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Abstract
 In this study, we investigated the neural correlates of theBackground:

anticipatory activity of randomly presented faces and sounds of both high
and low arousal level by recording EEG activity with a high spatial
resolution EEG system.

 We preregistered the following three hypotheses: 1) a contingentMethods:
Negative Variation (CNV) difference in the amplitude voltage between
auditory vs faces stimuli; 2) a greater amplitude voltage in the CNV, in high
arousal stimuli vs low arousal stimuli, both in auditory and faces stimuli, in
the temporal  window from 0 to 1000 ms before the stimulus presentation;
3) in the time window from 0 to 1000 ms a sensory specific activation at the
brain source level in the temporal lobe and auditory cortex before the
presentation of an auditory stimulus and an activation of occipital area,
dedicated to the elaboration of visual stimuli, before the presentation of
faces .

Using a preregistered, hypothesis-driven approach, we found noResults: 
statistically significant differences in the CNV due to an overly conservative
correction for multiple comparisons for the control of Type I error. By
contrast, using a data-driven approach based on a machine learning
algorithm (Support Vector Machine), we found a significantly larger
amplitude in the occipital cluster of electrodes before the presentation of
faces with respect to sounds, along with a larger amplitude in the right
auditory cortex before the presentation of sounds with respect to faces.
Furthermore, we found greater CNV activity in the late prestimulus interval
for high vs. low-arousal sounds stimuli in the left centro-posterior scalp
regions.

 These findings, although preliminary, seem to support theConclusions:
hypothesis that the neurophysiological anticipatory activity of random
events is specifically driven by either the sensory characteristics or the
arousal level of future stimuli.
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Introduction
When we observe the world, reality is not always chaotic and 
unpredictable. Rather, it shows some spatiotemporal regularities.  
The capacity to extract these regularities is a fundamental 
survival function for an organism, since it allows for the fine-
grained, proactive control of resource allocation necessary for 
stimuli elaboration or action preparation. Taking advantage 
of these regularities, the brain building up inner models of  
external reality anticipating forthcoming events implementing 
its predictive aptitude by capitalizing on Bayesian computa-
tional architecture and, consequently, optimizing our behaviour 
over time (Friston, 2005; Mento, 2017; Mento & Vallesi, 2016;  
Mento et al., 2015).

This account posits the brain as a mechanism that makes con-
tinuous inferences about forthcoming stimuli on the basis  
of conditional probabilistic computations (Chater et al., 2006; 
Pouget et al., 2013) accomplished by exploiting the sensory 
contingencies provided by the external sensory environment  
and the internal representation of the events.

In the last decade, neuroimaging evidence has shown that the 
possibility of predicting the ‘what’, ‘when’, and ‘where’ of 
forthcoming events translates into anticipatory neural activ-
ity (Mento et al., 2015; Mento et al., 2018; Mento, 2017; Mento 
et al., 2013). Notably, the experimental paradigms of this  
literature took advantage of statistically predictable stim-
uli, where predictive information about stimulus identity and 
time–space features were provided by cue presentation. A con-
sistent finding reported in the literature is the observation of a  
sustained, slow event-related activity preceding the onset 
of predicted stimuli. This wave, known in literature as the 
Contingent Negative Variation (CNV; Rebert & Tecce,  
1973; Walter et al., 1964), has been interpreted as a general  
neural marker of anticipatory processes, including motor prepara-
tion, temporal expectancy, and temporal attention. Interestingly, 
the CNV is sensitive to the subjective (rather than objective)  
implementation of anticipatory processes (Mento et al., 2013; 
Trillenberg et al., 2000) in the context of temporally pre-
dictable events (Mento et al., 2015; Mento, 2017; Miniussi  
et al., 1999).

