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Rhythmic behavior in a two-population mean-field Ising model
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Many real systems composed of a large number of interacting components, as, for instance, neural networks,
may exhibit collective periodic behavior even though single components have no natural tendency to behave
periodically. Macroscopic oscillations are indeed one of the most common self-organized behavior observed in
living systems. In the present paper we study some dynamical features of a two-population generalization of the
mean-field Ising model with the scope of investigating simple mechanisms capable to generate rhythms in large
groups of interacting individuals. We show that the system may undergo a transition from a disordered phase,
where the magnetization of each population fluctuates closely around zero, to a phase in which they both display
a macroscopic regular rhythm. In particular, there exists a region in the parameter space where having two groups
of spins with inter- and intrapopulation interactions of different strengths suffices for the emergence of a robust
periodic behavior.
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I. INTRODUCTION

Living systems are characterized by the emergence of
recurrent dynamical patterns at all scales of magnitude. Self-
organized collective behaviors are observed both in large com-
munities of microscopic components, like neural oscillations
and gene network activity, as well as on larger levels, such as
predator-prey equilibria, applauding audiences, and flocks of
birds. In particular, collective periodic behaviors are among
the most commonly observed ways of self-organization in
biology, ecology, and socioeconomics [1–4]. The attempt of
modeling such complex systems leads naturally to considering
large families of microscopic identical units. Complexity and
self-organization then arise on a macroscopic scale from the
dynamics of these minimal components that evolve coupled
by interaction terms.

Within this scenario, we are interested in particle systems
whose macroscopic observables oscillate between different
ordered phases. In these models, microscopic units neither
have a tendency to behave periodically on their own—in
contrast to Kuramoto rotators [5]—nor are subject to a periodic
forcing. Nevertheless, the particles organize to produce a very
regular motion perceived only macroscopically: a collective
self-sustained rhythm. Various stylized models have been
proposed to capture the essence of this phenomenon, but
in most of them rigorous results are hard to obtain, as the
study ends up looking for stable attractors of nonlinear infinite
dimensional dynamical systems [6,7]. Analytically tractable
models can be obtained by considering mean-field interactions.
Recently, the existence of periodic collective behaviors has
been proven for some classes of mean-field systems derived
as perturbation of classical reversible ferromagnetic models
by adding a dissipation term [8–10]. Dissipation dumps the
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influence of interaction when no transition occurs for a
long time. The simplest spin system within this class is the
dissipative mean-field Ising model proposed in Refs. [9,10].
Coupled diffusions with dissipation have been considered in
Ref. [8]. Besides dissipation, delay in the interactions may
also produce rhythmic behavior in mean-field systems as
highlighted in Ref. [11] for interacting Hawkes processes
and in Ref. [12] for spin-glass models. Indeed, theoretical
models based on mean-field interacting spin systems, although
simplistic, are able to show a good qualitative description of
cooperative macroscopic behavior in self-organizing systems.
In the past few decades, for this reason and their analytical
tractability, they have also been applied in social sciences
[13–15], finance [16,17], chemistry [18], and ecology [19,20].

An interesting family, which has naturally emerged in
applications, is a multispecies extension of the mean-field Ising
model. The possibility of taking into account several kinds of
magnetic spins is a peculiar feature that may be relevant to
capture diverse phenomena from magnetism in anisotropic
materials to social issues. A two-population version of the
Curie-Weiss model was introduced in the 1950s to mimic the
phase transition undergone by metamagnets [21]. Recently,
it has been receiving renewed attention due to its ability to
describe the large-scale behavior of socioeconomic systems,
such as cultural coexistence, immigration, and integration
[15,22–24]. Multipopulated noninteracting spin models are
the cornerstone of McFadden discrete choice theory [25]. The
extension of the discrete choice theory to the interacting, and
more realistic case has been done in Ref. [15] and represents
an important step toward the understanding of collective
behaviors in societies. From an equilibrium viewpoint, the
investigation of the two-species model introduced in Ref. [15]
has been pursued at a mathematical level in Ref. [26], where
the thermodynamic limit has been rigorously obtained. In
the present paper, following the work started in Ref. [27],
we continue the analysis of the dynamical features of this
two-population generalization of the mean-field Ising spin
system.
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Inspired by previous works with applications in biology
[28], neurosciences [11], and socioeconomics [12], our pur-
pose is to investigate mechanisms that enhance rhythmic
behavior. The goal of the paper is not to have a comprehensive
study of the dynamics but rather to show the onset of regular
behavior. Our main finding indicates that having two groups
of spins with possibly different sizes and different inter-
and intrapopulation interactions suffices for the emergence
of macroscopic oscillations. Additional mechanisms as dis-
sipated or delayed interactions are not necessary. However,
delay may produce periodic behavior in interaction network
configurations where otherwise absent. In our approach, the
transition to rhythm is detected in the thermodynamic limit
via the presence of a Hopf bifurcation. Stable limit cycles
may also emerge from nonlocal bifurcations [8], but there is
no numerical evidence it could be the case for the class of
mean-field systems considered here.

