
SIAM J. MATH. ANAL. c© 2018 Society for Industrial and Applied Mathematics
Vol. 50, No. 5, pp. 5198–5242

STOCHASTIC HOMOGENIZATION FOR FUNCTIONALS WITH
ANISOTROPIC RESCALING AND NONCOERCIVE

HAMILTON–JACOBI EQUATIONS∗

NICOLAS DIRR† , FEDERICA DRAGONI† , PAOLA MANNUCCI‡ , AND

CLAUDIO MARCHI§

Abstract. We study the stochastic homogenization for a Cauchy problem for a first-order
Hamilton–Jacobi equation whose operator is not coercive w.r.t. the gradient variable. We look at
Hamiltonians like H(x, σ(x)p, ω), where σ(x) is a matrix associated to a Carnot group. The rescaling
considered is consistent with the underlying Carnot group structure, thus anisotropic. We will prove
that under suitable assumptions for the Hamiltonian, the solutions of the ε-problem converge to a
deterministic function which can be characterized as the unique (viscosity) solution of a suitable
deterministic Hamilton–Jacobi problem.
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1. Introduction. Homogenization problems have been studied for many years
for both their intrinsic mathematical interest and the many applications in different
sciences (e.g., the study of heterogeneous media). In particular stochastic homoge-
nization arises whenever at the microscopic level the system depends on some random
variable but at the macroscopic level one can expect a deterministic behavior.

In this paper, we study asymptotics of a special class of degenerate (i.e., non-
coercive) first-order Hamilton–Jacobi equations with random coefficients taking the
form

(1.1)

{
ut +H (x, σ(x)∇u, ω) = 0, t > 0, x ∈ RN , ω ∈ Ω,

u(0, x, ω) = g(x), x ∈ RN , ω ∈ Ω,

where (Ω,F ,P) is a given probability space, and σ : RN → Rm×N with m ≤ N .
Even though H(x, q) is coercive and convex in the variable q = σ(x)p ∈ Rm, the map
p 7→ H (x, σ(x)p, ω) is in general not coercive because σ(x) may have a nontrivial
kernel. The illustrating example is the Heisenberg group, which is topologically R3

but with a different algebraic structure (see section 2, e.g., (2.2)).
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Equations such as (1.1) can be understood in the framework of Carnot groups,
i.e., noncommutative stratified nilpotent Lie groups. (See section 2 for more details.)
In particular these groups satisfy the Hörmander condition: they are endowed with
a family of vector fields that, together with all their associated commutators, span
the whole tangent space at any point of the original manifold. For the associated
homogenization problem, the Carnot group structure suggests a natural anisotropic
rescaling of RN , denoted by δ1/ε(x) for x ∈ RN . Then the homogenization problem
can be formulated as follows: under some assumptions made precise later (see section
3), find the equation solved by the (locally uniform) limit of uε(t, x, ω), where uε are
viscosity solutions of

(1.2)

{
uεt +H

(
δ1/ε(x), σ(x)∇uε, ω

)
= 0, t > 0, x ∈ RN , ω ∈ Ω,

uε(0, x, ω) = g(x), x ∈ RN , ω ∈ Ω.

In other words, the aim is to identify H : Rm → R such that the viscosity solutions
of (1.2) converge, locally uniformly in t and x and almost surely in ω, to a determin-
istic function u(t, x) which can be characterized as the unique viscosity solution of a
problem of the form

(1.3)

{
ut +H (σ(x)∇u) = 0, t > 0, x ∈ RN ,
u(0, x) = g(x), x ∈ RN .

In the case of the Heisenberg group, the anisotropic rescaling is δ1/ε(x1, x2, x3) =
(ε−1x1, ε

−1x2, ε
−2x3). This is consistent with the geometric structure of the Heisen-

berg group, but the anisotropy can be understood heuristically in another way: at
each point, some directions are “forbidden”, i.e., paths of the associated control prob-
lem can move only on a two-dimensional subspace. By varying their direction often
(i.e., by the use of nontrivial commutators from the Hörmander condition) they are
able to reach any given point but the cost for “zig-zagging” to get in the forbidden
direction is higher, so typically they move slower in these directions, which makes a
faster rescaling necessary.

Note that, in (1.2), σ(x) is not rescaled so this is in principle a problem with a fast
and a slow variable, but the equation is degenerate if the slow variables are frozen.
Obviously, general noncoercive equations have no homogenization, so considering a
cell problem with a frozen variable is not the way to tackle this problem.

Instead, our approach is based on the use of a variational formulation for the vis-
cosity solutions of (1.2), which has been introduced in the coercive case by Souganidis
[37] and Rezakhanlou and Tarver [36]. This variational approach is motivated by Γ-
convergence methods for the random Lagrangian. In order to define the associated
variational problem from the Hamilton–Jacobi equation, some form of convexity is
needed, but it should be noted that due to the degeneracy the relation is more subtle
than the Euclidean Legendre transform; see [8]. Moreover the approach developed in
[36, 37] fails since the idea of using the subadditive ergodic theorem indirectly requires
the existence of curves invariant under translation and rescaling (as straight lines are
w.r.t. the Euclidean translations). In our anisotropic geometries, this property is true
only for curves that have constant horizontal speed (i.e., velocity constant w.r.t. a
given family of left-invariant vector fields; see section 2 for more details). Unfor-
tunately those lines are too few to cover the whole space. (They only generate an
m-dimensional submanifold in RN , where usually N > m.)

We would like to mention that noncoercive Hamilton–Jacobi problems have also
been studied by Ciomaga, Souganidis, and Tran [19] and Cardaliaguet and Souganidis
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[18]. Note that in these cases the source of noncoercivity is different: in our case, we
have at each point some deterministic directions in which the Hamiltonian grows
superlinearly, and some directions in which it does not grow at all, not even linearly.
Hence the techniques are necessarily quite different.

It is an interesting topic for further research whether PDE techniques like the
approximate correctors as in [31] or the metric problem as, e.g., in [6], could be of use
in the degenerate setting at hand. While the notion of “path”, which is at the heart
of the variational approach, has an obvious analogue in the sub-Riemannian case,
many standard viscosity techniques are problematic in the degenerate case, leading
to technical difficulties. These technical difficulties can often be traced back to two
sources. First, the vector fields may have in general coefficients with superlinear
growth at infinity, thus making global estimates difficult to obtain. Second, while in
the Euclidean setting |x− y|2 is smooth, this is in general not true for the square of
the Carnot–Caratheodory (CC) distance, which has consequences for regularization
via inf/sup convolution or doubling of variables techniques.

The main idea of the proof for the convergence theorem is to apply the techniques
from [36, 37] (for the periodic case see also [24]) to a lower dimensional constrained
variational problem (section 5), the constraint being to belong to the m-dimensional
manifold mentioned above. Then by an approximating argument (see section 6) we
write the original variational problem (see (3.4) below) as the limit of sum of lower
dimensional constrained variational problems. The key role in the whole argument will
be to approximate any horizontal curve by a suitable family of piecewise horizontal
lines with constant speed and the use of the Hörmander condition to move everywhere
in the space.

Here our a priori bounds on the Lagrangian ensure that the cost of connecting any
two points can be bounded by a function of the geodesic distance. This allows us to
estimate the difference in cost for connecting nearby points, a property which makes
up for the lack of uniform continuity of the Lagrangian due to the rescaling in space.

This is to our knowledge the first paper which connects two previously separate
branches of homogenization theory: stochastic homogenization on the one hand, which
so far has not been considered in sub-Riemannian geometries, and homogenization in
the sub-elliptic setting, which so far has been restricted to a suitable generalization of
periodic environments, i.e., essentially in a compact setting. For homogenization in
subelliptic settings in the periodic case see, for example, [13, 15, 27, 28, 34, 38], and
for homogenization with singular perturbation see [2, 3].

Since the first results on stochastic homogenization for first-order Hamilton–
Jacobi equations ([37, 36]), it has been a difficult question which are the necessary
conditions on the deterministic structure of the Hamiltonian, with convexity and coer-
civity being sufficient. The case of nonconvexity has been understood better recently;
see, e.g., [26, 39]. Instead this paper gives a very general class of examples which are
convex (but not strictly) but noncoercive. This homogenization result is in line with
the folk theorem that, in order to have homogenization, characteristics have to be
able to go everywhere: our degeneracy is related to Hörmander vector fields, which
have the property that admissible paths (see section 2) can connect any two given
points.

Γ-convergence for random functionals, which is used here, has in a general set-
ting first been studied by Dal Maso and Modica [20] and recently been extended
to nonconvex integrands [23]. Alternatives to the variational approach for obtain-
ing stochastic homogenization results in the Euclidean setting for both first- and
second-order equations and the simultaneous effect of homogenization and vanishing
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viscosity (i.e., singular perturbation) have been developed subsequently; see, for ex-
ample, [30, 32, 31]. Extending these methods to the sub-Riemannian setting will be
a challenge for further research.

This paper is organized as follows.
In section 2 we introduce some basic notions for Carnot groups, in particular the

dilations in the group and some norms and distances related to both the geometric and
the algebraic structure of Carnot groups. In this section we also introduce horizontal
curves and horizontal velocity and study some properties, which will be very useful
in later proofs.

In section 3 we state the problem and we explain the meaning of some assumptions
on the Hamiltonian, in particular the stationary ergodic assumption which is crucial
in order to get a deterministic limit problem. In the same section we also introduce
the variational formulation for the solutions of the ε-problem.

In section 4 we study several properties for the variational problem. In particular
we prove local uniform continuity.

In section 5 we prove the convergence for the constrained variational problem, i.e.,
for the minimizing problem for an integral cost under the additional m-dimensional
constraint.

In section 6 we prove our main convergence result for the unconstrained variational
problem by the introduction of a suitable approximation argument.

In section 7 we apply the convergence proved in section 6 to the family of nonco-
ercive Cauchy–Hamilton–Jacobi problems (1.2) via variational formula.

In the appendix (section 8) we give a proof for the well-posedness of the ε-problem
(1.2) in the viscosity sense.

2. Preliminaries: Carnot groups. Carnot groups are noncommutative Lie
groups: they are endowed both with a noncommutative algebraic structure and with
a manifold structure. The lack of commutativity in the algebraic structure reflects on
the manifold structure as restrictions on the admissible motions. This means that the
allowed curves are constrained to have their velocities in a lower dimensional subspace
of the tangent space of the manifold. Then the associated manifold structure is not
Riemannian but sub-Riemannian. We refer the reader to [16] for an overview on
Carnot groups and sub-Riemannian manifolds. Here we only recall the definitions
and some of the main properties, which will be crucial in the later proofs.

Definition 2.1 (Carnot group). A Carnot group (G, ◦) of step r is a simply
connected, nilpotent Lie group whose Lie algebra g of left-invariant vector fields admits
a stratification, i.e., there exist nonzero subspaces {Vi}, i = 1, . . . , r such that g =⊕r

i=1 Vi, [V1, Vi] = Vi+1 6= 0 for i = 1, . . . , r − 1, [V1, Vr] = 0. V1 is called the first
layer.

Any such group is isomorphic to a homogeneous Carnot group in RN , that is, a
triple (RN , ◦, δλ), where RN = Rn1×Rn2×· · ·×Rnk and ◦ is a group operation whose
identity is e and such that (x, y) → y−1 ◦ x is smooth (where y−1 denote the inverse
of y), and δλ : RN → RN is the dilation:

(2.1) δλ(x) = δλ

(
x(1), x(2), . . . , x(r)

)
:=
(
λx(1), λ2 x(2), . . . , λrx(r)

)
, x(i) ∈ Rni ,

is an automorphism of the group (RN , ◦) ∀λ > 0 and there are m := n1 smooth vector
fields X1, . . . , Xm on RN invariant w.r.t. the left translation

Lβ(x) := β ◦ x
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∀β ∈ RN and such that they generate a Lie algebra with rank N at every point
x ∈ RN . The vector fields X1, . . . , Xm are called the generators of the Carnot group
or horizontal vector fields and the n×m matrix whose columns are these vector fields
is denoted by σ.

For x ∈ RN , we shall also use the notation x = (x1, x2) with x1 ∈ Rm, x2 ∈
RN−m, and x1 := πm(x).

The definition of dilations (that replace the role of product of a point by a scalar
in the Euclidean case) gives good notions of rescaling in these geometries.

Note that we are interested only in the case where G = RN for some N ≥ 3. (In
fact Carnot groups with dimension less than 3 do not exist.)

Example 2.1. The simplest example of a Carnot group is the so called Heisenberg
group. The N -dimensional Heisenberg group HN is a Carnot group of step 2 (i.e.,
r = 2 in the stratification) defined in R2N+1 (with N ≥ 1). In particular if N = 1
the stratification is V1

⊕
V2, where V1 = R2 and V2 = R. In this last case the group

operation is

x ◦ y :=

(
x1 + y1, x2 + y2, x3 + y3 +

x1y2 − x2y1

2

)
,

where x = (x1, x2, x3) and y = (y1, y2, y3) are two points in R3 and the generators are
the two vector fields

X1(x) =

 1
0
x2

2

 , X2(x) =

 0
1
−x1

2

 .

In the Heisenberg group H1 the dilations that give the natural rescaling are

δλ(x) = δλ(x1, x2, x3) = (λx1, λ x2, λ
2 x3).

To make the paper more easily readable for mathematicians not used to working in
Carnot groups we will explain most of the notions and properties of Carnot groups,
using the one-dimensional Heisenberg group H = H1 as the referring model.

Another family of algebraic objects which will play a crucial role in our homog-
enization problem are the translations. Since the group law is not commutative,
in general left translations and right translations will be different. We will always
translate points using only the left translations.

Using the stratification, a Carnot group can be endowed with a homogeneous norm
that induces a homogeneous distance. The homogeneous norm and the homogeneous
distance are very important in homogenization problems since they are compatible
with rescaling under dilations (as we will see in the properties below).

Definition 2.2 (homogeneous norm and homogeneous distance). A homoge-
neous norm ‖ · ‖h is a continuous function from G to [0,+∞) such that

1. ‖x‖h = 0 ⇐⇒ x = e,
2. ‖x−1‖h = ‖x‖h,
3. ‖δλ(x)‖h = λ‖x‖h ∀x ∈ G, λ > 0,
4. ‖x+ y‖h ≤ ‖x‖h + ‖y‖h ∀x, y ∈ G.

The homogeneous distance between two points x, y ∈ G is

dh(x, y) = ‖y−1 ◦ x‖h.

From ‖x‖h = ‖x−1‖h we have that dh(x, y) = dh(y, x) and obviously dh(x, x) =
0 ∀x, y ∈ G.
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Moreover, given two points x, y ∈ G ≡ RN ,
(
δλ(x)

)−1
= δλ(x−1) and δλ(x) ◦

δλ(y) = δλ(x ◦ y). This implies that

dh
(
δλ(x), δλ(y)

)
= λ dh(x, y).

In the case of the one-dimensional Heisenberg group H we have

‖x‖h = ‖(x1, x2, x3)‖h =
(
(x2

1 + x2
2)2 + x2

3

)1/4
.

Moreover it is easy to check that e = (0, 0, 0) and x−1 = (−x1,−x2,−x3) so

dh(x, y) =
(
((x1 − y1)2 + (x2 − y2)2)2 + (x3 − y3)2

)1/4
.

