in determining irreversible conditions and 

exposing trees to pathogens attacks and ultimately mortality has been the object of intense 

research in the last decade (McDowell et al. 2013, Gaylord et al. 2015). The most common 

case that has been reported in trees at significant stressful conditions preceding drought-

induced mortality, is a high loss of conductance (>60%) due to widespread embolism 

formation  (Adams et al. 2017). Moreover, this condition is often associated with a reduction 

in both primary and secondary growth (e.g., Weemstra et al. 2013, Camarero et al. 2015), 

implying limitations for the plant’s carbon balance.  

In this context, phenotypic adjustments of xylem and phloem anatomies would 

commonly be expected to occur, according to natural variability along environmental 

gradients, allowing trees to maintain functionality. 

Several studies reported narrower xylem conduits in drier environments (e.g., 

Pfautsch et al. 2016, Martínez-Sancho et al. 2017), suggesting that a safer xylem against air 

seeding is necessary under higher xylem tensions. Furthermore, phloem sieve elements have 

been also reported to be narrower under drought, suggesting a stronger limitation to the long 

distance transport of sugars (Dannoura et al. 2018).  

However, according to the most widely used sampling protocols the anatomical 

measurements are taken only at one single sampling position, i.e., either at the stem base or 

on branches of characteristic age (usually 2-3 years). Such methodological approaches 

substantially neglect that anatomical traits (e.g., xylem conduit diameter and phloem sieve 

cell diameter) vary axially with the distance from the stem/branch apex (Anfodillo et al. 
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2013). Therefore, plants with reduced growth rates and shorter statures (i.e., the typical 

features of plants growing in dry conditions) would be sampled at shorter distance from the 

apex, where xylem conduits and phloem sieve elements are smaller per se. 

The overall picture of anatomical adjustments described above, conflicts with other 

analyses carried out according to different sampling approaches, accounting for the general 

and predictable axial design of the xylem and phloem architectures. Emerging evidence from 

such studies is showing that plants’ responses to drought do not imply the production of 

smaller and safer conduits. That is, conduits increase with the distance from the apex at rates 

that are not influenced by environmental conditions, and the absolute conduit diameter was 

found to be either similar (Lechthaler et al. 2018, Kiorapostolou & Petit, 2018) or wider all 

along the longitudinal stem/branch axis in drier conditions (Petit et al. 2016, Kiorapostolou et 

al. 2018). Seemingly, phloem sieve elements and phloem area were reported to increase with 

the distance from the apex, with drought stimulating plants producing a more conductive 

phloem architecture (i.e., larger phloem area and larger sieve cells: Kiorapostolou & Petit 

2018), likely maintaining the overall efficiency of sugar transport system (Sevanto 2014). 

Tree must maintain a positive C balance to survive. Therefore, they need to 

compensate for potential limitations to C assimilation and sugar transport. A possible solution 

would be optimizing the C investment into the xylem and phloem architectures by reducing 

the allocation to new biomass (i.e., slower primary and secondary growth), while maintaining 

or even increasing the xylem and/or phloem conductance by producing larger conductive 

cells. 

The aim of this study was to compare the xylem and phloem anatomy of the topmost 

part of the main stem (i.e., the hydraulic bottleneck) of coexisting Scots pine (Pinus sylvestris 

L.) trees symptomatic and non-symptomatic of drought-triggered dieback. The target 

population was already object of a retrospective dendro-anatomical analysis revealing that the 
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production of narrower conduits at 1.3 m started decades before evident signals of dieback 

such as needle loss and growth decline (Pellizzari et al. 2016). The null hypothesis was that 

symptomatic trees differ from non-symptomatic ones not only because they form narrower 

tracheids at the stem base (Pellizzari et al. 2016), but also because they produce larger 

tracheids at the stem apex in order to maintain the total hydraulic conductance with reduced 

C allocation to xylem biomass. Moreover, phloem anatomy of declining trees is expected to 

be characterized by a higher conductive area and wider sieve elements to guarantee an 

adequate efficiency of the long-distance transport of a more viscous phloem sap due to 

stronger drought-induced tissue dehydration. 

 

Materials and methods 

Plant material and study site 

The study area is a Scots pine forest (0º 59’ 18’’ W, 40º 26’ 32’’ N, 1260-1289 m a.s.l.) 

located near Corbalán, Aragón (E. Spain), where many trees started defoliating and dying 

after the severe drought of 2012 (Supplementary Figure 1). Since then, mean mortality rates 

are approximately 12% yr
-1

 (J.J. Camarero, personal observation). Trees from this study area 

had been already subject of dendro-anatomical analyses by Camarero et al. (2015) and 

Pellizzari et al. (2016). In late April of 2017, we sampled the apical 55 cm of the stem axis 

(treetop) of three declining (with reduced foliage cover, on average less than 30% of total 

crown cover) and three non-declining Scots pine trees (crown cover > 90%) of similar height. 