II. MODEL

The two-population Curie-Weiss model is a spin system
where on the complete graph two types of spins are present.
Particles are differentiated by their mutual interactions: There
are two intragroup interactions, tuning how strongly sites in the
same group feel each other, and two intergroup interactions,
giving the magnitude of the influence between particles of
distinct populations. Let S = {−1, + 1} be the state space of
a single spin variable and let σ = (σj )Nj=1 ∈ SN be the N -site
configuration. We divide the whole system of size N into
two disjoint subsystems of sizes N1 and N2, respectively.
Let I1 (respectively, I2) be the set of sites belonging to the
first (respectively, second) subsystem. We have card(I1) =
N1 and card(I2) = N2, with N1 + N2 = N . To fix notation,
let 1,2, . . . ,N1 be the indices corresponding to particles in
population I1 and N1 + 1,N1 + 2, . . . ,N those of particles in
population I2, so

Population I1 Population I2

σ = (σ1,σ2, . . . ,σN1 σN1+1,σN1+2, . . . ,σN ).

Given two spins, their mutual interaction depends on the
subsystems to which they belong. In our setting, J11 and
J22 tune the interaction within sites of the same subsystem,
whereas J12 and J21 control the coupling strength between
spins located in different subsystems (see Fig. 1 for a schematic
representation). All the interactions can be either positive or
negative, allowing both ferromagnetic and antiferromagnetic
interactions.

We want to define two different Markovian dynamics in
this setting. Let us denote by

mNi
(t) := 1

Ni

∑
j∈Ii

σj (t)

the magnetization of population Ii (i = 1,2) at time t .
Moreover, if α := N1/N is the proportion of sites belonging
to the first group, we introduce the functions

R1(x1,x2) = αJ11x1 + (1 − α)J12x2, (1)

R2(x1,x2) = (1 − α)J22x2 + αJ21x1 . (2)

Population I1 Population I2

J22

J11

J12

J21

FIG. 1. A schematic representation of the interaction network
for a bipartite Curie-Weiss model. Spins are divided into two
populations I1 and I2. Within I1 (respectively, I2) particles feel
a mean-field interaction with coupling J11 (respectively, J22). In
addition, population I1 (respectively, I2) influences the dynamics
of the other group through its magnetization with strength J12

(respectively, J21).

The Ri’s are composed of two terms: The first one tells us how
strongly sites in the same population interact, while the second
encodes the way one population influences the other.

We are now ready to describe the two dynamics we are
interested in. For reasons that will be clear in a moment,
throughout the paper we will refer to these dynamics as
“without delay” and “with delay.”

A. Microscopic dynamics without delay

Let σ i denote the configuration obtained from σ by flipping the
ith spin. At any time t the system may experience a transition
whose rate depends on the magnetization vector at time t only.

The transition σ −→ σ i occurs at rate

e−σi R1(mN1 (t),mN2 (t)), if i ∈ I1

e−σi R2(mN1 (t),mN2 (t)), if i ∈ I2. (wD)

These are standard Glauber Markovian dynamics where,
for any small δ > 0, the transition probability P {σ (t +
δ)|σ (s),s � t} depends only on the configuration at time t ,
i.e., P {σ (t + δ)|σ (s),s � t} = P {σ (t + δ)|σ (t)}.