One can easily check all the properties listed above in the case of the one-dimensional
Heisenberg group.

For later use, it is very useful to introduce the m × n matrix associated to the
vector fields

σ(x) :=
(
X1(x), . . . , Xm(x)

)T
,

e.g., in H1 the matrix σ(·) is the 2× 3-matrix given by

(2.2) σ(x1, x2, x3) =

(
1 0 −x2

2
0 1 x1

2

)
.

From now on we will always consider the Carnot groups, written in exponential
coordinates (or canonical coordinates). In fact in exponential coordinates the vector
fields (and so the associated matrix σ(x)) assume a special form, as shown in the
following lemma.

Lemma 2.1. Given a Carnot group in exponential (or canonical) coordinates, then
the vector fields can be considered as the columns of an m × N matrix σ(x) of this
form,

(2.3) σ(x) =
(
Idm×m A(x)

)
,

where Idm×m is the identity matrix m×m and A(x) is an m× (N −m) matrix whose
coefficients are smooth functions depending only on x1, . . . , xm.

Moreover the nonvanishing coefficients of A(x) = (aj,i(x)) with i = 1, . . . , N −m
and j = 1, . . . ,m are polynomial functions of degree k − 1 whenever the (m + i)th
component rescale as λk in the dilations δλ defined in (2.1).

For a proof we refer the reader to [16]; in particular see [16, Proposition 1.3.5,
Corollary 1.3.19] for the polynomial structure and the corresponding homogeneity de-
gree. Remember that δλ-homogeneity corresponds to Euclidean homogeneity when-
ever the functions depend only on the first m components.

The previous lemma is easy to check in the one-dimensional Heisenberg group
(see (2.2)); in fact a1,1(x1, x2) = −x2

2 and a2,1(x1, x2) = x1

2 are both polynomials of
degree 2− 1 = 1. We now give another example for a step 3 Carnot group.

Example 2.2 (Engel group in exponential coordinates). The Engel group is a Car-
not group of step 3 defined on R4. It can be written as an extension of the Heisenberg
group but for us it is crucial to write it in exponential coordinates (see, e.g., [12]).
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The rescaling in the Engel group is given by

δλ(x1, x2, x3, x4) =
(
λx1, λx2, λ

2x3, λ
3x4

)
.

In exponential coordinates the vector fields generating V1 can be written as

X1(x1, x2, x3, x4) =
∂

∂x1
and X2(x1, x2, x3, x4) =

∂

∂x2
+ x1

∂

∂x3
+
x2

1

2

∂

∂x4
.

In this case the corresponding 2×4-matrix has the form of a 2×2-identity matrix and
a 2 × 2 matrix A(x) whose coefficients are a1,1(x) = 0 = a1,2(x), while a2,1(x) = x1

which is a polynomial of degree 1 (in fact the component 2 + 1 = 3 rescales with

k = 2), and a2,2(x) =
x2

1

2 which is a polynomial of degree 2 (in fact the component
2 + 2 = 4 rescales with k = 3). Then Lemma 2.1 is easily verified.

So far, we have briefly recalled the algebraic structure of Carnot groups. Since
Carnot groups are also sub-Riemannian manifolds there is also another important
distance to consider: the so-called CC distance. Before defining the CC distance
and its relations with the homogeneous distance and the Euclidean distance, we need
to introduce the sub-Riemannian manifold structure associated to a Carnot group.
Consider the left-invariant vector fields X1, . . . , Xm introduced above on RN , then
identify the tangent space at the origin with the Lie algebra g (see Definition 2.1) and
in any other point by left-translation, and then X1, . . . , Xm satisfy the Hörmander
condition with step r. We recall that the Hörmander condition states that the Lie
algebra induced by the vector fields has to be at any point equal to the whole tangent
space at that point.

Denote by Hx = Span
(
X1, . . . , Xm

)
the distribution spanned by the given left-

invariant vector fields, and then it is possible to define a Riemannian metric on Hx
induced by the vector fields, by taking 〈v, w〉 = α · β, where α and β are m-valued
vectors, corresponding to the coordinates of v and w, respectively, w.r.t. the given
vector fields.

The triple
(
RN ,Hx, 〈·, ·〉

)
is a sub-Riemannian manifold. For more details on

sub-Riemannian manifolds in general and the manifold structure associated to Carnot
groups in particular, we refer, respectively, to [35] and [16].

Next we recall the notion of horizontal (or admissible) curve that will play a
crucial role in defining the CC distance and later in the variational formulas.

Definition 2.3. An absolutely continuous curve ξ : [0, T ] → RN is called hori-
zontal if there exists αξ : [0, T ]→ Rm measurable such that

(2.4) ξ̇(s) =

m∑
i=1

αξi (s)Xi(ξ(s)), a.e. s ∈ (0, T ),

where the vector fields Xi are those introduced in Definition 2.1.
The vector αξ is called horizontal velocity of the curve.

Remark 2.1. Note that whenever X1, . . . , Xm are linearly independent, as they
are always in the case of Carnot groups (see, e.g., [16, Chapter 1]), the vector αξ is
unique up to a measure zero set.

Let us define the CC distance associated to a family of vector fields X =
{X1, . . . , Xm}.
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Definition 2.4. Given two points x, y ∈ RN and a family of smooth vector fields
X1, . . . , Xm, we define the Carnot–Caratheodory (CC) distance as the minimal length
distance (or geodesic distance) among all horizontal curves joining x to y, that is,

dCC(x, y) = inf

{∫ T

0

|αξ(t)| dt
∣∣∣∣ ξ(0) = x, ξ(T ) = y and ξ is horizontal

}
,

where |αξ(t)| is the Euclidean norm of the m-valued horizontal velocity.

Whenever X1, . . . , Xm satisfy the Hörmander condition (as in our case of Carnot
groups), then dCC(x, y) < +∞ ∀x, y ∈ RN and it is continuous w.r.t. the Euclidean
topology on RN .

We denote by ‖x‖CC := dCC(x, 0) the CC norm.

Remark 2.2. The CC distance is globally equivalent to the so-called minimal-time
(or control) distance that is defined as

d̂(x, y) := inf{T ≥ 0|∃ ξ subunit horizontal in [0, T ] with ξ(0) = x, ξ(T ) = y},

where an absolutely continuous curve ξ : [0, T ] → R is called subunit horizontal if
satisfies (2.4) and |αξ(t)| ≤ 1 for a.e. t ∈ [0, T ].

Note that, even if it is possible to give an explicit formulation for the Carnot–
Carathéodory distance in H (by computing the geodesics), this is extremely compli-
cated so we omit that.

Thus we will need to use both the CC distance and the homogeneous distance, so
it is important to recall the relation between these distances and between them and
the standard Euclidean distance in RN .

Lemma 2.2. Let dh and dCC be the homogeneous distance and the CC distance
defined, respectively, in Definitions 2.2 and 2.4. Then for any compact K ⊂ RN there
exists a positive constant CK such that

C−1
K |x− y| ≤ dCC(x, y) ≤ CK |x− y|1/r,

where r is the step of the Carnot group and |x−y| denotes here the standard Euclidean
distance in RN .

The same statement holds also replacing dh and dCC .
Moreover dh and dCC are of equivalent distance on compact sets, i.e., for any

compact K ⊂ RN there exists a positive constant cK such that

c−1
K dh(x, y) ≤ dCC(x, y) ≤ cKdh(x, y).

For the proof we refer to the monograph [16].
In the following lemma we collect several properties of horizontal curves that will

be very useful later.

Lemma 2.3. Let ξ be a horizontal curve with velocity αξ(s) such that ξ(0) = x
and ξ(t) = y. Then the following properties hold:

(i) For any z ∈ RN , ξ̃(s) := z ◦ ξ(s) is still horizontal with αξ̃(s) = αξ(s),

ξ̃(0) = z ◦ x, and ξ̃(t) = z ◦ y.
(ii) For any C > 0, η(s) := ξ(Cs) is still horizontal with αη(s) = Cαξ(Cs),

η(0) = x, and η(t/C) = y.

(iii) For any λ > 0, ξ̂(s) := δλ(ξ(s)) is still horizontal with αξ̂(s) = λαξ(s).
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Proof.
(i) Denote by Lz the left translation w.r.t. z (i.e., Lz(x) = z ◦ x) and by DLz

the differential of the left translation Lz. We have

˙̃
ξ(s) = DLz(ξ(s)) ξ̇(s) = DLz(ξ(s))

( m∑
i=1

αξi (s)Xi(ξ(s))

)

=

m∑
i=1

αξi (s)DLz(ξ(s)) Xi(ξ(s)) =

m∑
i=1

αξi (s)Xi(z ◦ ξ(s))

=

m∑
i=1

αξi (s)Xi(ξ̃(s)),

where we have used the fact that the vector fields Xi are left-invariant by
definition, i.e., DLz(ξ(s)) Xi(ξ(s)) = Xi(z ◦ ξ(s)) ∀z.

(ii) For any C ∈ R, given η(s) = ξ(Cs), then

(2.5) η̇(s) = Cξ̇(Cs) = C

( m∑
i=1

αξi (Cs)Xi(ξ(Cs))

)
=

m∑
i=1

Cαξi (Cs)Xi(η(s)),

so η is horizontal with αη(s) = Cαξ(Cs).

(iii) We now use the fact that we are in exponential coordinates and the definition
of dilations as automorphisms of the group by the exponential map, that is,

δλ

exp

 r∑
i=1

mi∑
j=1

gj,iXj,i

 = exp

 r∑
i=1

mi∑
j=1

λigj,iXj,i

 ,

where Xj,i for j = 1, . . . ,mi are a basis for the layer Vi, and gj,i are the
associated exponential coordinates for the point g ∈ G = RN . From the
previous formula written for horizontal curves, which means i = 1 and j =
1, . . . ,m1 = m, it follows immediately that ξ̂(s) := δλ(ξ(s)) is horizontal and

αξ̂(s) = λαξ(s).

The following lemma proves that we can control the supremum norm of two curves
by the L1-norm of the associated horizontal velocity.

Lemma 2.4. Consider two measurable functions α, β : [0, T ]→ Rm and the asso-
ciated horizontal curves ξα, ξβ starting from the same initial point, i.e.,

ξ̇α(s) =

m∑
i=1

αi(s)Xi

(
ξα(s)

)
, ξ̇β(s) =

m∑
i=1

βi(s)Xi

(
ξβ(s)

)
, ξα(0) = ξβ(0).

If α, β are equibounded in L1(0, T ), then there exists a positive constant C > 0 such
that ∥∥ξα − ξβ∥∥∞ ≤ C ‖α− β‖L1(0,T ) .

Proof. The proof is trivial. In fact,

ξα(t)− ξβ(t) =

∫ t

0

[
ξ̇α(s)− ξ̇β(s)

]
ds =

m∑
i=1

∫ t

0

[
αi(s)Xi

(
ξα(s)

)
− βi(s)Xi

(
ξβ(s)

)]
ds.
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At this point we add ±αi(s)Xi

(
ξβ(s)

)
, and we use that the vector fields are smooth

(so in particular locally Lipschitz continuous) and that α, β are equibounded. ξα, ξβ

are equi-bounded, and hence by Gronwall’s inequality one can easily conclude.

The manifold structure is crucial when one works with PDEs. In fact vector fields
allow us to define naturally derivatives of any order, just considering how a vector
field acts on smooth functions. Since we are interested in first-order Hamilton–Jacobi
equations we introduce only the first derivatives.

Definition 2.5 (horizontal gradient). For a Carnot group defined on RN , con-
sider the family of vector fields X = {X1, . . . , Xm} associated to the Carnot group.
The horizontal gradient is defined as

Xu :=
(
X1u

)
X1 + · · ·+

(
Xmu

)
Xm.

Remark 2.3. Note that Xu is always an element of the distribution H since it is
defined as a linear combination of the vector fields that span the distribution.

For the sake of simplicity we will often identify the horizontal gradient (which is
an N -dimensional object in H) with its coordinate vector ∇Xu = (X1u, . . . ,Xmu)T

which is instead an element in Rm. Trivially ∇Xu = σ(x)∇u, where ∇u denotes the
standard (Euclidean) gradient of u and σ is defined in (2.3).

Example 2.3. In the case of H the horizontal gradient can be explicitly written
as

∇Xu =

(
ux1
− x2

2 ux3

ux2
+ x1

2 ux3

)
=

(
1 0 −x2

2
0 1 x1

2

)
∇u ∈ R2,

while Xu =
(
ux1 − x2

2 ux3

)
X1(x1, x2, x3) +

(
ux2 + x1

2 ux3

)
X2(x1, x2, x3) ∈ R3.

3. Statement of the problem. For any ε > 0, we look at the following family
of randomly perturbed problems:

(3.1)

{
uεt +H

(
δ1/ε(x), σ(x)∇uε, ω

)
= 0, x ∈ RN , ω ∈ Ω, t > 0,

uε(0, x, ω) = g(x), x ∈ RN , ω ∈ Ω,

where
(
Ω,F ,P

)
is a probability space, σ(x) is a smooth m×N matrix (with m ≤ N),

whose columns are vector fields X1, X2, . . . , Xm associated to a Carnot group, and
δλ(·) are the anisotropic dilations defined by the Carnot group structure.

We assume that the Hamiltonian H : RN × Rm × Ω → R satisfies the following
assumptions w.r.t. x ∈ RN , q = σ(x)p ∈ Rm, and ω ∈ Ω:

(H1) q 7→ H(x, q, ω) is convex in q;
(H2) ∃ C1 > 0, λ > 1 such that

C
−1

1 (|q|λ − 1) ≤ H(x, q, ω) ≤ C1(|q|λ + 1), ∀ (x, q, ω) ∈ RN × Rm × Ω;

(H3) there exists a function m : [0,+∞)→ [0,+∞) concave, monotone increasing
with m(0+) = 0 and such that ∀x, y ∈ RN , q ∈ Rm, ω ∈ Ω

|H(x, q, ω)−H(y, q, ω)| ≤ m
(
‖ − x ◦ y‖h(1 + |q|λ)

)
;

(H4) ∀ q ∈ Rm the function (x, ω) 7→ H(x, q, ω) is a stationary, ergodic random
field on RN × Ω w.r.t. the unitary translation operator, associated to the
Carnot group structure.
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Recall that |q| is the usual Euclidean norm in Rm while ‖x‖h is the homogeneous
distance in Definition 2.2, and x−1 = −x in exponential coordinates.

Example 3.1 (main model). The main model that we have in mind is

(3.2) H(x, q, ω) = a(x, ω)
|q|β

β
+ V (x, ω),

where β > 1, the functions V and a are bounded and satisfy (H3)–(H4), and a is also
uniformly strictly positive.

Remark 3.1 (noncoercivity of the Hamiltonian). Note that the main difference
between these assumptions and the assumptions in [37] is that the Hamiltonian is not
anymore coercive w.r.t. the gradient but only w.r.t. the lower dimensional horizontal
gradient (assumption (H2)). This lack of coercivity w.r.t. the total gradient variable
p is what will make the approach in [37] and [36] failing and will lead to the main
technical difficulties.