For each sampled tree, measurements of diameter at breast height (1.3 m) and total height, 

and visual estimate of crown cover were performed in the field. Tree age was estimated by 

counting the number of rings in tree cores extracted at breast height (Table 1). 

For each tree, we selected 4-15 sampling points along to topmost 55 cm of the stem. 

Sampling points were selected at approximately 1 cm from the base of each internode. Stem 
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segments were extracted at each sampling point, and then cut using a rotary microtome 

LEICA RM 2245 (Leica Biosystems, Nussloch, Germany) at 15-18 μm. Transverse micro-

sections were stained with a solution of safranin and Astra Blue (1% and 0.5% in distilled 

water, respectively), and permanently fixed on glass slides with Eukitt (BiOptica, Milan, 

Italy). Images of micro-sections were acquired at 100x magnification, using a D-sight slide 

scanner (Menarini Group, Florence, Italy), and analysed with ROXAS (von Arx & Carrer 

2014). The analysis was performed on a wedge of known angle (α, between 10 and 40 

degrees) centred at the pith. Analysed images were first manually edited to outline the 

contour of the pith and of each xylem ring to allow a ring-based estimate of the xylem ring 

area of the image (RA), as well as of the conductive phloem area (PAcond). The average 

conduit hydraulic diameter (Dh = Σd
5
/Σd

4
, where d is the conduit diameter), and the cell wall 

thickness (CWT) were also measured. Then, each RA was up-scaled to the whole cross-

section as Y=Yˈ/α×360 (where Y is the up-scaled RA, Yˈ the RA of each ring, and α the wedge 

angle). Moreover, for each sampling point along the apical stem axis, the mean diameter of 

the 20 largest phloem sieve cells (Dph) of the most recent phloem ring (conductive phloem) 

was estimated after measuring their cell area and assuming cells to be circular. Similar 

analysis was used in (Kiorapostolou & Petit 2018). 

Each ring-based anatomical trait was then related to the distance from the 

contemporary apex (i.e., the stem apex in that given year, Dap). When necessary, Dap was 

estimated on the basis of the average annual elongation rate between two successive discs 

(ΔH=ΔNR/L, where ΔNR is the difference in number of rings between two successive discs, 

and L is the distance between them). Therefore, the total number of samples per individual 

depended basically on its longitudinal growth rate. 
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Statistical analysis 

We performed a comparative analysis of the scaling relationships between different traits 

(i.e., dependent variables: RA, CWT, Dh, Dph) against the distance from the apex (Dap) in 

declining and non-declining trees for the wood produced after the drought of 2012 (the last 5 

annual rings of the sections). We used Standardized Major Axis (SMA) models and tested for 

possible differences on the elevation (y-intercept) and slope (exponent b) of the different 

scaling relationships (Warton et al. 2006, 2012). When necessary, variables were transformed 

in natural logarithm (log in R) to meet the assumptions of normality and homoscedasticity. 

All statistical analyses were performed using R version 3.4.2 (R Core Team, 2017). 

 

Results 

In both declining and non-declining trees, the annual allocation into xylem biomass followed 

an axial scaling relationship between the xylem ring area (RA) and the distance from the stem 

apex (Dap). The scaling exponent (i.e., the slope of the log-log relationship) was higher in 

declining compared to non-declining trees (Figure 1a; Table 2). However, declining trees 

grew significantly less than non-declining trees, as shown by their lower y-intercept in the 

relationship between RA and Dap (Figure 1a; Table 2), and by their lower stem elongation 

rates (mean ±SE = 2.37 ± 0.2 vs. 5.77 ±1.13 cm yr
-1

).  

The tracheid cell wall thickness (CWT) increased with Dap in the declining trees, 

whereas for non-declining trees the axial variation for the topmost 55 cm was negligible 

(Figure 1b; not significant slope). The declining trees had thinner cell walls closer to the stem 

apex, as shown by the significantly lower y-intercept in the relationship CWT vs. Dap (Figure 

1b; Table 2).  