B. Microscopic dynamics with delay

A second type of dynamics in which a delay kernel acts on
the intergroup interactions is also of interest. At any time
t the influence of each population on the other is given by
an average over the magnetization trajectory up to time t ,
weighted through a delay kernel.

The transition σ −→ σ i occurs at rate

e
−σi R1(mN1 (t), γ (n)

N2
(t))

, if i ∈ I1

e
−σi R2(γ (n)

N1
(t), mN2 (t))

, if i ∈ I2, (D)

where, for n ∈ N and k ∈ N \ {0}, we define

γ
(n)
Ni

(t) =
∫ t

0

(t − s)n

n!
kn+1e−k(t−s) mNi

(s) ds,

for i = 1,2. The delay kernel is in the form of Erlang
distribution. The parameter n is related to the shape of the
bump of the function; whereas k tunes how sharp and close
to time t the peak is. In particular, for any fixed n ∈ N and
large k, the kernel has a sharp peak around s � t , where the
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maximum is attained. As a consequence, in the limit as k goes
to infinity, only values of the magnetizations close to mNi

(t),
for i = 1,2, enter the dynamics and the rates (D) approach the
rates (wD). This indicates that the addition of delay is relevant
for small values of the parameter k.

III. RESULTS

We want to characterize the infinite volume limits of the
dynamics (wD) and (D) described above. The strategy is to
determine a suitable Markov process whose dynamics can be
derived from the original microscopic dynamics and then apply
standard techniques of convergence of generators to get weak
convergence to the thermodynamic limiting evolution [29,
Corollary 8.7, Chapter 4]. This machinery has been applied
in detail in Ref. [19] for the treatment of a similar system.

Note that the limit as N goes to infinity must be taken in
such a way the proportions α and 1 − α of the two groups
remain constant. In the sequel, we will write mi(·) for the
infinite volume limit of mNi

(·). Analogously, γ
(n)
i (·) will be

the limit of γ
(n)
Ni

(·).

A. Macroscopic dynamics without delay

The dynamics (wD) for configurations induce a Markovian
evolution on the magnetization vector (mN1 (t),mN2 (t)). As
N −→ ∞, the process (mN1 (t),mN2 (t))t�0 weakly converges
to the solution of the system of ordinary differential equations,

ṁ1(t) = 2 sinh[R1(m1(t),m2(t))]

− 2m1(t) cosh[R1(m1(t),m2(t))]

ṁ2(t) = 2 sinh[R2(m1(t),m2(t))]

− 2m2(t) cosh[R2(m1(t),m2(t))]. (MwD)

B. Macroscopic dynamics with delay

In this case, the magnetization vector in itself does not
inherit Markovianity from (D). To get a Markovian evolution
for macroscopic observables, we have to consider the process

(
mN1 (t),mN2 (t),

(
γ

(j )
N1

(t)
)n

j=0,
(
γ

(j )
N2

(t)
)n

j=0

)
t�0,

that, as N −→ ∞, weakly converges to the solution of the
following system of ordinary differential equations,

ṁ1(t) = 2 sinh
[
R1

(
m1(t), γ (n)

2 (t)
)]

− 2m1(t) cosh
[
R1

(
m1(t), γ (n)

2 (t)
)]

ṁ2(t) = 2 sinh
[
R2

(
γ

(n)
1 (t),m2(t)

)]
− 2m2(t) cosh

[
R2

(
γ

(n)
1 (t),m2(t)

)]
γ̇

(0)
1 (t) = k

[ − γ
(0)
1 (t) + m1(t)

]
γ̇

(n)
1 (t) = k

[ − γ
(n)
1 (t) + γ

(n−1)
1 (t)

]
, for n > 0

γ̇
(0)
2 (t) = k

[ − γ
(0)
2 (t) + m2(t)

]
γ̇

(n)
2 (t) = k

[ − γ
(n)
2 (t) + γ

(n−1)
2 (t)

]
, for n > 0. (MD)

We remark that introducing delay through a kernel (an
idea borrowed from Ref. [11]) leads to a finite-dimensional
macroscopic dynamics. In contrast, if instead of γ

(n)
Ni

(t) we
choose γ Ni

= mNi
(t − τ ), with fixed τ > 0 (delayed rates),

the limiting dynamics are infinite dimensional. A detailed
analysis of a mean-field spin system with delayed rates is
given in Ref. [12]. In addition therein, the author considers a
spatial model where both the interaction and the delay depend
on respective locations of sites.