Remark 3.2. Assumption (H3) is adapted to the anisotropic dilations in the group.
Nevertheless using Lemma 2.2 this assumption can be rewritten in terms of the stan-
dard Euclidean distance (with a power depending on the step of the group). In
particular if H(x, p, ω) is Lipschitz continuous in x w.r.t. the homogeneous distance,
then it is only Hölder continuous in x w.r.t. the standard Euclidean distance with
power 1/r and r = step of the Carnot group, e.g., in the Heisenberg group it would
be 1/2-Hölder continuous.

We next write more explicitly assumption (H4) to show how this adapts to the
algebraic structure of the Carnot group.

Assumption (H4) means that there exists a family of measure-preserving maps
τx : Ω→ Ω, indexed by either x in the Carnot group or x in a discrete version of the
Carnot group (ZN as subset of the Carnot group equipped with the group operation
of the Carnot group) with the following properties:

• τ0 = id.
• τx(τy(ω)) = τx◦y(ω) ∀x, y ∈ RN (or ZN , respectively) and almost all ω ∈ Ω.
• (Stationarity) H(x, q, ω) = H(0, q, τx(ω)) ∀x ∈ RN (or ZN , respectively) and

almost all ω ∈ Ω.
• (Ergodicity) If A ⊆ Ω is such that τx(A) = A ∀x ∈ RN (or ZN , respectively),

then P(A) ∈ {0, 1}.
Examples are short-correlated Euclidean-stationary random fields (by Borel–Can-

telli) or (for the discrete Heisenberg group) Heisenberg-periodic sets where an inde-
pendent identically distributed random variable is chosen for each cell.

Remark 3.3. We would like to add some remarks concerning the assumptions on
ergodicity and stationarity.

1. Note that we apply the ergodic theorem only to a one-dimensional Abelian
subgroup of the Carnot group (X -lines), so for convergence we are completely
in the framework of classical ergodic theory; see the proof of Theorem 5.2.
The ergodicity w.r.t. actions of the full group is only used to establish that
the limit is deterministic.

2. In case of the Example 3.1, and short-correlated random coefficients, the
convergence to a deterministic limit in Theorem 5.2 follows already from the
law of large numbers.

3. For examples of ergodic actions of the Heisenberg group on a probability space
(Ω,F ,P) see, e.g., [21]. In order to obtain from this a model like Example 3.1
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with a(x, ω) = 1, take a bounded random variable V : Ω → R and set
V (x, ω) = V (τx(ω)).

Example 3.2. An explicit example for a model satisfying (H4) in the special case
of Example 3.1 for the Heisenberg group H can be constructed in the following way:
Take three independent random fields on R, fi(x, ω) : R×Ω→ R, for i = 1, 2, 3, such
that they are stationary ergodic w.r.t. the action of R. Then for a Borel-measurable
bounded function G : R3 → R the random potential

V (x1, x2, x3, ω) := G(f1(x1, ω), f2(x2, ω), f3(x3, ω))

is Heisenberg-stationary. Indeed, by independence and one-dimensional stationarity
we have for any open intervals (a1, a2), (b1, b2), (c1, c2) that

P{(x1 + r, x2 + s, x3 + t+ 1/2(x1s− x2r)) ∈ (a1, a2)× (b1, b2)× (c1, c2)}
= P{f1(x1 + r) ∈ (a1, a2)}P{f2(x2 + s) ∈ (b1, b2)}
× P{f3(x3 + t+ 1/2(x1s− x2r)) ∈ (c1, c2)}

= P{f1(x1) ∈ (a1, a2)}P{f2(x2) ∈ (b1, b2)}P{f3(x3) ∈ (c1, c2)}
= P{(x1, x2, x3) ∈ (a1, a2)× (b1, b2)× (c1, c2)}.

Since open rectangles generate the Borel-σ-algebra, the result follows.

We introduce

(3.3) uε(t, x, ω) := inf
y∈RN

{
g(y) + Lε(x, y, t, ω)

}
with

(3.4) Lε(x, y, t, ω) := inf
ξ∈Aty,x

∫ t

0

H∗
(
δ1/ε(ξ(s)), α

ξ(s), ω
)
ds,

where

Aty,x :=
{
ξ ∈W 1,∞((0, t)) ∣∣ ξ horizontal curve such that ξ(0) = y and ξ(t) = x

}
,

while H∗ denotes the Legendre–Fenchel transform of H w.r.t. q ∈ Rm, that is,

H∗(x, q, ω) := sup
p∈Rm

{p · q −H(x, p, ω)}

and αξ(s) is the m-valued measurable function corresponding to the horizontal veloc-
ity of ξ(s) defined in (2.4).

Theorem 3.1. We assume g bounded and Euclidean Lipschitz continuous, and
that the Hamiltonian H satisfies (H1)–(H3). Then, for all fixed ω ∈ Ω, uε(t, x, ω)
given by formula (3.3) is the unique BUC viscosity solution of problem (3.1).

The proof of this theorem will be given in the appendix.
From now on we use the notation

(3.5) L(x, q, ω) := H∗(x, q, ω) = sup
p∈Rm

{p · q −H(x, p, ω)};

L(x, ·, ω) is the Legendre–Fenchel transform of the Hamiltonian H(x, ·, ω) taken w.r.t.
q ∈ Rm, for each x ∈ RN and ω ∈ Ω fixed, and it is called Lagrangian associated to
the given Hamiltonian. In the following lemma we show how the properties of the
Hamiltonian pass to the associated Lagrangian.
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Lemma 3.1. If H(x, q, ω) satisfies (H1)–(H4) and L(x, q, ω) is the associated La-
grangian defined by (3.5), then L satisfies the following:

(L1) q 7→ L(x, q, ω) is convex ∀(x, ω) ∈ RN × Ω;
(L2) there exists C1 > 0 such that

C−1
1 (|q|λ − 1) ≤ L(x, q, ω) ≤ C1(|q|λ + 1) ∀ (x, q, ω) ∈ RN × Rm × Ω,

where λ = λ
∗

:= λ
λ−1

(i.e., the conjugate of the constant λ in assumption

(H2));
(L3) ∀R > 0, there exists mR : [0,+∞)→ [0,+∞) concave, monotone increasing,

with mR(0+) = 0 and such that ∀x, y ∈ RN , ω ∈ Ω,

|L(x, q, ω)− L(y, q, ω)| ≤ mR

(
‖ − x ◦ y‖h

)
∀ q ∈ BR(0),

where BR(0) is the (Euclidean) ball in Rm of radius R centered in 0;
(L4) ∀ q ∈ Rm the function (x, ω) 7→ L(x, q, ω) is a stationary, ergodic random field

on, RN × Ω w.r.t. the unitary translation operator associated to the Carnot
group structure;

(L5) L∗ = H.

Proof. Properties (L1) and (L5) follow immediately by definition of L = H∗.

Property (L2) comes trivially from (H2) and (3.5) taking λ = λ
∗
, the conjugate

exponent of λ. The proofs of (L3) and (L4) are also immediate: one can find a
detailed proof of (L3) in [17, Theorem A.2.6] while (L4) comes directly from the
definition of L = H∗.

Remark 3.4. We note that without loss of generality (w.l.o.g.) we can replace
assumption (L2) with

(3.6) C−1
1 (|q|λ + 1) ≤ L(x, q, ω) ≤ C1(|q|λ + 1).

Indeed, if we replace L(x, q, ω) by L̂((x, q, ω) = L(x, q, ω) + 2C−1
1 , then ûε(t, x) =

uε(t, x) + 2C−1
1 t, making no relevant change in the homogenization problem.

Example 3.3. In the case of model (3.2) in Example 3.1, the associated Lagrangian
is

(3.7) L(x, q, ω) = b(x, ω)
|q|β∗

β∗
+ V (x, ω)

with β∗ = β
β−1 and b(x, ω) = 1

a(x,ω)
1

β−1
.

Here we state the main results of this paper. The proof will be given in section 7.

Theorem 3.2. Consider the problem (3.1) with g : RN → R bounded and (Eu-
clidean) Lipschitz continuous. Assume that the Hamiltonian H(x, p, ω) satisfies as-
sumptions (H1)–(H4) and for L = H∗ the following additional assumption holds:

(L6) there exist constants C > 0 and λ > 1 such that

|L(x, p, ω)− L(x, s p, ω)| ≤ C
∣∣1− |s|λ∣∣ |L(x, p, ω)|

∀s ∈ R, x ∈ RN , p ∈ Rm, ω ∈ Ω.
Then the viscosity solutions uε(t, x, ω) of problem (3.1) converge locally uniformly in
x and t > 0 and a.s. in ω ∈ Ω to the unique solution u(t, x) of the deterministic

problem (1.3), where the effective Hamiltonian H(q) is defined as H(q) = L
∗
(q) and

L(q) is the effective Lagrangian defined by limit (5.13).
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Now we give a class of operators where we can apply the previous result.

Corollary 3.1. Consider the problem (3.1) with g : RN → R bounded and
Lipschitz continuous. Assume that the Hamiltonian H(x, p, ω) satisfies assumptions
(H1)–(H4) and moreover

(3.8) H(x, p, ω) = H1(x, p, ω) +H2(x, ω)

with H1(x, p, ω) λ-homogeneous in p (namely, H1(x, s p, ω) = |s|λH1(x, p, ω)). Then
the viscosity solutions uε(t, x, ω) of (3.1) converge locally uniformly in x and t > 0
and a.s. in ω ∈ Ω to the unique solution u(t, x) of the deterministic problem (1.3),

where the effective Hamiltonian H(q) is defined as H(q) = L
∗
(q) and L(q) is the

effective Lagrangian defined by limit (5.13).

Proof. We need only to remark that, whenever H satisfies (3.8), then the associ-

ated Lagrangian has the same structure (by taking λ = λ
∗
), and such a structure for

L implies assumption (L6). Hence Theorem 3.2 and Remark 3.4 immediately imply
the result.

Example 3.4. Our main model of Hamiltonian (3.2) satisfies the assumptions of
Corollary 3.1.

4. Properties of Lε(x, y, t, ω). In this section we will investigate several prop-
erties for the variational problem Lε(x, y, t, ω) defined by (3.4).

Lemma 4.1. Under assumption (L2) then

C−1
1 t ≤ Lε(x, y, t, ω) ≤ C1t+ C1

dCC(x, y)λ

tλ−1
∀x, y ∈ RN , t > 0, ω ∈ Ω,

where C1 and λ are the constants introduced in assumption (L2).

Proof. By assumption (L2) and Remark 3.4 we get the first inequality of the
statement. We consider a geodesic η from y to x in time t (parametrized by arc-
length), then η ∈ Aty,x with |αη(s)| = dCC(x, y)/t. By assumption (L2) we have

Lε(x, y, t, ω) ≤
∫ t

0

L(δ1/ε(η(s)), αη(s), ω) ds ≤
∫ t

0

C1(1 + dCC(x, y)λt−λ) ds,

which easily entails the last inequality of the statement.

Proposition 4.1. Under assumption (L2) then

(4.1) Lε(x, y, t, ω) = inf
η

{∫ t

0

L(δ1/ε(η(s)), αη(s), ω) ds

}
,

where the infimum is taken over the curves

(4.2) η ∈ Aty,x such that ‖αη‖Lλ(0,t) ≤ C̃,

where C̃ = [(C2
1 + C1 + 1)tλ + C2

1dCC(x, y)λ]1/λt
1
λ−1.

Proof. Using the definition of Lε(x, y, t, ω) as the greatest lower bound, then there
exists a curve η ∈ Aty,x such that∫ t

0

L(δ1/ε(η(s)), αη(s), ω) ds ≤ Lε(x, y, t, ω) + t.
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By the bound from below in (L2) and using Lemma 4.1, we have

C−1
1

∫ t

0

(
|αη(s)|λ − 1

)
ds ≤ Lε(x, y, t, ω) + t ≤ (C1 + 1)t+ C1

dCC(x, y)λ

tλ−1
,

and consequently

‖αη‖λLλ(0,t) ≤ (C2
1 + C1 + 1)t+ C2

1

dCC(x, y)λ

tλ−1
,

which is equivalent to relation (4.2).

Corollary 4.1. Under assumption (L2), locally uniformly for (x, y, t) ∈ RN ×
RN × (0, T ] the infimum in Lε(x, y, t, ω) is attained over admissible curves η such that

(i) ‖αη‖Lγ(0,t) ≤ C2 ∀1 ≤ γ ≤ λ, where λ is the constant given in assump-
tion (L2) and C2 depends only on the constants in assumption (L2) and the
compact sets;

(ii) ‖η‖∞ ≤ C3, where C3 depends only on σ(x), the constants in assumption
(L2), and the compact sets.

Proof. This follows easily by Proposition 4.1, the standard embedding properties
of Lλ(0, t) and ξ(t) = ξ(0) +

∫ t
0
σ(ξ(s))αξ(s)ds.

We now prove the uniform continuity of Lε, uniformly w.r.t. ε > 0. To this
purpose, we adapt some arguments from [36].

Lemma 4.2. Under assumption (L2), then

(4.3) Lε(x, y, t+ h, ω) ≤ Lε(x, y, t, ω) + C1h

∀ε > 0, x, y ∈ RN , t > 0, h ≥ 0, ω ∈ Ω and where C1 is the constant introduced in
(L2).

Proof. We proceed as in [36]. Let ξ be an admissible path for Lε(x, y, t, ω); we
introduce

ξ1(s) :=

{
ξ(s), 0 ≤ s ≤ t,
x, t ≤ s ≤ t+ h.

Note that ξ1 is an admissible path for Lε(x, y, t+ h, ω). Hence, we have

Lε(x, y, t+ h, ω) ≤
∫ t+h

0

L(δ1/ε(ξ1(s)), αξ1(s), ω)ds

≤
∫ t

0

L(δ1/ε(ξ(s)), α
ξ(s), ω)ds+

∫ t+h

t

L(δ1/ε(x), 0, ω)ds.

Taking the infimum over ξ and by assumption (L2), we obtain the statement.

Lemma 4.3. Under assumption (L2), then

(4.4) Lε(x ◦ v, y, t+ ‖v‖CC , ω) ≤ Lε(x, y, t, ω) + 2C1‖v‖CC

∀ε > 0, x, y, v ∈ RN , t > 0, ω ∈ Ω and where C1 is the constant introduced in as-
sumption (L2). Moreover, for each compact K ⊂⊂ RN , there exists a constant C
(depending only on K and on the assumptions of the problem, so in particular inde-
pendent of ε) such that

(4.5) Lε(x ◦ v, y, t+ ‖v‖h, ω) ≤ Lε(x, y, t, ω) + C‖v‖h ∀v ∈ K,

and ∀ε > 0, x, y ∈ RN , t > 0, ω ∈ Ω.
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Proof. For any curve ξ ∈ Aty,x, we define

ηξ(s) :=

{
ξ(s), 0 ≤ s ≤ t,
γ̃(s), t ≤ s ≤ t+ ‖v‖CC ,

where γ̃(s) = γ(s − t) and γ is a geodesic from x to x ◦ v in time ‖v‖CC . Since

ηξ ∈ A
t+‖v‖CC
y,x◦v , then we have

Lε(x ◦ v, y, t+ ‖v‖CC , ω) ≤
∫ t+‖v‖CC

0

L(δ1/ε(ηξ(s)), α
ηξ(s), ω)ds

=

∫ t

0

L(δ1/ε(ξ(s)), α
ξ(s), ω)ds+

∫ t+‖v‖CC

t

L(δ1/ε(γ̃(s)), αγ̃(s), ω)ds

≤
∫ t

0

L(δ1/ε(ξ(s)), α
ξ(s), ω)ds+ 2C1‖v‖CC ,

where the last inequality is due to assumption (L2) and the fact that by arc-length
parametrization we can assume |αγ̃(s)| = 1. Taking the infimum over ξ, we get the
bound (4.4).