Xylem tracheids revealed a clear axial pattern. The mean tracheid hydraulic diameter 

(Dh) increased with Dap following a power trajectory, with a scaling exponent (i.e., the slope 
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of the log-log relationship) not significantly different between declining and non-declining 

trees (Figures 1c; Table 2). However, declining trees produced wider tracheids (significantly 

higher y-intercept: Figure 1c; Table 2) than the non-declining trees. 

We found that the cross sectional area of the total conductive phloem (PAcond) 

increased with Dap according to a similar power scaling in both declining and non-declining 

trees (Figure 2a; Table 2) 

The average diameter of phloem sieve cells (Dph) increased with Dap following a 

power trajectory, with a scaling exponent not significantly different between declining and 

non-declining trees. However, declining trees produced wider sieve cells than the non-

declining trees (significantly higher y-intercept: Figures 2b; Table 2). 

 

Discussion 

In this study, we performed xylem and phloem anatomical analyses at the treetop of 

coexisting Scots pine trees symptomatic and non-symptomatic of drought-induced decline of 

vigor. Our declining Scots pine trees revealed a long-term (>30 years) reduction in radial 

growth and tracheid diameter near the stem base (Pellizzari et al. 2016). On the contrary, our 

anatomical analyses of the most apical portion of the stem revealed that the same 

symptomatic trees did decrease the C investment into growth since tracheids were larger with 

thinner cell walls. Moreover, the treetops of declining trees had also larger phloem sieve cells 

compared to non-declining trees.  

Our results coupled with those of Pellizzari et al. (2016) reveal that anatomical 

adjustments can differ between positions along the xylem and likely the phloem hydraulic 

paths. This opens a serious problem of interpretation of trees’ long-term responses to drought 

and more generally to environmental variability, related to the number and positions of 

sampling points along the longitudinal axis of stem and branches and linked to the scientific 
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question. Lechthaler et al. (2018) already discussed that neglecting that anatomical traits 

(e.g., xylem conduit diameter) vary axially along a given ring according to the distance from 

the stem/branch apex, potentially leads to wrong interpretations of results. In fact, a single 

point sampling at the stem base (or at branches of fixed age) results in sampling positions 

closer to the apex (e.g., thus in narrower conduit diameters) for shorter trees (or branches 

with reduced elongation rates). Moreover, Prendin et al. (2018) recently suggested that trees 

can modify the axial design of the xylem architecture to maintain the total xylem conductance 

under reduced C availability. Conduits at the stem apex slightly increase to release the 

xylem’s hydraulic bottleneck, while the overall lower investment of C into new xylem will 

result into narrower conduits closer to the stem base. 

In this study, we compared the diameter variation of xylem tracheids and phloem 

sieve cells along the treetop. We found a clear convergence of both declining and non-

declining trees towards the typical axial scaling of xylem conduit diameter vs. distance from 

the stem apex with exponent b~0.2. This provides further support to the hypothesis that 

selection favored this axial design irrespective of species, tree sizes, and environment 

(Anfodillo et al. 2006, Olson et al. 2014), likely because represents the best compromise of 

xylem hydraulic efficiency and safety al the lowest C cost (Mencuccini et al. 2007). Narrower 

and more cavitation-resistant conduits (Larter et al. 2017) are located at the stem apex, where 

xylem tensions are the highest (i.e., the lowest water potentials) (Venturas et al. 2017). 

Below, the progressively larger conduits would add a nearly negligible contribution to the 

total path hydraulic resistance, thus guaranteeing a good efficiency (i.e., total conductance) of 

the transport system (Petit and Anfodillo 2009). 

Differences in the y-intercept of our assessed scaling relationships revealed that 

declining trees produced at their treetops narrower rings with larger tracheids of thinner 

walls, compared to non-declining trees. Declining trees produced narrower rings also near the 
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stem base, but associated with narrower tracheids (Pellizzari et al. 2016). With this xylem 

low C-cost configuration, the wider apical tracheids would theoretically compensate for the 

reduction in growth and hydraulic conductivity of narrower tracheids at the stem base 

(Prendin et al. 2018). However, larger apical tracheids had also thinner cell walls, suggesting 

that our symptomatic trees were likely more exposed to the risk of drought-induced embolism 

(Sperry et al. 2006), compared to non-symptomatic trees. 

We found that both the total area of conductive phloem and the lumen diameter of 

sieve cells increased axially from the stem apex downwards. The increase in diameter of the 

phloem sieve cells for the first 55 cm from the apex was significant (b~0.3) (Table 2). 