It is evident from equation (MD) that, for large k, there
is a separation of time scales between the evolutions of the
m variables and the γ variables: The latter relax to their
equilibrium point much faster than the former. By applying
the center manifold reduction [30, Theorem 5.2], it is possible
to reduce the (2n + 4)-dimensional dynamical system (MD)
to a planar dynamical system, describing the O(1) evolution
of (m1,m2) on the center manifold,

γ
(0)
1 = · · · = γ

(n)
1 = m1 and γ

(0)
2 = · · · = γ

(n)
2 = m2.

Thus we can neglect the equations for the γ variables
and consider only the dynamics of the m variables after
having substituted the stationary values for the γ ’s. It follows
that, for large k, the reduction of (MD) coincides with the
macroscopic dynamics without delay (MwD). This calls for a
few observations:

(i) The proximity between the macroscopic evolutions
(MwD) and (MD) we obtain for large k is not so unexpected. It
somehow reflects the fact that the microscopic dynamics (wD)
and (D) are close to each other as k goes to infinity. Indeed,

since γ
(n)
Ni

(t)
k→+∞−−−−→ mNi

(t), for all n ∈ N and t ∈ R+, there
is convergence of the transition rates (D) towards (wD) and,
as a consequence, the two stochastic processes become close
to each other.

(ii) The proximity between the dynamics (MwD) and
(MD) holds true only in the large k limit. It will be clear in
the next section that, for small k, the qualitative behaviors of
the two systems may significantly differ. Delay may produce
periodic behavior in interaction network configurations where
otherwise absent.

C. Transition from disorder to rhythm

We want to detect the transition from a disordered behavior,
where mN1 (·) and mN2 (·) fluctuate around zero, to a collective
rhythmic behavior in which we have periodic motion of the
magnetizations (see Figs. 2 and 3). To this aim, we consider
the limiting evolutions (MwD) and (MD) and we look for the
presence of a Hopf bifurcation. Recall that a (supercritial) Hopf
bifurcation occurs when a stable periodic orbit arises from an
equilibrium point as, at some critical values of the parameters,
it loses stability. Such a bifurcation can be detected when a
pair of complex eigenvalues of the linearized system around
the equilibrium crosses the imaginary axis [31, Theorem 2,
Chapter 4.4].

We start by considering the set of ordinary differential
equations given by (MwD). It is immediate to verify that
the origin is an equilibrium for all values of the parameters.
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FIG. 2. Transition from disordered behavior (on the left) to collective rhythm (on the right) for the spin system (wD). Simulations have
been run with N = 1000, α = 1/2, J12 = −6, J21 = 5, and J11 = J22 = 0.5 on the left and J11 = J22 = 3 on the right. The top row shows the
time evolution of all the spins belonging to population I1. Spins are labeled from 1 to 500 on the y axis. Blue spots represent +1 spins, whereas
white spots stand for −1. In the bottom line the corresponding evolution for the magnetization is depicted.

Therefore we analyze the spectrum of the linearization of the
dynamics (MwD) around (0,0) to understand if there exist
parameter values for which the origin loses stability whenever
a pair of pure imaginary conjugate eigenvalues appear. The
characteristic polynomial of the linearized system reads

P (λ) =λ2 − λ[2αJ11 + 2(1 − α)J22 − 4]

+ 4(αJ11 − 1)[(1 − α)J22 − 1]

− 4α(1 − α)J12J21.