It remains to prove (4.5). We argue as before defining

ηξ(s) :=

{
ξ(s), 0 ≤ s ≤ t,
γ̃1(s), t ≤ s ≤ t+ ‖v‖h,

where γ̃1(s) := γ1(s − t) and γ1 is a geodesic from x to x ◦ v in time ‖v‖h. We have
|αγ1(s)| = ‖v‖CC/‖v‖h. Hence, as before, we get

Lε(x ◦ v, y, t+ ‖v‖h, ω) ≤
∫ t

0

L(δ1/ε(ξ(s)), α
ξ(s), ω)ds+ C1‖v‖h

(
1 +
‖v‖λCC
‖v‖λh

)
.

Recall that for each compact K ⊂⊂ RN , there exists a constant c such that c−1‖v‖h ≤
‖v‖CC ≤ c‖v‖h (see Lemma 2.2); hence

Lε(x ◦ v, y, t+ ‖v‖h, ω) ≤
∫ t

0

L(δ1/ε(ξ(s)), α
ξ(s), ω)ds+ C1(1 + cλ)‖v‖h

and, taking the infimum over ξ, we get (4.5).

Lemma 4.4. Under assumptions (L2) and (L6), Lε(x, y, t, ω) is locally uniformly
continuous in t away from 0, locally uniformly w.r.t. x and y, and uniformly w.r.t. ε.
More precisely for any δ ∈ (0, 1) there exists Cδ > 0 (depending only on the constants
in assumptions (L2) and (L6) and going to +∞ as δ → 0+) such that

(4.6) |Lε(x, y, t+ h, ω)− Lε(x, y, t, ω)| ≤ Cδh ∀ε > 0

for any t, t+ h ∈ [δ, 1/δ] =: Iδ, h ≥ 0 and for any (x, y) ∈ Aδ, where

Aδ := {(x, y) ∈ RN × RN | dCC(x, y) < 1/δ}.

Proof. By Lemma 4.2 we know that for any h ≥ 0

Lε(x, y, t+ h, ω)− Lε(x, y, t, ω) ≤ C1h.
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It remains to show the opposite inequality, i.e.,

(4.7) Lε(x, y, t+ h, ω)− Lε(x, y, t, ω) ≥ −Cδh.

Take (x, y) ∈ Aδ and a curve η admissible for Lε(x, y, t+h, ω) with ‖αη‖Lλ(0,t+h) ≤ C,

where C = C(δ) is the constant introduced in Proposition 4.1. We define ξη(s) :=
η( t+ht s). By Lemma 2.3, ξη(s) is still horizontal with

αξη (s) =
t+ h

t
αη
(
t+ h

t
s

)
, ξη(0) = η(0) = y, ξη(t) = η

(
t+ h

t
t

)
= x;

so, ξη(s) is admissible for Lε(x, y, t, ω). We observe that

Lε(x, y, t, ω) ≤
∫ t

0

L(δ1/ε(ξη(s)), αξη (s), ω)ds

=
t

t+ h

∫ t+h

0

L

(
δ1/ε(η(s)),

t+ h

t
αη(s), ω

)
ds.

Define

I :=
t

t+ h

∫ t+h

0

L

(
δ1/ε(η(s)),

t+ h

t
αη(s), ω

)
ds−

∫ t+h

0

L(δ1/ε(η(s)), αη(s), ω)ds,

so that

(4.8)

∫ t+h

0

L(δ1/ε(η(s)), αη(s), ω)ds− Lε(x, y, t, ω) ≥ −I.

Assume for the moment that

(4.9) I ≤ Cδh.

Then passing to the infimum over η in (4.8) we obtain relation (4.7).
Let us now prove (4.9). Writing t

t+h = 1− h
t+h , we have

(4.10) I =

∫ t+h

0

(
L

(
δ1/ε(η(s)),

t+ h

t
αη(s), ω

)
− L

(
δ1/ε(η(s)), αη(s), ω

))
ds

− h

t+ h

∫ t+h

0

L

(
δ1/ε(η(s)),

t+ h

t
αη(s), ω

)
ds.

To get (4.9) we estimate |I|. We start estimating the modulus of the latter integral
in the right-hand side. Note that (L2) implies that

(4.11) |L(x, q, ω)| ≤ C1

(
|q|λ + 1

)
+ C−1

1

(
|q|λ − 1

)
≤ C(|q|λ + 1),

where we have used that max{A,B} ≤ |A|+ |B| and C := C1 + C−1
1 .
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Then by (4.11) and for h sufficiently small (so that δ < t+ h < 1
δ ), we have

h

t+ h

∫ t+h

0

∣∣∣∣L(δ1/ε(η(s)),
t+ h

t
αη(s), ω

) ∣∣∣∣ds
≤ h

t+ h

∫ t+h

0

C

(
1 +

(
t+ h

t

)λ
|αη(s)|λ

)
ds

≤ h

δ
C

(
1

δ
+

(
t+ h

t

)λ
‖αη‖λLλ(0,t+h)

)

≤ hC
δ

1

δ
+

(
C̃

δ2

)λ = Cδh,(4.12)

where the last inequality is due to Proposition 4.1. On the other hand, using first
(L6) and then (L2), we have∫ t+h

0

∣∣∣∣L(δ1/ε(η(s)),
t+ h

t
αη(s), ω

)
− L(δ1/ε(η(s)), αη(s), ω)

∣∣∣∣ ds
≤
∫ t+h

0

C

∣∣∣∣∣
(
t+ h

t

)λ
− 1

∣∣∣∣∣L(δ1/ε(η(s)), αη(s), ω)ds

≤ C C1

∫ t+h

0

∣∣∣∣∣
(
t+ h

t

)λ
− 1

∣∣∣∣∣ (|αη(s)|λ + 1)ds.

Hence, by our choice of t and h, we get∫ t+h

0

∣∣∣∣L(δ1/ε(η(s)),
t+ h

t
αη(s), ω

)
− L(δ1/ε(η(s)), αη(s), ω)

∣∣∣∣ ds
≤ C1δ

−λ∣∣(t+ h)λ − tλ
∣∣(‖αη‖λLλ(0,t+h) + t+ h)

≤ Cδh,(4.13)

where the last inequality is due to Proposition 4.1. Using (4.12) and (4.13) in (4.10),
we get (4.9).

For later use, we collect some consequences of the previous estimates.

Lemma 4.5. Assuming (L2) and (L6), there exists a positive contant C,
depending only on the assumptions on the Lagrangian L, such that

1. Lε(x ◦ v, x, ‖v‖CC , ω) ≤ C‖v‖CC ,
2. |Lε(x, y, t, ω)− Lε(x, y, (1 + ρ)t, ω)| ≤ Cρ|Lε(x, y, t, ω)| for 0 < ρ� 1,
3. Lε(x, z, t+ s, ω) ≤ Lε(x, y, t, ω) + Lε(y, z, s, ω)

∀x, v, y, z ∈ RN , ω ∈ Ω, and t, s > 0.

Proof. Point 1 follows from Lemma 4.3 by choosing x = y and t = 0.
We prove now point 2: Applying Lemma 4.4 with h = ρ t we get

|Lε(x, y, t, ω)− Lε(x, y, (1 + ρ)t, ω)| ≤ Cδ ρ t.

We accomplish the proof recalling from Lemma 4.1 that C−1
1 t ≤ Lε(x, y, t, ω).

Point 3 is obvious since the combination of two minimizers for Lε(x, y, t, ω) and
Lε(y, z, s, ω), respectively, is an admissible path for Lε(x, z, t+ s, ω).
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As a direct consequence we have the following lemma.

Lemma 4.6. Assume (L2) and (L6) and consider x1, y1, x2, y2 ∈ RN , and t > 0
with ‖−x1 ◦ x2‖CC + ‖−y1 ◦ y2‖CC � t. Then

|Lε(x1, y1, t, ω)− Lε(x2, y2, t, ω)|
≤ C

(
|Lε(x1, y1, t, ω)|+ |Lε(x2, y2, t, ω)|

)
(‖ − x1 ◦ x2‖CC + ‖ − y1 ◦ y2‖CC) .

Proof. By applying twice Lemma 4.5 part 3, we deduce

Lε
(
x1, y1, t+ ‖−x1 ◦ x2‖CC + ‖−y1 ◦ y2‖CC , ω

)
≤ Lε

(
x1, x2, ‖−x1 ◦ x2‖CC , ω

)
+ Lε(x2, y2, t, ω) + Lε(y2, y1, ‖−y1 ◦ y2‖CC , ω).

Next we apply Lemma 4.5 part 1 to Lε
(
x1, x2, ‖−x1 ◦ x2‖CC , ω

)
and, respectively, to

Lε(y2, y1, ‖−y1 ◦ y2‖CC , ω) taking v = −x2 ◦ x1 and v = −y1 ◦ y2, and we deduce

Lε
(
x1, y1, t+ ‖−x1 ◦ x2‖CC + ‖−y1 ◦ y2‖CC , ω

)
≤ C

(
‖−x1 ◦ x2‖CC + ‖−y1 ◦ y2‖CC

)
+ Lε(x2, y2, t, ω)

(recall ‖−x2 ◦ x1‖CC = ‖−x1 ◦ x2‖CC). Finally, applying Lemma 4.5 part 2 with

ρ = ‖−x1◦x2‖CC+‖−y1◦y2‖CC
t , we obtain

Lε
(
x1, y1, t+ ‖−x1 ◦ x2‖CC + ‖−y1 ◦ y2‖CC , ω

)
≥ Lε(x1, y1, t, ω)− C ρ|Lε(x1, y1, t, ω)|.

The last two inequalities entail

Lε(x1, y1, t, ω)− Lε(x2, y2, t, ω) ≤ C ρ|Lε(x1, y1, t, ω)|+ Cρt.

To conclude, from Lemma 4.1 we get Lε(x, y, t, ω) ≥ C−1
1 t and we recall that t > 0 is

fixed. Then, up to changing the constant, the previous inequality can be written as

Lε(x1, y1, t, ω)− Lε(x2, y2, t, ω) ≤ C|Lε(x1, y1, t, ω)|(‖−x1 ◦ x2‖CC + ‖−y1 ◦ y2‖CC).

Reversing the role of x1, y1 with that of x2, y2, the claim follows.

Theorem 4.1. Under assumptions (L2) and (L6), Lε(x, y, t, ω) is locally uni-
formly continuous w.r.t. x, y ∈ RN and t away from 0, uniformly w.r.t. ε > 0 inde-
pendently of ω ∈ Ω.

Proof. By Lemma 4.4 we have the local uniform continuity w.r.t. t. It remains
to show the local uniform continuity w.r.t. x. (The one w.r.t. y is analogous so it is
omitted.) We need to show that, for every δ > 0, there exists a constant Cδ > 0 such
that

(4.14) |Lε(x, y, t, ω)− Lε(x̃, y, t, ω)| ≤ Cδ ‖−x ◦ x̃‖h ∀ε > 0

and for any t ∈ [δ, 1/δ] and for any x, x̃, y with CC-norm smaller than 1
δ . Indeed, we

have

Lε(x, y, t, ω)− Lε(x̃, y, t, ω) = [Lε(x, y, t, ω)− Lε(x, y, t+ ‖ − x̃ ◦ x‖h, ω)]

+ [Lε(x, y, t+ ‖ − x̃ ◦ x‖h, ω)− Lε(x̃, y, t, ω)].
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We observe that Lemma 4.3 (with v = −x̃ ◦ x) and Lemma 4.4 give

Lε(x, y, t, ω)− Lε(x̃, y, t, ω) ≤ (2C1 + Cδ) ‖−x ◦ x̃‖h ,

where C1 is the constant introduced in (L2) while Cδ is the constant introduced in
Lemma 4.4. Reversing the role of x and x̃ we accomplish the proof.

Lemma 4.7. Under assumption (L2), then

(4.15) Lε(x, y, t, ω) ≥ C−1
1 t1−λ(dCC(x, y))λ − C−1

1 t

∀ε > 0, t > 0 and x, y ∈ RN , where C1 and λ are the constants introduced in (L2).

Proof. By the definition of Lε(x, y, t, ω), assumption (L2), and Jensen’s inequality,
we obtain

Lε(x, y, t, ω) ≥ C−1
1 inf

ξ∈Aty,x

{∫ t

0

(|αξ(s)|λ − 1)ds

}
= C−1

1 t inf
ξ∈Aty,x

{(
1

t

∫ t

0

|αξ(s)|λds
)}
− C−1

1 t

≥ C−1
1 t1−λ

(
inf

ξ∈Aty,x

{∫ t

0

|αξ(s)|ds
})λ

− C−1
1 t,

which is equivalent to the statement because of the definition of dCC(x, y).

Proposition 4.2. Assume that the Lagrangian L satisfies (L2) and that the ini-
tial datum g satisfies

(4.16) g(x) ≥ −C(1 + dCC(x, 0)) ∀x ∈ RN .

Then the infy∈RN {g(y) + Lε(x, y, t, ω)} is attained in a CC-ball centered at x with
radius depending only on the constants in (L2) and on T ∀t ∈ (0, T ). Recall that by
Lemma 2.2 CC-balls and standard Euclidean balls can be included into each other up
to changing the radius.

Proof. As in [36, Lemma 3.4], we want to prove that the infimum outside a suitable
ball is greater than the infimum over the entire space. Fix (t, x) ∈ (0, T )×RN . From
(L2) we have that L(x, 0, ω) ≤ C1, so Lε(x, x, t, ω) ≤ C1t, which implies

(4.17) inf
y∈RN

{g(y) + Lε(x, y, t, ω)} ≤ g(x) + Lε(x, x, t, ω) ≤ g(x) + C1t,

where the second inequality is obtained choosing the constant curve ξ(s) = x for any
s ∈ (0, t) in the definition of Lε(x, x, t, ω).

From (4.16) and the triangle inequality, we have

g(y) + C−1
1 t1−λdCC(x, y)λ − C−1

1 t ≥− C − C tdCC(x, y)

t
− CdCC(x, 0)

+ C−1
1 t

(
dCC(x, y)

t

)λ
− C−1

1 t.

Since the right-hand side goes to +∞, as dCC(x, y) → +∞, then there exist R > 0
such that

(4.18) g(y) + C−1
1 t1−λdCC(x, y)λ − C−1

1 t ≥ g(x) + C1t ∀y ∈ RN\DR,
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where DR := {y ∈ RN : dCC(x, y) ≤ RT}. By using both inequalities (4.17) and
(4.18), we get

inf
y∈RN

{g(y) + Lε(x, y, t, ω)} ≤ inf
y∈RN\DR

{
g(y) + C−1

1 t

(
dCC(x, y)

t

)λ
− C−1

1 t

}
≤ inf
y∈RN\DR

{
g(y) + Lε(x, y, t, ω)

}
,

where the last inequality is due to Lemma 4.7. To conclude we just remark that,
by the Hörmander condition, DR is contained in a Euclidean ball (up to a different
radius), then the lemma is proved.