Phloem architecture is characterized by conductive sieve cells that progressively increase in 

diameter from the stem apex towards the stem base (Petit & Crivellaro 2014, Jyske & Hölttä 

2015, Savage et al. 2017, Kiorapostolou & Petit 2018), so that the treetop results to be the 

hydraulic bottleneck also for the long-distance sugar transport system (Ryan & Robert 2017, 

Savage et al. 2017). Interestingly, declining trees had similar phloem area, but with larger 

sieve cells, in agreement with the hypothesis that a higher phloem conductance is necessary 

to compensate for the negative effect of higher phloem sap viscosity on the efficiency of 

sugar transport under drought (Sevanto 2014). 

The overall picture following our anatomical analyses and coupled with those of 

Pellizzari et al. (2016) showed that significant differences exist in the xylem and phloem 

anatomies of symptomatic and non-symptomatic trees showing different intensity of drought-

induced dieback. Symptomatic trees were limited in the investment into new biomass and 

reduced radial growth and tracheid diameter near the stem base. However, they increased the 

conductivity of the stem apex by enlarging tracheids. This modification of xylem axial 

configuration would suggest a prioritization to the maintenance of a certain xylem conductive 
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efficiency, even if at the side cost of exposing to the highest tensions larger tracheids with 

thinner walls (i.e., more vulnerable to embolism formation).  

Our analyses and interpretations re-evaluate the role of the xylem embolism resistance 

as no longer central in the prioritized processes of acclimation and adaptation to soil drought 

conditions. It can be argued that under reduced C availability, as under drought, producing 

narrower apical tracheids would decrease the total xylem conductance, with further negative 

effects on stomatal conductance and photosynthesis. Substantially, the tree reaction to 

drought unlikely produces a xylem more resistant to embolism, because this cannot be 

equally efficient (Gleason et al. 2016). 

In conclusion, we demonstrated that the treetop is the region where low-cost but 

hydraulically effective anatomical modifications can be realized under drought stress, 

meristem impairment and shortage of C resources. Safeguarding the total xylem and phloem 

conductance seems a risk worth taking to increase the chances of survival, even though this 

may come at the cost of a higher vulnerability of embolism formation and the relative higher 

risk of death by hydraulic failure. 
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Figure legends 

Figure 1. (a) Total ring area (RA) for the last five years (after the drought of 2012) against 

distance from the stem apex (Dap). (b) Tracheid cell wall thickness (CWT) for the last five 

years (after the drought of 2012) against Dap. Dark blue circles and light blue diamonds are 

for non-declining and declining trees, respectively. (c) Tracheid hydraulic diameter (Dh) for 

the last five years (after the drought of 2012) against distance from the stem apex (Dap). 
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Figure 2. (a) Area of conductive phloem (PAcond) against distance from the stem apex 

(Dap).  (b) Average diameter of the largest phloem sieve cells (Dph) for the last five years 

(after the drought of 2012) against Dap. Dark blue circles and light blue diamonds are for 

non-declining and declining trees, respectively. 
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Table captions 

 

Table 1. Diameter at breast height (Dbh), height (H), crown cover, age, and average stem 

elongation rate (ΔH) of the three declining and three non-declining sampled trees. 

 

Table 2. Outputs of Standardized Major Axis (SMA) models. The models equal: variable ~ 

Dap + conditions to test for differences in elevation (y-intercept), and variable ~ 

Dap*conditions to test for differences in slopes (exponent b), where Dap is the distance from 

the stem apex (Warton et al. 2006, 2012). Data were log transformed. In the models variable 

= total ring area (RA) or tracheid cell wall thickness (CWT) or tracheid hydraulic diameter 

(Dh) or area of conductive phloem (PAcond) or average diameter of the largest phloem sieve 

cells (Dph), and conditions = declining and non-declining tree. 

 

Table 2. Diameter at breast height (Dbh), height (H), crown cover, age and average 

elongation rate (ΔH) of the three declining and three non-declining sampled trees. 

Condition Dbh (cm) H (m) Crown cover (%) Age (years) ΔH (cm yr
-1
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Table 2. Outputs of Standardized Major Axis (SMA) models. The models equal: variable ~ 

Dap + conditions to test for differences in elevation (y-intercept), and variable ~ 

Dap*conditions to test for differences in slopes (exponent b), where Dap is the distance from 

the stem apex (Warton et al. 2006, 2012). Data were log10 transformed. In the models 

variable = total ring area (RA) or tracheid cell wall thickness (CWT) or tracheid hydraulic 

diameter (Dh) or area of conductive phloem (PAcond) or average diameter of the largest 

phloem sieve cells (Dph), and conditions = declining and non-declining tree. 
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