Recent studies explored the possibility of extending the study 
of anticipatory brain activity to statistically unpredictable 

stimuli (Duggan & Tressoldi, 2018; Duma et al., 2017;  
Mossbridge et al., 2012; Radin et al., 2011), more generally 
defined by Mossbridge et al. (2014) as Predictive Anticipa-
tory Activity (PPA). In our previous work (Duma et al., 2017), 
we investigated brain PPA phenomena in relation to the passive  
presentation of randomly presented car accidents com-
pared with safe journeys. The results showed a prestimulus  
greater CNV negativity amplitude for trials related to car 
crashes from those ending with no car accidents. These results  
suggested that statistically unpredictable events may nevertheless  
engage differential anticipatory neural activity. However, since  
the experimental design we employed in our previous study 
had possible methodological limitations in the implementation  
of a pseudo- rather than true-random trial sorting procedure, 
as well as in the use of a variable anticipatory time window, 
we designed a new paradigm to further address any possible  
procedural issues.

To address any possible methodological pitfalls, in the present 
work we used a trial randomization procedure mediated by a 
true random number generator. Unlike the implementation of 
a pseudo-random trial sorting procedure, this method ensures 
that the experimental conditions presented to participants 
are fully randomized, so that any possible bias arising from  
employing a seed-based trial selection can occur, including 
casual repetition of the same condition in many consecu-
tive trials. Indeed, this issue could result in the presence of  
possible biases conditioning both participants’ behavioural and 
neural correlates. Furthermore, to avoid any possible bias due 
to implicit temporal expectancy of stimuli induced by a variable  
prestimulus interval (i.e., hazard function (Mento et al., 
2015)), we purposely used a fixed prestimulus time window. 
As a second goal of the present study, we aimed at extending 
the knowledge about the nature of PPA phenomena, with the  
specific interest of investigating whether such phenomena 
are aspecific (i.e., independent from stimuli and task) or spe-
cific (i.e., different from stimulus type and task). To this end, 
in the current study, a group of healthy volunteers were asked 
to predict either the sensory category (i.e., visual or auditory) 
or the emotional meaning (i.e., low or high arousal level) of  
randomly delivered target stimuli in the context of both a  
passive and an active experimental task. Finally, in line with 
the methodological guidelines for increasing the reproduc-
ibility of scientific findings, the methodological procedure of  
this study was pre-registered.

Methods
Study pre-registration
The method of this study was registered before data collection  
and is available here: https://osf.io/uf59a 

Participants
Thirty healthy participants recruited from graduate and under-
graduate students of Padova University, with normal or  
corrected-to-normal vision participated in the experiment. Due to 
the high level of noise artefact, data from two participants were 
removed from the analysis. All participants received 10€ for  
their participation in the study. The study was reviewed 
and approved by the ethical committee of the School of  
Psychology of the University of Padua (Protocol No. 2278). 

      Amendments from Version 1

-We have added a new Table 1 reporting the means and standard 
deviations of epochs of each experimental condition across 
subjects.
-We have added more information related to the technical 
description of EEG recording and Events-Related-Potentials 
analysis.
-We have added ERP waveforms corresponding to the 
comparison Faces vs Sounds Passive Task and High vs. 
Low arousal stimuli in the active task in the Supplementary 
materials as Supplementary Figure 1a/1b and Supplementary 
Figure 2 respectively, available at: https://doi.org/10.6084/
m9.figshare.6874871.v6

Any further responses from the reviewers can be found at the 
end of the article
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Before the study, participants signed an informed consent in 
accordance with the principles expressed in the Declaration of  
Helsinki.

The sample size of this study was reduced with respect to what 
was declared in the pre-registration due to laboratory use limita-
tion. For this reason, we were only able to collect data from 30 
participants instead of the 36 declared. Furthermore two par-
ticipants were rejected because of technical problems during 
the EEG recording. The final sample consisted of 28 partici-
pants. This final sample reduced the preregistered statistical  
power of our planned data analyses from .90 to .82.

Experimental design
In the present experiment, we used two sensory categories of 
stimuli (i.e., visual and auditory), which were extracted from 
two standardized international archives. Visual stimuli consisted 
of pictures of 28 faces extracted from the NIMSTIM archive 
(Tottenham et al., 2009), whereas auditory stimuli consisted 
of 28 sounds chosen from the International Affective Digi-
tized Sounds (IADS) archive (Stevenson & James, 2008). 
For each sensory category, the stimuli were further extracted  
according to their arousal value. We selected 14 neutral faces 
and 14 fearful faces from the NIMSTIM inventory, and 14 
low- and 14 high-arousal sounds were selected from the  
IADS repertoire and balanced by arousal with the NIMSTIM  
stimuli set. These materials are available here: https://doi.
org/10.6084/m9.figshare.6874871.v3 (Tressoldi et al., 2018).