5. A lower dimensional constrained problem to determine the effective
Lagrangian. Inspired by the approach of [37], we now pass to study the convergence
of the functional Lε(x, y, t, ω) as ε → 0+, by using the subadditive ergodic theorem.
First we introduce a special family of horizontal curves which can be used as an
initial condition to build a subadditive stationary process. For this purpose we use
curves which have constant horizontal velocity w.r.t. the given family of vector fields
X = {X1, . . . , Xm}, namely, X -lines. For more details on those curves one can see
[10, 9].

Definition 5.1. We call X -line any absolute continuous curve ξ : [0, t] → RN ,
satisfying

(5.1) ξ̇(s) =

m∑
i=1

qiXi(ξ(s)) = σ(ξ(s))q, a.e. s ∈ (0, t),

for some constant vector q ∈ Rm. Using notation coherent with [37] we denote by
lXq (s) the X -line starting from the origin associated to the horizontal constant velocity
q ∈ Rm.

Remark 5.1.
1. Since the vector fields associated to Carnot groups are smooth, the X -lines

are smooth curves so relation (5.1) holds ∀s ∈ (0, t).
2. Since the vector fields are linearly independent at any points (see Remark 2.1),

for any fixed q ∈ Rm and for any fixed starting point x, there is a unique
X -line starting from the point x and associated to the horizontal constant
velocity q.

3. X -lines starting from a given point x are curves in RN depending only on m
parameters with m < N . Then, while there always exists an horizontal curve
joining two given points x and y, in general an X -line joining x to y may not
exist in a Carnot group.

To study the convergence of Lε(x, y, t, ω) we need to use X -lines so we first restrict
our attention to the points x and y that can be connected by using a X -line. Following
the notation in [9], we define the X -plane associated to a point x which is, roughly
speaking, the union of all the X -lines starting from x.

Definition 5.2. We call the X -plane associated to the point x the set of all the
points that one can reach from x through a X -line, i.e.,

Vx := {y ∈ RN | ∃ q ∈ Rm and ξq X -line such that ξq(0) = x, ξq(1) = y}.
Remark 5.2 (X -lines in Carnot groups). Note that in the Heisenberg group the

X -lines form a subset of Euclidean straight lines but in general the structure of X -
lines can look very different from the Euclidean straight lines. (See [10, 9] for some
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examples.) Still, if we assume that the vector fields are associated to a Carnot group
in exponential coordinates (see (2.3)), then at least the first m-components are Eu-
clidean affine. This implies that in Carnot groups, whenever y ∈ Vx, then the unique
horizontal velocity q such that ξq(0) = x and ξq(1) = y is given by q = πm(y − x).

Let us define
(5.2)

Bqa,b:=
{
ξ : [a, b]→ RN |ξ ∈W

1,∞(
(a, b)

)
horizontal, ξ(a) = lXq (a), ξ(b) = lXq (b)

}
.

For any interval [a, b) we define the following stochastic process (similar to [37]):

(5.3) µq([a, b), ω) := inf
ξ∈Bqa,b

∫ b

a

L(ξ(s), αξ(s), ω)ds.

To use the subadditive ergodic theorem, fixed q ∈ Rm, we need to consider the action
of Z on the process µq as additive translation in time, as described in the following
Definition 5.3.

Definition 5.3. Fix q ∈ Rm; given a, b ∈ R with a < b and z ∈ Z, we define

τz µq([a, b), ω) := µq(z + [a, b), ω) = inf
ξ∈Bqa+z,b+z

∫ b+z

a+z

L(ξ(s), αξ(s), ω)ds.

Lemma 5.1. For every q ∈ Rm, z ∈ Z, let µq be defined by (5.3) and τz the
additive action introduced in Definition 5.3. Under assumptions (L1)–(L4), we have

(5.4) τz µq([a, b), ω) = µq([a, b), τzqω),

where zq = lXq (z) and lXq is the X -line defined in Definition 5.1.

Proof. For any ξ ∈ Bqa+z,b+z we consider

ξ̃(s) := [lXq (z)]−1 ◦ ξ(s+ z).

By Lemma 2.3 part (i), ξ̃(s) is still horizontal and αξ̃(s) = αξ(s+ z).
Moreover note that ξ̃(a) = [lXq (z)]−1 ◦ lXq (a+ z) and ξ̃(b) = [lXq (z)]−1 ◦ lXq (b+ z).
We claim that

(5.5) ξ̃(a) = lXq (a) and ξ̃(b) = lXq (b).

In fact, consider the two curves lXq (s) and l̃Xq (s) := [lXq (z)]−1 ◦ lXq (s + z): both the

curves start from the origin since l̃Xq (0) = [lXq (z)]−1 ◦ lXq (z) = 0 = lXq (0). Moreover

they have the same horizontal velocity since αl
X
q (s) = q (by definition) and αl̃

X
q (s) =

αl
X
q (s+z) = q (by Lemma 2.3). Hence by standard uniqueness for ODEs with smooth

data, the two curves coincide and in particular (5.5) holds.

This implies that for each ξ ∈ Bqa+z,b+z, the curve ξ̃ ∈ Bqa,b. Then, by the change
of variable s̃ = s− z,

τz µq([a, b), ω) = inf
ξ̃∈Bqa,b

∫ b+z

a+z

L([lXq (z)] ◦ ξ̃(s− z), αξ̃(s− z), ω)ds

= inf
ξ̃∈Bqa,b

∫ b

a

L([lXq (z)] ◦ ξ̃(s), αξ̃(s), ω)ds.
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We set zq = lXq (z) and use assumption (L4) to conclude

τz µq([a, b), ω) = inf
ξ∈Bqa,b

∫ b

a

L(ξ(s), αξ(s), τzqω)ds = µq([a, b), τzqω),

and hence the proof is accomplished.

Lemma 5.2 (subadditivity). For n ∈ N, there holds

µq([0, n), ω) ≤
n∑
k=1

µq(k − 1 + [0, 1), ω).

Proof. If ξk ∈ Bqk−1,k, then we can construct a continuous horizontal curve ξ in

Bq0,n, such that ξ(s) = ξk(s) for s ∈ [k − 1, k], k ∈ {1, . . . , n}. The claim follows from
the definition of the infimum.

Under assumptions (L1)–(L4) the subadditive ergodic theorem applies to the
process defined in (5.3). We will use it in the following form, which is taken from
[20, Proposition 1], based on Akcoglu and Krengel’s theorem [1]. We state it for one
dimension. First, we get the existence of a limit which may still depend on ω and
then we use ergodicity to show independence of ω. From [20] we recall the following.

Definition 5.4. We denote by U0 the family of all bounded measurable subsets of
R. For A ∈ U0, its Lebesgue measure is |A|. We denote byM the family of subadditive
functions m : U0 → R such that, for some c > 0, there holds

0 ≤ m(A) ≤ c|A| ∀A ∈ U0.

Theorem 5.1 (subadditive ergodic theorem [20]). Let µ : Ω→M be a subaddi-
tive process. If µ and τxµ have the same law for every x ∈ Z, then there exists a set
of full measure Ω′ and a measurable function φ such that on Ω′

lim
t→∞

t−1|I|−1µ(ω)(tI) = φ(ω)

for every interval I, where |I| denotes its length.

We look at the points y ∈ V0 ⊂ RN . Let us recall from Definition 2.1 that we write
y = (y1, y2) ∈ Rm × RN−m and y1 = πm(y). If y ∈ V0, then y2 = y2(y1) ∈ RN−m,
where y2(·) is a (N −m)-dimensional valued function associated to the vector fields,
e.g., in the case of the n-dimensional Heisenberg group N = 2n + 1 and m = 2n so
y2 = 0 ∈ R ∀y1 ∈ R2n. (See [9, Lemma 2.2] for more details.)

We are now ready to give a first pointwise convergence result. Note that, differ-
ently from the Euclidean case, the following theorem gives the asymptotic behavior
of Lε(0, y, t, ω) only under the additional (N −m)-dimensional constraint expressed
by y ∈ V0.

Theorem 5.2. Under assumptions (L1)–(L4), for each t > 0 and y ∈ V0 fixed,
1. the following limit exists a.s. in ω,

(5.6) Lε(y, 0, t, ω) −→ε→0+

t µ

(
y1

t
, ω

)
,

where µ : Rm × Ω→ R is a measurable function;
2. the limit value µ in (5.6) is constant in ω.
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Proof. We first prove part 1 by applying the subadditive ergodic Theorem 5.1.
To this end let us observe that for q fixed, µq belongs toM. Actually by Remark 3.4
we have µq(I, ω) ≥ 0 for any interval I. On the other hand, since lχq ∈ B

q
a,b, we have

µq([a, b), ω) ≤
∫ b

a

L(lχq (s), αl
χ
q (s), ω)ds ≤ C1(1 + |q|λ)(b− a),

where the last inequality is due to assumption (L2) and to the relation αl
χ
q (s) = q.

Hence the subadditive ergodic theorem 5.1 implies

(5.7)
1

τ
µq([0, τ), ω) −→τ→+∞ µ(q, ω), a.s. ω ∈ Ω.

Note that the definition of µq involves only a one-dimensional subgroup of translations,
{τ`Xq (z)}z∈Z, the subgroup that leaves invariant the X -line with direction q, passing
through the origin.

Now we rewrite Lε(y, 0, t, ω) defined by (3.4) in terms of µq
(
[a, b), ω

)
: let us prove

Lε(y, 0, t, ω) = εµ y1

t

([0, ε−1t), ω).

For any ξ ∈ At0,y, we define ξ̃(s) := δ1/ε(ξ(s)). Using Lemma 2.3 part (iii)

Lε(y, 0, t, ω) = inf
ξ̃∈At0,yε

∫ t

0

L(ξ̃(s), εαξ̃(s), ω)ds,

where yε = δ1/ε(y). By the change of variable s̃ = s/ε (which we call again s) the
previous identity becomes

Lε(y, 0, t, ω) = ε inf
ξ̃∈At/ε0,yε

∫ t/ε

0

L(ξ̃(εs), εαξ̃(εs), ω)ds.

Take now η(s) := ξ̃(ε s) and note that by Lemma 2.3 η(s) is still a horizontal curve

with αη(s) = ε αξ̃(εs), η(0) = δ1/ε(y) and η(t/ε) = 0. Then

(5.8) Lε(y, 0, t, ω) = ε inf
η∈At/ε0,yε

∫ t/ε

0

L(η(s), αη(s), ω) ds.

Now fix t > 0, y ∈ V0 and y1 = πm(y). To use the convergence result in (5.7) it
remains to show that

At/ε0,yε
= Bqa,b with q =

y1

t
, a = 0, and b =

t

ε
.

For this purpose, consider the X -line joining 0 to y with constant horizontal velocity
qi = yi

t for i = 1, . . . ,m, i.e., lXq is the unique solution of

l̇Xq (s) =

m∑
i=1

yi
t
Xi(l

X
q (s)), lXq (0) = 0.

(Recall that lXq (t) = y.)

Claim. For all constant C > 0

(5.9) lXq (Ct) = δC
(
lXq (t)

)
= δC(y).
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To prove claim (5.9), let us introduce the two curves l1(s) := lXq (Cs) and l2(s) :=

δC(lXq (s)). Note that by Lemma 2.3 parts (ii) and (iii), we have

l1(0) = l2(0) = 0, αl1(s) = Cαl = C
y1

t
and αl2(s) = Cαl = C

y1

t
.

This means that l1(·) and l2(·) both solve the ODE problem

ẋ(s) =

m∑
i=1

C
y1
i

t
Xi(x(s)), x(0) = 0.

By standard uniqueness for ODEs with smooth data, we deduce l1(s) = l2(s). This
implies in particular l1(t) = l2(t) which gives (5.9). Note that here it is crucial that
the horizontal velocity of the two curves l1 and l2 is constant in time.

The claim (5.9) implies that At/ε0,yε
= Bq0,t/ε with q = y1

t , and thus (5.8) gives

(5.10) Lε(y, 0, t, ω) = εµ y1

t

([0, t/ε), ω).

For t > 0, y ∈ V0, y1 = πm(y), and q = y1

t fixed, we can rewrite (5.7) as

(5.11) Lε(y, 0, t, ω) = εµ y1

t

([0, t/ε), ω) −→ε→0+

tµ

(
y1

t
, ω

)
, a.s. ω ∈ Ω.

We now prove part 2: we show the independence of µ from ω. Fix z ∈ RN and define
lzq(s) := −z ◦ lXq (s), and then by Lemma 2.3 this is still an X -line. We have by
stationarity of the coefficients

tµ

(
y1

t
, τz(ω)

)
= lim
ε→0+

εµ y1

t

([0, t/ε), τz(ω)),

and by (5.3) and stationarity

µ y1

t

([0, t/ε), τz(ω)) = inf
ξ∈Bq

0,t/ε

∫ t/ε

0

L(ξ(s), αξ(s), τz(ω))ds

= inf
ξ∈Bq

0,t/ε

∫ t/ε

0

L(−z ◦ ξ(s), αξ(s), ω)ds

= inf
ξ∈Bq,z

0,t/ε

∫ t/ε

0

L(ξ(s), αξ(s), ω)ds,

where

Bq,z0,t/ε

:=
{
ξ : [a, b]→ RN |ξ ∈W

1,+∞(
(a, b)

)
horiz, ξ(a) = −z ◦ lXq (a), ξ(b) = −z ◦ lXq (b)

}
.

We have to show
(5.12)

lim
ε→0+

ε inf
ξ∈Bq

0,t/ε

∫ t/ε

0

L(ξ(s), αξ(s), ω)ds = lim
ε→0+

ε inf
ξ∈Bq,z

0,t/ε

∫ t/ε

0

L(ξ(s), αξ(s), ω)ds
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Fig. 1. In the picture are drawn two X -lines with constant horizontal velocity q connecting,
respectively, x1 with x2 and y1 = −z◦x1 with y2 = −z◦x2. Then ξ and ξ̄ are respectively admissible
curves touching at the two couple of points.

∀z ∈ RN , then µ(y
1

t , τz(ω)) = µ(y
1

t , ω), so by ergodicity w.r.t to the group action

µ(y
1

t , ω) does not depend on ω.
We show that both infima have the same limit by connecting the endpoints x1 :=

lXq (a) to y1 := −z ◦ lXq (a), x2 := lXq (b) to y2 := −z ◦ lXq (b) by geodesics of length of
order C(q) ‖z‖CC . Indeed, by Lemma 4.6 the difference of the cost disappears in the
limit ε→ 0. (See Figure 1.)

This means any path in Bq,z0,t/ε can be made into a path in Bq0,t/ε by paying a

cost of order |z|. (For a similar argument, we refer the reader also to the proof of
Lemma 6.3.) This extra cost vanishes in the limit after multiplication by ε.