It follows that a Hopf bifurcation occurs if and only if both the
conditions

αJ11 = 2 − (1 − α)J22

((1 − α)J22 − 1)2 + α(1 − α)J12J21 < 0 (3)

are satisfied. In particular, we have:
(a) If J11,J22 � 0, the equality in (3) is never satisfied and

thus system (MwD) never undergoes a Hopf bifurcation.
(b) If J12J21 � 0, the inequality in (3) has no solution and

then again it is impossible to find a Hopf bifurcation.
(c) In the set {J11, J22 � 0}c ∩ {J12J21 � 0}c we can

choose properly the values of the parameters to get a Hopf
bifurcation.

Our aim is now to understand if, in those regions of the
parameter space where (MwD) does not undergo a Hopf
bifurcation, we may produce a transition to periodic motion
by adding delay in the dynamics. In this respect we move to
the analysis of (MD). It is easy to see that whenever a Hopf bi-
furcation is present for (MwD), the same holds also for (MD).
Delay may of course change the critical value at which the

bifurcation occurs but not its presence. Moreover, by adding
delay we can induce rhythmicity in a subspace of the phase
J11,J22 � 0, where periodic orbits were absent for (MwD).

We consider the set of mean-field equations in (MD) with
J11,J22 < 0 and J12J21 < 0. We then linearize the dynamics
around the null (2n + 4)-dimensional vector, which indeed is
fixed point of (MD) for all parameter values, and we study
the spectrum. We remark that, since dealing with a nonplanar
dynamical system, to detect a supercritical Hopf bifurcation it
does not suffice looking for a pair of pure imaginary conjugate
eigenvalues; in addition, it is necessary to check that all the
2n + 2 remainings have negative real part.

To simplify computations assume

2(αJ11 − 1) = −k and 2[(1 − α)J22 − 1] = −k,

so

αJ11 = (1 − α)J22 = −k

2
+ 1, (4)

with k > 2. The constant k we are using here is the same
appearing in the definition of the delay kernel. Let us denote
by xj , with j = 0,1, . . . ,2n + 3, the j th eigenvalue of the
linearization of (MD) around the null solution. For j =
0,1, . . . ,2n + 3, we get

xj = −k − |A| 1
2n+4 k

n+1
n+2 exp

{
i
(2j + 1)π

2n + 4

}
,

where A = 4 α(1 − α)J12J21 < 0. Therefore, for

k = |A| 1
2

[
cos

(
π

2n + 4

)]n+2

(5)
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FIG. 3. Transition from disordered behavior (on the left) to collective rhythm (on the right) for the spin system (D) when both the
intragroup interactions are negative (i.e., J11,J22 < 0). Simulations have been run with N = 1000, α = 1/2, n = 2, J12 = 5, J21 = −6, and
J11 = J22 = −4 with k = 6 on the left and J11 = J22 = −1 with k = 3 on the right. Recall that the value of k depends on J11 and J22 through
assumption (4). The top row shows the time evolution of all the spins belonging to population I1. Spins are labeled from 1 to 500 on the y

axis. Blue spots represent +1 spins; whereas white spots stand for −1. In the bottom line the corresponding evolution for the magnetization is
depicted.

TABLE I. Qualitative summary of the results. In the left column
a schematic representation of the considered interaction network is
displayed. The color convention for couplings is as in Fig. 1. For
each interaction network we highlight the possibility of observing
or not observing periodic behavior when considering the dynamics
(MwD) (central column) or (MD) (right column). Notice that, in all
cases except for one, delay is not necessary to produce rhythmic
oscillations.

Interactions
Dynamics

without delay with delay

+ + Rhythmic
behavior

Rhythmic
behavior

+ – Rhythmic
behavior

Rhythmic
behavior

– + Rhythmic
behavior

Rhythmic
behavior

– – Rhythmic
behavior

Rhythmic
behavior

a Hopf bifurcation occurs, as xn+1 and xn+2 are the two
first eigenvalues passing the imaginary axis with positive
derivative. See Fig. 3.