Remark 5.3. Note that the convergence result (5.6) means that, for each t > 0
and y ∈ V0 fixed, there exists Ωt,y ⊂ Ω with P(Ωt,y) = 1 such that Lε(y, 0, t, ω) →
tµ
(
πm(y)
t

)
∀ω ∈ Ωt,y. This convergence result is enough to define the effective

Lagrangian but it is still too weak to obtain the convergence of the solutions of the
homogenization problem.

Definition 5.5 (effective Lagrangian). We define the effective Lagrangian
L : Rm → R as

(5.13) L(q) := µ(q) = lim
ε→0+

Lε
(
(q, y2

q ), 0, 1, ω
)
,

where the point y2
q ∈ RN−m is uniquely determined by y1 = q ∈ Rm for all points

(q, y2
q ) ∈ V0 ⊂ RN .

Example 5.1 (Heisenberg group). In the one-dimensional Heisenberg group there
holds L(q1, q2) := limε→0+ Lε

(
(q1, q2, 0), 0, 1, ω

)
.

Using the definition of effective Lagrangian introduced in (5.13) we can rewrite
the limit in Theorem 5.2 as follows: for each y ∈ V0 and t > 0 fixed, there exists a set
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Ωt,y ⊂ Ω with P(Ωt,y) = 1 such that

(5.14) lim
ε→0+

Lε(y, 0, t, ω) = tL

(
πm(y)

t

)
∀ ω ∈ Ωt,y.

Next we want to derive the local uniform convergence for Lε(x, y, t, ω) under the
constraint y ∈ Vx. The following proof is a simple adaptation of the ideas developed
by Souganidis in [37] and later by the same author and co-authors in [4, 5, 6, 7]. The
main difference is that we work directly with the functional Lε(x, y, t, ω) and not with
the solutions uε(t, x). This will guarantee in once both the uniform convergence in y
(essential to pass to the infimum in the limit) and the uniform convergence in x and
t (that will allow us to apply our approximation argument in section 6).

Theorem 5.3. Under assumptions (L1)–(L4) and (L6) and the additional con-
straint x ∈ Vy, we have that

(5.15) lim
ε→0+

Lε(x, y, t, ω) = tL

(
πm(−y ◦ x)

t

)
= tL

(
πm(x)− πm(y)

t

)
locally uniformly in x, y, t and a.s. ω, where L is the effective Lagrangian defined by
(5.13).

Proof. We first show that

(5.16) Lε(x, y, t, ω) = Lε
(
−y ◦ x, 0, t, τδ1/ε(y)(ω)

)
.

Note that x ∈ Vy if and only if − y ◦ x ∈ V0. (Recall that y−1 = −y in exponential
coordinates.) To prove (5.16), for each ξ ∈ Aty,x we define η(s) := −y ◦ ξ(s). By

Lemma 2.3(i) we have αη(s) = αξ(s), η(0) = −y ◦ x, η(t) = 0, and hence

Lε(x, y, t, ω)= inf
At0,−y◦x

∫ t

0

L
(
δ1/ε(y ◦ η(s)), αη(s), ω

)
ds

= inf
At0,−y◦x

∫ t

0

L
(
δ1/ε(y) ◦ δ1/ε(η(s)), αη(s), ω

)
ds

= inf
At0,−y◦x

∫ t

0

L
(
δ1/ε(η(s)), αη(s), τδ1/ε(y)ω

)
ds

= Lε
(
−y ◦ x, 0, t, τδ 1

ε
(y)(ω)

)
,

where we have used property (L4).
By combining the estimates found in section 4 with Egoroff’s theorem and the

ergodic theorem we can conclude. Since the argument is standard and has been used
already in several papers, then we recall only the main steps.

Since Lε(x, y, t, ω) are equiuniformly continuous in t > 0 and x, y ∈ RN (see
Theorem 4.1), using the density of Q in R we can restrict our attention only to points
of the form tz ∈ (0,+∞) ∩ Q = Q+, xz ∈ QN , and yz ∈ QN . We then define the
following set:

Ω0 :=
⋂

tz∈Q+,xz∈QN , yz∈QN
Ωtzxz,yz ,

where Ωtzxz,yz is a set of full measure such that

lim
ε→0+

Lε(−yz ◦ xz, 0, tz, ω) = tz L

(
πm(−yz ◦ xz)

tz

)
.

Note that Ω0 does not depend anymore on t, x, and y and P(Ω0) = 1.
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Using the structure of Carnot group in exponential coordinates that implies
πm(−y ◦ x) = πm(x)− πm(y), since by (5.14) −y ◦ x ∈ QN , we know that

lim
ε→0+

Lε(−yz ◦ xz, 0, tz, ω) = tz L

(
πm(xz)− πm(yz)

tz

)
∀ω ∈ Ω0.

Applying the Egoroff theorem, we find a “very big” subset of Ω0 where the convergence
is uniform in ω. More precisely for any fixed δ > 0, there exists Aδ ⊂ Ω0 such that
P(Ω0 \Aδ) ≤ δ (i.e., P(Aδ) = 1− δ) and

lim
ε→0+

Lε(−yz ◦ xz, 0, tz, ω) = tz L

(
πm(xz)− πm(yz)

tz

)
,

uniformly for all tz, xz, yz and all ω ∈ Aδ.
To conclude one can use the ergodic theorem to show that with very high prob-

ability τδ1/ε(y)(ω) ∈ Aδ. The application of the ergodic theorem is quite technical, so
we refer to Lemma 5.1 in [5] for the detailed argument. We would just like to remark
that by Lemma 2.2 one can easily replace the Euclidean ball with the homogeneous
ball (and the reverse), up to considering a different power for the radius which depends
only on the step of the Carnot group.

This argument together with the estimates in section 4, where we found a uniform
modulus of continuity depending only on the assumption on H and on the Carnot
group (see Theorem 4.1) and relation (5.16), conclude the proof.

Adding g(y) on both sides of (5.15) and using the local uniform convergence w.r.t.
y and Proposition 4.2, we deduce the following convergence for the infimum.

Corollary 5.1. Under the assumptions of Theorem 5.3 and assuming that g :
RN → R satisfies (4.16), then

(5.17) lim
ε→0+

inf
y∈Vx

[g(y) + Lε(x, y, t, ω)] = inf
y∈Vx

[
g(y) + tL

(
πm(x)− πm(y)

t

)]
.

Note that the right-hand side in (5.17) coincides with the Hopf–Lax formula intro-
duced in [8, Theorem 1.1]. Then, whenever the initial condition satisfies the additional
assumption g(x) ≥ g(πm(x)) ∀x ∈ RN , the right-hand side is the unique viscosity so-

lution of the associated Cauchy problem (defining H = L
∗

and proving convexity for
L; see section 7). Unfortunately in general vε(t, x) = infy∈Vx [g(y) + Lε(x, y, t, ω)]
does not solve the ε-problem (3.1). Then it is crucial to get rid of the additional con-
straint y ∈ Vx. For this purpose, in section 6 we will introduce a novel approximation
argument, by using a suitable construction by X -lines.

We conclude the section investigating some properties for the effective Lagrangian
that will be used later.

Lemma 5.3. For any y = (y1, y2) ∈ V0, we have

inf
ξ

∫ t

0

|αξ(s)|ds ≥ |y1|,

where the infimum is taken over all the horizontal curves ξ(s) such that ξ(0) = (y1, y2)
and ξ(t) = 0.
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Proof. Given any horizontal curve ξ such that ξ(0) = (y1, y2) ∈ RN , ξ(t) =
0 ∈ RN , we define η : [0, t] → Rm as η(s) := πm(ξ(s)). Then η(0) = y1 ∈ Rm,
η(t) = 0 ∈ Rm. Moreover, from the structure of σ (see (2.3)), we have η̇(s) =
(ξ̇1(s), . . . , ξ̇m(s)) = αξ(s).

Then, since η are curves in the Euclidean Rm joining y1 to 0 at time t,∫ t

0

|αξ(s)|ds ≥ inf
η

∫ t

0

|η̇(s)|ds = |y1|,

and we can conclude taking the infimum on the left-hand side term.

Proposition 5.1. L(q) is continuous and superlinear in q, i.e.,

(5.18) L(q) ≥ C−1
1 (|q|λ − 1),

where C1 and λ are the constants introduced in (L2).

Proof. The continuity follows from the uniform convergence of Lε in (5.13). For
each q ∈ Rm, take y1 = q, y = (q, y2) ∈ V0 , t = 1, and x = 0.

Lε(0, y, 1, ω) = inf
ξ∈Aty,0

∫ 1

0

L(δ1/ε(ξ(s)), α
ξ(s), ω)ds.

From assumption (L2), Jensen’s inequality, and Lemma 5.3, we get

Lε(0, y, 1, ω) ≥ C−1
1 inf

ξ∈A1
y,0

(∫ 1

0

|αξ(s)|λds
)
− C−1

1

≥ C−1
1 inf

ξ∈A1
y,0

(∫ 1

0

|αξ(s)|ds
)λ
− C−1

1

≥ C−1
1 |q|λ − C

−1
1 ,

which implies (5.18), passing to the limit as ε→ 0+.

6. Approximation by X -lines and convergence of the variational prob-
lem. To remove the constraint y ∈ Vx the idea is to apply Theorem 5.3 to suitable
step-X -lines, i.e., horizontal curves whose horizontal velocity is step-constant w.r.t.
the given vector fields. More precisely we want to approximate the horizontal velocity
α(t) ∈ Rm in L1 by step-constant functions. (Recall that if two horizontal velocities
are close in L1-norm, then the associated horizontal curves are close in L∞-norm; see
Lemma 2.4.)

We will treat the liminf and the limsup separately. Both are treated in the spirit
as one would do for the Γ-liminf and the Γ-limsup for integral functionals. One of the
technical difficulties here is how to approximate limits of a sequence of minimizing
paths by X -lines. Due to the fast oscillations of our integrands in ξ, this is not
straightforward; we refer to the discussion in [24]. As we cannot assume that our
limit paths are smooth but only belong to some Sobolev space, we have to work
with Lebesgue points of the horizontal velocity. Here this is more subtle than in the
Euclidean case.

Lemma 6.1. Suppose ξ̇(s) = α1(s)X1(ξ(s)) + · · ·+ αm(s)Xm(ξ(s)) and t0 ∈ R is
a Lebesgue point for α1, . . . , αm, which means

(6.1) lim
δ→0

max
i=1,...,m

δ−1

∫ t0+δ

t0−δ
|αi(s)− αi(t0)|ds = 0.
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Consider the X -line `(s) := lα(t0)(s), i.e.,

˙̀(s) = α1(t0)X1(`(s)) + · · ·+ αm(t0)Xm(`(s)), `(t0) = ξ(t0).

Then for any ε > 0 there exists δ0 > 0 such that ∀δ < δ0

(6.2) sup
[t0−δ,t0+δ]

dCC(ξ(s), `(s)) < ε

(
δ +

∫ t0+δ

t0−δ
|α(s)| d s

)
.

Proof. We use the exponential representation of the Carnot group. Moreover,
since the CC distance is locally equivalent to the homogeneous distance, we estimate
‖ − `(s) ◦ ξ(s)‖h.

Case 1: the Heisenberg group H. We prove the statement in the Heisenberg group
H by explicit computations. Without loss of generality we assume t0 = 0; for the first
two coordinates we have

ξi(t) = `i(0) + tαi(0) + t

(
1

t

∫ t

0

(αi(s)− αi(0))ds

)
︸ ︷︷ ︸

:=ri(t)

= `i(t) + t ri(t).

For the third coordinate we have

`3(t) =
t

2
(`1(0)α2(0)− `2(0)α1(0)) + `3(0),

ξ3(t) =

∫ t

0

1

2
(ξ1(s)α2(s)− ξ2(s)α1(s)) ds+ `3(0).

Writing α2(s) = α2(s)± α2(0), we get∫ t

0

ξ1(s)α2(s)ds =
t2

2
α1(0)α2(0) + t`1(0)α2(0) + `1(0)t r2(t)

+

∫ t

0

s r1(s)α2(s)ds+ α1(0)

∫ t

0

s(α2(s)− α2(0))ds,

and since
∫ t

0
ξ2(s)α1(s)ds can be treated similarly, we have

ξ3(t) = `3(t) +
t

2
(`1(0)r2(t)− `2(0)r1(t)) +

∫ t

0

s
(
r1(s)α2(s)− r2(s)α1(s)

)
ds

+

∫ t

0

s
[
α1(0)

(
α2(s)− α2(0)

)
− α2(0)

(
α1(s)− α1(0)

)]
ds.

Let us denote the last two lines by R(t). Now from

(−`(t) ◦ ξ(t))3 = ξ3(t)− `3(t) +
`2(t)ξ1(t)− `1(t)ξ2(t)

2
,

we get

(−` ◦ ξ)3 = R(t) + t2
α2(0)r1(t)− α1(0)r2(t)

2
.

All error terms can be estimated by t2‖α‖∞ sup[0,t] max1,2 |ri| but we need an estimate
where the constant depends only on ‖αi‖L1 .
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Note that |R(t)| can be estimated by∣∣∣∣∫ t

0

sα1(0)
(
α2(s)− α2(0)

)
ds

∣∣∣∣ ≤ ∫ t

0

t2
|α1(0)||α2(s)− α2(0)|

t
ds ≤ |α1(0)||r2(t)|t2,∣∣∣∣∫ t

0

sr1(s)
(
α2(s)− α2(0) + α2(0)

)
ds

∣∣∣∣ ≤ |α2(0)| sup
[0,t]

|r1|t2 + |r2(t)| sup
[0,t]

|r1|t2,

and similarly for the remaining terms. Denoting by r(t) a term vanishing with |r1(t)|+
|r2(t)|, we have to show that terms of the form

√
αi(0) t r(t) can be estimated in a

way which can be summed over a partition of the unit interval. Since for t ∈ [0, 1]√
|αi(0)| t ≤ 1

2
|αi(0)|t+

1

2
,

and

|αi(0)|t ≤
∫ t

0

|αi(s)− αi(0)|ds+

∫ t

0

|αi(s)|ds = t|ri(t)|+
∫ t

0

|αi(s)|ds,

the claim is shown by applying these estimates on both subintervals (t0 − δ, t0) and
(t0, t0 + δ).

Case 2: general case.
Step 1. As the left-translation leaves the CC-distance between two points invari-

ant, we may assume w.l.o.g. t0 = 0 and ξ(0) = `(0) = 0.
For a general path η : [0, T ]→ Rm we define the 1-variation norm in the following

way: let ∆[0, T ] be the family of all partitions of the interval [0, T ]. Then

|η|1−var[0,T ] = sup
∆[0,T ]

∑
(tk,tk+1)∈∆[0,T ]

|η(tk+1)− η(tk)|.

It is easy to see that

(6.3) |η|1−var[0,T ] = sup
∆[0,T ]

∑∣∣∣∣∫ tk+1

tk

η̇(s)ds

∣∣∣∣ ≤ ∫ t

0

|η̇(s)|ds.

We define two paths in Rm as the projection on the first m components of ξ and `
and we denote them, respectively, by ηξ and η`. Using the structure given by (2.3),
we have that η̇ξ(t) = α(t) and η̇`(t) = α(0), and then, for δ sufficiently small, (6.3)
implies

|ηξ − η`|1−var[0,δ] ≤ δε

because by assumption t0 = 0 is a Lebesgue point for α.
Step 2. By [29, Proposition 7.63], we have for the signature of the path (i.e., for

the difference of all iterated integrals)

sup
k=1,...n−m

sup
0<t1<δ

∣∣∣∣∫ t1

0

∫ t2

0

. . .

∫ tk

0

dηξ(s1)⊗ · · · ⊗ dηξ(sk)ds1 . . . dsk

−
∫ t1

0

∫ t2

0

. . .

∫ tk

0

dηξ(s1)⊗ · · · ⊗ dηξ(sk)ds1 . . . dsk

∣∣∣∣ δ−k < Cε.

Step 3. The Chen–Strichartz formula, which is a deep generalization of the Baker–
Campbell–Hausdorff formula, allows one to compute the solution of flows driven by
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absolutely continuous paths via multiplying the terms appearing in the signature to
the corresponding commutators of the vector fields. Adapting the notation in [11,
Chapter 2] to the notation used here we have for a path ξ as in (2.4) starting from
the origin (in exponential coordinates)

ξ =

r∑
k=1

∑
I={i1,...,ik}

ΛI(α1, . . . , αm)XI .

Here

XI := [Xi1 , [Xi2 , . . . , [Xik1
, Xik ] . . .].

Moreover for t1 < . . . < tk < δ

ΛI :=
∑
σ∈Sk

(−1)e(σ)

k2

(
k − 1
e(σ)

) ∫ t1

0

∫ t2

0

. . .

∫ δ

0

αi1(ti1) . . . α(tik)dti1 . . . dtik ,

where Sk is the symmetric group of k elements and e(σ) is a nonnegative integer
depending only on the permutation σ ∈ Sk (see [11, Chapter 1]).

Note that all sums are finite as the Lie algebra is nilpotent, and that the projection
of the solution on the kth layer of the graded algebra is a multiple of a k-times iterated
integral of the αi, i = 1, . . . ,m.

Combining steps 2 and 3, the desired estimate in the homogeneous (and hence
CC) distance follows.

In the following lemma we build a partition using subintervals where we can apply
the previous lemma up to a set of Lebesgue-measure arbitrarily small.

Lemma 6.2. For any ρ > 0 and δ > 0 there exist N1, N2 ∈ N and a partition of
[0, 1) formed by the union of the intervals Ik = [tk− `k, tk + `k) for k = 1, . . . , N1 and
the intervals Jk = [t′k − `′k, t′k + `′k) for k = 1, . . . , N2 such that

• 0 < `k < ρ for k = 1, . . . , N1,
• for k = 1, . . . , N1 and i = 1, . . . ,m we have∫ tk+r

tk−r
|αi(s)− αi(0)|ds < rδ, for 0 < r < `k,

•
∑N2

k=1 |Jk| < δ.

Proof. By the Lebesgue point theorem, there exits a set N of zero Lebesgue
measure such that any τ ∈ [0, 1] \ N is a joint Lebesgue point of α1, . . . , αm. By
definition of the Lebesgue measure, N can be covered by a countable union of intervals
with total length smaller than δ. For each τ ∈ [0, 1] \ N there exists a ρτ > 0 such
that ∫ τ+r

τ−r
|αi(s)− αi(0)|ds < rδ for i = 1, . . . ,m and 0 < r < ρτ .

In this way we obtain an open cover of the compact unit intervals and extract a
finite subcover. These finitely many intervals can be ordered according to their center
and made into a partition by shortening them, starting from the leftmost center, until
the desired partition is obtained.

In the following lemma we prove the main lower bound for the liminf of Lε.
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Lemma 6.3. Let us assume that L(x, q, ω) satisfies assumptions (L1)–(L4) and
(L6). Then, locally uniformly in t > 0, x, y ∈ RN and a.s. in ω ∈ Ω

(6.4) lim inf
ε→0+

Lε(x, y, t, ω) ≥ t inf
α∈Fty,x

∫ t

0

L(α(s))ds,

where F ty,x is the set of all the measurable functions α : [0, t] → Rm such that the

corresponding horizontal curve ξα(s) joins y to x in a time t, and L(q) is the effective
Lagrangian defined by limit (5.13).

Proof. Step 1. For the sake of simplicity we assume that t = 1 and that for
each ε there exists a minimizing curve ξε for Lε(x, y, 1, ω). We observe that, by
Corollary 4.1, the sequence {ξε}ε is equibounded in L∞(0, 1) and in W 1,λ(0, 1). In
particular, it is equibounded in the Hölder norm with Hölder exponent γ < 1 −
1
λ . Hence, by the Ascoli theorem and by the Sobolev embedding theorem, up to a
subsequence, ξε uniformly converges to some Hölder curve ξ̄. We claim that ξ̄ is
horizontal. Actually, by Proposition 4.1, there holds ‖αξε‖Lλ < C2; hence, possibly
passing to a subsequence, {αξε} weakly converges to some ᾱ in Lλ. Moreover, there
holds

ξε(t) =

m∑
i=1

∫ t

0

αξ
ε

i (s)Xi(ξ
ε(s)) ds;

so, taking into account that ξε uniformly converge to ξ̄, we infer

ξ̄(t) =

m∑
i=1

∫ t

0

αξ̄i (s)Xi(ξ̄(s)) ds,

which means that ξ̄ is horizontal. Finally, smoothing the horizontal velocity αξ̄, we ob-
tain a family of smooth and horizontal curves uniformly approximating ξ̄. Therefore,
from now on, w.l.o.g. we assume that ξ̄ is admissible.

Step 2. Choose a partition of [0, 1] in intervals Ik = [tk − lk, tk + lk) and Jk =
[t′k − l′k, t′k + l′k) as in Lemma 6.2 and error δ for the velocity αξ̄. Denote by

B :=

N2⋃
k=1

Jk

the bad set of total length δ. By the a priori bounds on ‖α‖L1 (see Corollary 4.1),
assumption (L2), and the continuity of L (see Proposition 5.1), there exists r(δ)→ 0
as δ → 0 such that

Lε(x, y, t, ω) =

∫ 1

0

L
(
δ1/ε(ξ

ε(s)), αξ
ε

(s), ω
)
ds

≥
∫

[0,1]\B
L
(
δ1/ε(ξ

ε(s)), αξ
ε

(s), ω
)
ds− r(δ),(6.5) ∫ 1

0

L(αξ(s))ds ≥
∫

[0,1]\B
L(αξ(s))ds− r(δ).

Hence we can ignore the bad intervals.
As the number of good intervals N1 is fixed and finite and ξε uniformly converges

to ξ̄, we can choose ε sufficiently small such that

(6.6) max
k=1,...N1

sup
Ik

|Ik|−1dCC(ξε(s), ξ(s)) < δ.
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Fig. 2. This picture illustrates steps 3 and 4 of Lemma 6.3.

In the interval Ik, consider the constant velocity αξ(tk). By the continuity of L,
the integral on the right-hand side of (6.4) with α = αξ̄ can be approximated by any
Riemann sum, and the bad intervals can be ignored:

(6.7)

N1∑
k=1

|Ik|L
(
αξ(tk)

)
→
∫ 1

0

L(αξ(s))ds, as N1 → +∞.

Step 3. Let us consider now one “good” interval denoted by I = [t− `, t+ `] for

simplicity and consider the X -line through ξ(t) with velocity αξ(t), which we denote

by lξ (see Figure 2).

Let us consider a curve ξ
ε

with ξ
ε
(t− `) = lξ(t− `) and ξ

ε
(t+ `) = lξ(t+ `) which

is the minimizer of

Lε
(
lξ(t+ `), lξ(t− `), I, ω

)
=

∫ t+`

t−`
L
(
δ1/ε(ξ

ε
(s)), αξ

ε

(s), ω
)
ds,

where Lε (x, y, I, ω) is defined as in (3.4) with the infimum is over the admissible
curves with ξ(t− `) = y and ξ(t+ `) = x.

From Theorem 5.3, we can choose ε sufficiently small such that∫ t+`

t−`
L
(
δ1/ε(ξ

ε
(s)), αξ

ε

(s), ω
)
ds ≥ |I|L(αl

ξ

)− |I|δ.(6.8)

This can be done uniformly for all good intervals Ik as their number is already fixed.
Step 4. We now claim that

(6.9)

∫
I

L
(
δ1/ε(ξ

ε(s)), αξ
ε

(s), ω
)
ds

≥
∫
I

L
(
δ1/ε(ξ

ε
(s)), αξ

ε

(s), ω
)
ds− C

(
|I|+ ‖αξ‖L1(I)

)
δ.
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Let us now prove the claim (6.9): by Lemma 6.1 we know that

(6.10) sup
I
dCC(lξ, ξ) < C

(
|I|+ ‖αξ‖L1(I)

)
δ.

Consider the points

P1 := ξ
ε
(t−`) = lξ(t−`), P2 := ξε(t−`), P3 := ξε(t+`) P4 := ξ

ε
(t+`) = lξ(t+`)

(see Figure 2). Then by (6.6) and (6.10)

dCC(P1, P2) ≤ dCC(lξ(t−`), ξ(t−`))+dCC(ξ(t−`), ξε(t−`)) ≤ Cδ
(
|I|+ ‖αξ‖L1(I)

)
,

and analogously for dCC(P3, P4). By Lemmas 4.6 and 4.1 we have

Lε(P3, P2, I, ω) ≥ Lε(P4, P1, I, ω)− δC
(
|I|+ ‖αξ‖L1(I)

)
.

Since ξε is admissible for Lε(P3, P2, I, ω) then

Lε(P3, P2, I, ω) ≤
∫
I

L
(
δ1/ε(ξ

ε(s)), αξ
ε

(s), ω
)
ds.

Combining the last two inequalities, (6.9) is shown.
Step 5. Since the claim (6.9) is true for any of the good intervals Ik, we can easily

conclude. Indeed, using that ξε are minimizers of Lε(x, y, 1, ω) and subsequently (6.5),
Definition 2.4 and (6.8) we get

Lε(x, y, 1, ω) =

∫ 1

0

L
(
δ1/ε(ξ

ε(s)), αξ
ε

(s), ω
)
ds

≥
N1∑
k=1

∫
Ik

L
(
δ1/ε(ξ

ε(s)), αξ
ε

(s), ω
)
ds− r(δ)

≥
N1∑
k=1

∫
Ik

L
(
δ1/ε(ξ

ε

k(s)), αξ
ε
k(s), ω

)
ds−

N1∑
k=1

Cδ
(
|Ik|+ ‖αξ‖L1(Ik)

)
− r(δ)

≥
N1∑
k=1

∫
Ik

L
(
δ1/ε(ξ

ε

k(s)), αξ
ε
k(s), ω

)
ds− Cδ(1 + dCC(x, y))− r(δ)

≥
N1∑
k=1

|Ik|L
(
αl
ξ̄

(tk)
)
− Cδ(1 + dCC(x, y))− r(δ)

≥
∫ 1

0

L(αξ(s))ds− r(δ)− Cδ(1 + dCC(x, y))

−→
∫ 1

0

L(αξ(s))ds, as δ → 0.

In the following lemma we prove the upper bound for the limsup of Lε.

Lemma 6.4. Let us assume that L(x, q, ω) satisfies assumptions (L1)–(L4) and
(L6). Then locally uniformly in t > 0, x, y ∈ RN , and a.s. in ω ∈ Ω

(6.11) lim sup
ε→0+

Lε(x, y, t, ω) ≤ t inf
α∈Fty,x

∫ t

0

L(α(s))ds,
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where F ty,x is the set of all the measurable functions α : [0, t] → Rm such that the

corresponding horizontal curve ξα(s) joins y to x in time t and L(q) is the effective
Lagrangian defined by limit (5.13).

Proof. Without loss of generality we show the result for t = 1. Let us choose
α ∈ F1

y,x which realizes the infimum on the right-hand side of (6.11). We assume α
smooth; in fact we can uniformly approximate α by smooth horizontal velocities and
use the continuity of L.

We fix a partition π of the interval [0, 1] in n equal length intervals
(
i−1
n , in

)
and

we set

αi := α

(
2i− 1

2n

)
, i = 1, . . . , n.

We define the step-function

απ(s) := αi = constant ∀ s ∈
(
i− 1

n
,
i

n

)
for i = 1, . . . , n.

By Taylor expansion, we know that

(6.12) ‖α− απ‖L1(0,1) = O

(
1

n

)
.

Note that the constants in the Taylor expansion depend on higher derivatives of α,
but this is fixed throughout the proof; in particular it does not depend on ε. We define
the following sequence of points in RN :

z0 := y, zi := ζi(1/n),

where ζi :
[
0, 1

n

]
→ RN is the unique X -line starting from zi−1 with constant hori-

zontal velocity αi (i.e., ζ̇i(s) =
∑m
j=1 α

i
jXj(ζ

i(s)) for s ∈
[
0, 1

n

]
with ζi(0) = zi−1).

Note that zi ∈ Vzi−1 ∀i = 1, . . . , n.
Since in general X -lines do not minimize the integral functional between the

two points zi−1 and zi, we consider the curves ηεi (s) which are minimizers of
Lε
(
zi, zi−1, 1

n , ω
)
. We look at the two curves (see Figure 3):

ξ ∈ A1
y,x horizontal curve associated to the horizontal velocity α(s),

ηε ∈ A1
y,x′ horizontal curve defined as union of ηεi for i = 1, . . . , n

where x′ := ζn(1/n) satisfies, by (6.12) and Lemma 2.4,

(6.13) |x− x′| = O

(
1

n

)
.

Note that ηε is an admissible curve, i.e., ηε ∈ A1
y,x′ , but it may be not a minimizer

for Lε (x′, y, 1, ω). Moreover the curve ηε depends on α, on the partition π (i.e., on
n), and on ε; nevertheless these dependences do not influence our final estimate.
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Fig. 3. This picture illustrates the arguments of the proof of Lemma 6.4.

From (6.13) and the continuity of Lε in y, uniformly w.r.t. ε (see Theorem 4.1),
denoting by o(1) a function which goes to zero if n→ +∞, we get

Lε (x, y, 1, ω) = Lε (x′, y, 1, ω) + o(1)

≤
∫ 1

0

L
(
δ1/ε(η

ε(s)), αη
ε

(s), ω
)
ds+ o(1)

=

n∑
i=1

∫ 1/n

0

L
(
δ1/ε(η

ε
i (s)), α

ηεi (s), ω
)
ds+ o(1)

=

n∑
i=1

Lε
(
zi, zi−1,

1

n
, ω

)
+ o(1),(6.14)

where we have used the definition of ηε as union of minimizers for each interval of
the partition. Now we first choose n big enough that the o(1) term in the last line is
smaller than the desired error. In the next step we then choose ε depending on n.

Let us assume for the moment the following claim:

(6.15) Lε
(
zi, zi−1,

1

n
, ω

)
=

1

n

(
L(αi) + r(ε)

)
,

where r(ε) is a function which goes to zero if ε→ 0. Hence, by (6.14) and (6.15), we
get

Lε (x, y, 1, ω) ≤
n∑
i=1

1

n

(
L(αi) + r(ε)

)
+ o(1)

=

n∑
i=1

1

n
L(αi) + o

(
1

n

)
+ o(1)→

∫ 1

0

L(α(s))ds as n→ +∞.
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It remains only to prove (6.15). By stationarity (see also (5.16)) we have

Lε
(
zi, zi−1,

1

n
, ω

)
= Lε

(
−zi−1 ◦ zi, 0, 1

n
, τδ1/ε(zi−1)(ω)

)
.