We qualitatively summarize our findings in Table I. The
table gives information about the possible emergence of
macroscopic oscillations for the interaction network con-
figurations depicted in the left column. Given a type of
interaction network, the corresponding dynamical systems
(MwD) (central column) and (MD) (right column) may or
may not exhibit rhythmic behavior. When writing they do, we
mean that there exists a choice of the parameters [satisfying
(3) for (MwD) and (5) for (MD)] for which a Hopf bifurcation
occurs at the origin. We observe that the parameter n does
not influence the presence (absence) of periodic behavior but
simply modifies the threshold value for the phase transition.
Referring to the table, notice that only when both the intragroup
interactions are negative (i.e., J11,J22 < 0), delay is needed to
enhance the transition to a periodic behavior for (m1,m2). In
all other cases a robust choice of the parameters is sufficient.
In particular, delay is not necessary to create a limit cycle
when J11,J12 < 0 and J22,J21 > 0 (third row in the table).
The particle system constructed on the latter interaction
network resembles one of the models introduced in Ref. [12],
where, however, a fixed time delay is present in the rates of
transition. Our results indicate that it is not delay but rather
the asymmetry of the coupling strengths that is the crucial
feature to produce a collective rhythm. We believe that for the
mean-field spin glass in Ref. [12] the introduction of delay
becomes necessary due to the fine choice of the interactions:
|J11| = |J22| = |J12| = |J21| = J , with J > 0.
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IV. CONCLUSIONS

In the present paper we investigated the emergence of col-
lective periodic behavior in a two-population generalization of
the mean-field Ising model. We analyzed the role of interaction
network and delay in enhancing an oscillatory evolution for the
magnetization vector. We were interested in showing that it is
possible to induce a transition from a disordered phase, where
mN1 and mN2 fluctuate closely around zero, to a phase in which
they both display a macroscopic regular rhythm. In particular,
we have proven that a robust choice of the coupling constants
and of the population sizes is sufficient for a limit cycle to arise.
Moreover, in the case when the choice of the parameters does
not suffice to favor the transition, delay may help in this respect
(see Table I).

When considering the dynamics without delay, the mecha-
nism behind the emergence of periodicity can be understood in
the following terms. If the intrapopulation interaction strengths
J11 and J22 are large enough, each single population can be
seen as a macrospin that under Glauber dynamics tends to its
own rest state. However, as soon as the two populations are
linked together within an interaction network with J12J21 < 0,
they form a frustrated pair of macrospins where the rest state
of the first is not compatible with the rest position of the
second. As a consequence, the dynamics is not driven to a fixed
equilibrium and continues oscillating. This intuition suggests
that the creation of a collective rhythm by splitting the particles
in two groups differentiated by their mutual interactions is
very much related to the mean-field setting, a conclusion
that is supported also by numerics. We ran simulations of
a two-population version of the nearest-neighbor Ising model
on a finite square lattice of side length N � 1 (total number
of spins of order 103).

(i) Particles are randomly divided in two distinct groups:
Each site in the box is assigned to population I1 (respectively,
I2) with probability α (respectively, 1 − α), with α ∈]0,1[.

(ii) At any time t , the spin σk flips at a rate of the form (wD)
in which the mean-field magnetizations mNi

(t) (i = 1,2) are

replaced by local magnetizations

	i(h,t) =
∑
j ∼ h

j ∈ Ii

σj (t) (i = 1,2),

where the sum is extended only to sites j nearest neighbors of
h (as the symbol ∼ is intended to mean).

(iii) Periodic boundary conditions are considered.
With diverse simulations we explored the parameter space

and did not find any oscillatory evolution for the global
magnetizations of the two groups. The reason is that in this
setting the short-range of interaction destroys the macrospin
structure of each family of spins and does not allow for the
creation of a frustrated macronetwork. The addition of delay
does not change the scenario.

To conclude, recall that the results we obtained for the
two-population Curie-Weiss model are derived in the limit as
the number of particles goes to infinity and the passage from
an incoherent to a coherent behavior of the magnetization
vector is detected by the occurrence of a (supercritical) Hopf
bifurcation. It is worth mentioning that the presence of a stable
limit cycle as attractor for the dynamics is a pure infinite
volume effect. The finite N system (wD) is an irreducible,
time-homogeneous Markov process and therefore it relaxes to
a time-independent invariant distribution. As a consequence,
periodicity turns out to be only a metastable state for the
finite-size system.
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