Using the relation between the Euclidean distance and the CC distance and the fact
that X -lines are horizontal curves, we get

| − zi−1 ◦ zi| ≤ CdCC(zi−1, zi) ≤ C
∫ 1

n

0

|αi|ds = Ci
1

n
,

where Ci = C|αi|.
Then, up to a constant, we can write −zi−1 ◦ zi = z

n , where |z| ≤ 1 (Euclidean
norm in RN ). Setting z1 = πm(z) and using identity (5.16)

Lε
(
zi, zi−1,

1

n
, ω

)
= Lε

(
z

n
, 0,

1

n
, τδ1/ε(zi−1)(ω)

)
= εµ(−z1)

([
0,

1

εn

)
, τδ1/ε(zi−1)(ω)

)
=

1

n
(εn)µz1

([
0,

1

εn

)
, τδ1/ε(zi−1)(ω)

)
=

1

n

(
µ(z1) + r(ε)

)
=

1

n

(
L(αi) + r(ε)

)
,

where one can use the same argument as in the proof of Theorem 5.3 to show that
1
n (εn)µz1([0, 1

εn ), τδ1/ε(zi−1)(ω)) ≈ 1
n (εn)µz1([0, 1

εn ), ω), as ε→ 0+.

Combining Lemmas 6.3 and 6.4 and using Proposition 4.2 we are finally able to
prove our main convergence result.

Theorem 6.1. Let us assume that L(x, q, ω) satisfies assumptions (L1)–(L4) and
(L6).

1. Then

(6.16) lim
ε→0+

Lε(x, y, t, ω) = t inf
α∈Fty,x

∫ t

0

L(α(s))ds,

locally uniformly in t > 0 and x, y ∈ RN and almost surely ω ∈ Ω, where
F ty,x is the set of all the measurable functions α : [0, t] → Rm such that the
corresponding horizontal curve ξα(s) joins y to x in time t.

2. Given any g : RN → R satisfying (4.16) we have
(6.17)

lim
ε→0+

inf
y∈RN

[g(y) + Lε(x, y, t, ω)] = inf
y∈RN

[
g(y) + t inf

α∈Fty,x

∫ t

0

L(α(s))ds

]
,

locally uniformly in t > 0 and x ∈ RN and almost surely ω ∈ Ω.

7. Homogenization for the Hamilton–Jacobi problem. We want to use
Theorem 6.1 to derive the convergence of the viscosity solutions of problem (3.1) to
the unique solution of the deterministic problem (1.3). Our strategy is to use the
Hopf–Lax variational formula from [8].

The key point is the convexity of the effective Lagrangian L(q) defined in (5.13). In
the Euclidean case this is an easy consequence of the dynamic programming principle
but in our degenerate case this strategy fails since it is not possible to find three points
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related to a convex combination satisfying simultaneously the associated constraints.

Proposition 7.1. Let us suppose that L(x, q, ω) satisfies assumptions (L1)–(L4)
and (L6). Then L(p) defined in (5.13) is convex in Rm.

Proof. For the sake of simplicity, we prove the midpoint convexity (which is equiv-
alent to the convexity), i.e., we want to prove

(7.1) L

(
p+ q

2

)
≤ 1

2
L(p) +

1

2
L(q) ∀p, q ∈ Rm.

By definition of L we have that

L

(
p+ q

2

)
= lim
ε→0+

Lε
(
y
p+q

2 , 0, 1, ω
)

= lim
ε→0+

inf
ξ∈A1

0,y(p+q)/2

∫ 1

0

L
(
δ1/ε(ξ(s)), α

ξ(s), ω
)
ds,(7.2)

where y
p+q

2 = l(p+q)/2(1) and l(p+q)/2 is the X -line starting from 0 with horizontal
velocity p+q

2 . We define the curve ξn as the horizontal curve with ξn(0) = 0 and
horizontal velocity

αξn(s) =

{
p, if s ∈

[
i−1
2n ,

i
2n

]
and i even,

q, if s ∈
[
i−1
2n ,

i
2n

]
and i odd

for i = 1, . . . , 2n. We call xk = ξn( k
2n ), k = 0, . . . , 2n (see Figure 4). We observe that

(7.3) xi ∈ Vxi+1 ∀ i = 1, . . . , 2n.

We claim that

(7.4) |ξn(1)− y(p+q)/2| = O

(
1

n

)
,

where | · | denotes the Euclidean norm.
Assume for the moment that claim (7.4) is true. Then by the uniform continuity

of Lε (see Theorem 4.1) we can deduce

(7.5) Lε
(
y(p+q)/2, 0, 1, ω

)
= Lε

(
ξn(1), 0, 1, ω

)
+O

(
1

n

)
.

We consider now the curve ξεn which is the union of the curves ξεi,n defined in[
i−1
2n ,

i
2n

]
that are the minimizers for Lε

(
xi+1, xi,

1
2n , ω

)
. Observe that ξεn is an ad-

missible curve between 0 and ξn(1). Hence

Lε(ξn(1), 0, 1, ω) ≤
∫ 1

0

L
(
δ1/ε(ξ

ε
n(s)), αξ

ε
n(s), ω

)
ds

=
∑
i odd

∫ i
2n

i−1
2n

L
(
δ1/ε(ξ

ε
i,n(s)), αξ

ε
i,n(s), ω

)
ds

+
∑
i even

∫ i
2n

i−1
2n

L
(
δ1/ε(ξ

ε
i,n(s)), αξ

ε
i,n(s), ω

)
ds

=
∑
i odd

Lε
(
xi+1, xi,

1

2n
, ω

)
+
∑
i even

Lε
(
xi+1, xi,

1

2n
, ω

)
,(7.6)

where the last identity comes from the definition of ξεi,n.
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Fig. 4. This picture illustrates the arguments of the proof of Proposition 7.1.

From (7.3), we can apply (6.15) obtaining

(7.7) Lε
(
xi+1, xi,

1

2n
, ω

)
=


1

2n

(
L(p) + r(ε)

)
, if i is even,

1

2n

(
L(q) + r(ε)

)
, if i is odd,

where r(ε)→ 0 as ε→ 0+. By applying (7.2), (7.5), (7.6), (7.7) we have

L

(
p+ q

2

)
= lim
ε→0+

Lε
(
y
p+q

2 , 0, 1, ω
)

= lim
ε→0+

Lε
(
ξn(1), 0, 1, ω

)
+O

(
1

n

)
≤ lim
ε→0+

(∑
i odd

Lε
(
xi+1, xi,

1

2n
, ω

)
+
∑
i even

Lε
(
xi+1, xi,

1

2n
, ω

))
+O

(
1

n

)
= lim
ε→0+

(
1

2
L(p) +

1

2
L(q) + r(ε)

)
+O

(
1

n

)
.

Passing to the limits, we get (7.1).
Now it remains to prove claim (7.4). First we estimate the distance between x2

and l(p+q)/2(1/n). (Recall that x2 = ξn(2/2n) = ξn(1/n).) For a = (a1, . . . , am) ∈
Rm, we set Xa := a1X1 + · · · + amXm. Using the exponential coordinates, we can
write

x2 = exp

(
1

2n
Xp

)
◦ exp

(
1

2n
Xq

)
and

l(p+q)/2
(

1

n

)
= exp

(
1

n
X p+q

2

)
.
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The Baker–Campbell–Hausdorff formula [16] allows us to write

x2 = exp

(
1

2n
Xp

)
◦ exp

(
1

2n
Xq

)
=
∑
k1,k2

1

k1!k2!

(
1

2n
Xp

)k1
(

1

2n
Xq

)k2

.(7.8)

Moreover

l(p+q)/2
(

1

n

)
= exp

(
1

n
X p+q

2

)
=
∑
k

1

k!

(
1

2n
Xp+q

)k
.(7.9)

Hence considering the first three terms of expansions (7.8) and (7.9) we obtain that∣∣x2 − l(p+q)/2(1/n)
∣∣ = O(1/n2). Iteratively, we get

∣∣x2i − l(p+q)/2(i/n)
∣∣ = O(1/n2) +

iO(1/n2); in particular, since x2n = ξ(1) and y
p+q

2 = l(p+q)/2(1), for i = n we obtain
the claim (7.4).

We can now prove Theorem 3.2, i.e., the homogenization result for the noncoercive
Hamilton–Jacobi problem.

Proof of Theorem 3.2. Note that by Lemma 3.1, assumptions (H1)–(H4) imply
(L1)–(L4). By Theorem 3.1, the function uε(t, x, ω) in the left-hand side of (6.17) is
the unique viscosity solution of (3.1). We denote by ū the right-hand side of (6.17),
i.e.,

ū(t, x) := inf
y∈RN

[
g(y) + t inf

α∈Fty,x

∫ t

0

L(α(s))ds

]
.

We define the effective Hamiltonian H(q) := L
∗
(q). The convexity and the superlin-

earity of L (see Theorem 7.1 and Proposition 5.1) imply L(q) = (L
∗
)
∗
(q) = H

∗
(q). By

the Hopf–Lax formula in [8, Theorem 3.4], the function ū(t, x) is the unique viscosity
solution of (1.3). The convergence easily follows from (6.17).

8. Appendix. In this appendix we prove Theorem 3.1 on the well posedness of
problem (3.1).

Proposition 8.1. Under the assumptions of Theorem 3.1, let uε be the function
defined in (3.3). Then uε is uniformly continuous in [0, T ]× RN .

Proof. We want to prove that for any η > 0 there exists δ > 0 such that

(8.1) |uε(t, x, ω)− uε(s, y, ω)| < η, if |t− s|+ ‖ − y ◦ x‖CC < δ.

Step 1. We claim that for any η > 0 there exists δ > 0 such that

(8.2) |uε(t, x, ω)− uε(0, y, ω)| < η +m(dCC(x, y)) ∀t ∈ [0, δ],∀x, y ∈ RN .

Indeed, by definition of uε and (L2) we have

uε(t, x, ω)− uε(0, x, ω) ≤ Lε(x, x, t, ω) ≤
∫ t

0

L(δ1/ε(x), 0, ω)ds ≤ C1t.

On the other hand, by the assumption on g, for any η > 0 there exists y ∈ RN such
that

uε(t, x, ω)− uε(0, x, ω) ≥ −m(dCC(y, x)) + Lε(x, y, t, ω)− η.
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Moreover, by (L2), for any η there exists ξ ∈ Aty,x such that

Lε(x, y, t, ω) ≥
∫ t

0

C−1
1

(
|αξ(s)|λ − 1

)
ds− η ≥ −C−1

1 t− η.

By the last two inequalities and by (4.18), we get

uε(t, x, ω)− uε(0, x, ω)

≥ −m
(
C

1/λ
1 (‖uε‖∞ + ‖g‖∞ + C−1

1 t+ 1)1/λt1/λ−1

)
− C−1

1 t− 2η,

where the bound of ‖uε‖∞ is an easy consequence of Lemma 4.1. Hence, for t suffi-
ciently small and by the assumption on g, we get (8.2).

Step 2. We claim that, for any δ1 > 0 there exists mδ1 such that

(8.3) |uε(t, x, ω)− uε(s, x, ω)| < mδ1(|t− s|) ∀t, s ≥ δ1,∀x ∈ RN .

Indeed, for any η > 0 there exists y ∈ RN such that

uε(t, x, ω)− uε(s, x, ω) ≥ Lε(x, y, t, ω)− Lε(x, y, s, ω)− η.

The other inequality is similar. Using Lemma 4.4, we get (8.3).
Step 3. We claim that for any δ2 > 0 there exists mδ2 such that

(8.4) |uε(t, x, ω)− uε(t, y, ω)| < mδ2(‖y−1 ◦ x‖CC) ∀t ≥ δ2,∀x, y ∈ RN .

Indeed, arguing as in step 2, it is enough to prove

|Lε(x, z, t, ω)− Lε(y, z, t, ω)| ≤ mδ2(‖y−1 ◦ x‖CC).

Actually, adding and subtracting Lε(y, z, t+ ‖ − y ◦ x‖CC , ω), and using Lemma 4.2,
we can conclude (8.4).

Step 4. Without loss of generality assume s ≥ t and δ sufficiently small. For
0 ≤ t ≤ s ≤ δ, from step 1, we have

|uε(t, x, ω)− uε(s, y, ω)| ≤ 2η +mδ(dCC(x, y)).

For s > δ and |t− s| < δ̄ (with δ̄ < δ/2), by steps 2 and 3, we get

|uε(t, x, ω)− uε(s, y, ω)| ≤ mδ̄(‖ − y ◦ x‖CC + |t− s|).

To conclude it suffices to choose δ̄ sufficiently small.

Here we state the following result that will play a crucial role for the proof of
Theorem 3.1.

Lemma 8.1. For every R, T > 0 there exists µ = µ(T,R) > 0 such that for every
(t, x) ∈ (0, T )×BR(0) there holds

uε(t, x, ω) = inf
{
g(ξ(0)) +

∫ t

0

H∗
(
δ1/ε(ξ(s)), α

ξ(s), ω
)
ds
}
,

where the infimum is over all the α ∈ F tx with |αξ| ≤ µ(R, T ), where F tx is the set of
all the m-valued measurable functions α such that the corresponding horizontal curve
is ξα(s) with ξα(t) = x.
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Proof. The proof is the same as [8, Theorem 2.1] using [17, Theorem 7.4.6].

Finally we can prove Theorem 3.1.

Proof of Theorem 3.1. We only sketch the proof; for the detailed calculations we
refer the reader to [25, section 10.3.3] and to [8]. (See also [22, 33] for similar results.)
First we prove that uε is a solution of (3.1). We observe that by Lemma 8.1 uε

satisfies the following optimality condition: for any 0 ≤ h ≤ t we have

uε(t, x, ω) = inf

{∫ t

t−h
L
(
δ1/ε(ξ(s)), α

ξ(s), ω
)
ds+ uε(t− h, ξ(t− h), ω)

}
,

where the infimum is over all the α ∈ F tx with |αξ| ≤ µ(R, T ).
From assumption (L2), Proposition 4.1, and [25, Lemma 10.3.3], we get

‖uε‖∞ ≤ C for any compact K ⊂ RN , ‖uε‖W 1,∞([0,T ]×K) ≤ CK .

Following the same arguments of [25, Theorem 2, section 10.3.3] and [8], we get that
uε fulfills uε(0, x) = g(x) and it is a viscosity solution of

ut +H(x,Du) = 0,

where H(x,Du) = maxa∈Rm,|a|≤µ(R,T ){p · σ(x)a− L(x, a)}.
Arguing as in [8, equation (45) and the proof of Theorem 3.2] we get that, if u is

differentiable, then H(x,Du) = H(x, σDu). Applying this property to a smooth test
function, we conclude that uε is a viscosity solution of problem (3.1).

The uniqueness of the solution follows from the uniform continuity of uε (see
Proposition 8.1) and applying the result of Biroli [14, Theorem 4.4].
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