Experimental paradigm. All participants were presented with 
two different experimental tasks, which were delivered in 
separate blocks (see Figure 1). The first was a passive and 
the second was an active task preceded by a warm-up condi-
tion where the type of stimuli was anticipated in the cue signal.  
Both the block presentation order and the response button were 

counterbalanced between subjects to avoid possible response 
biases. The two tasks are described in the Figure 1.

Passive task. As shown in Figure 1, at the beginning of each 
trial, participants were presented with a warning signal, a fixa-
tion cross presented centrally on the screen for 300 ms. After 
that, a fixed 1000ms blank inter-stimulus interval (ISI) was 
delivered, followed by a 500ms target stimulus. The target  
stimulus could be either the picture of a face presented on the 
centre of the screen or a sound delivered bilaterally through two  
loudspeakers, with a 50% distribution. Half of the stimuli 
within each category were low-arousal and the other half were  
high-arousal, equally distributed. Participants were told that 
they had to guess which kind of stimulus they would be pre-
sented with. No behavioural responses were required until they  
actually received the stimulus target. At target onset, participants 
had to discriminate between visual or auditory stimuli by 
pressing two different buttons on the response box. The  
response buttons were counterbalanced across participants. 
After the response, the stimulus target disappeared and a blank 
screen was presented for a jittered duration between 1000 and  
1200 ms (inter-trial interval) before the beginning of the  
next trial.

Active task. In the active task, event sequence and timing were 
the same as those in the passive task. As illustrated in Figure 1, 
the only difference in comparison with the passive task was 
that, after the prestimulus ISI, participants were presented with 
a slide showing a central question mark. They were then asked 
to make an explicit choice about the sensory category of the  
upcoming stimulus by pressing the response box. This allowed 
us to obtain an overt behavioural measure of the anticipation 
of random events as the percentage of correct responses com-
pared to chance-level for each stimulus category. Immediately  
after participants’ response, stimuli were presented for 500 ms.  

Figure 1. Experimental tasks. The figure illustrates the sequence of events and the temporal trial structure relative to the passive (top) and 
the active (bottom) tasks, which were delivered in blocks. Within each task, the stimuli were randomly presented and equally distributed 
according to either sensory category (faces or sounds) and arousal level (high or low).
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As with the passive task, the response buttons were counterbal-
anced across participants.

A total of 200 trials sorted by stimulus category and arousal 
was presented in each task, for an experiment duration of 
about 18 minutes. In both tasks, stimuli presentation was fully  
randomized. Specifically, the trial-type randomization was  
generated online during the ISI by using a true random number 
generator (TrueRNG-2™). The TrueRNG hardware uses the 
avalanche effect in a semiconductor junction to generate true  
random numbers. Randomization via an external TrueRNG device 
does not rely on seed-based randomization algorithms, but on 
current fluctuations within the device, assuring a true random  
distribution. The RNG was interfaced with the stimuli presentation 
software E-Prime™ 2.0.8.90.

EEG recordings
During the entire experiment, the EEG signal was continu-
ously recorded using a Geodesic high-density EEG system 
(EGI GES-300) through a pre-cabled 128-channel HydroCel  
Geodesic Sensor Net (HCGSN-128) and referenced to the vertex. 
(Cz). An electrode consists of three linked components: a silver 
chloride–plated carbon-fiber pellet, connected by a 1-meter-long 
shielded wire to a Hypertronics-compatible, goldplated pin (Elec-
trical Geodesic, Inc.). The amplifier records in DC at 24-bit, 
applying a gain of 20000. The sampling rate was 500 Hz. 
The impedance was kept below 60 kΩ for each sensor. To 
reduce the presence of EOG artefacts, subjects were instructed  
to limit both eye blinks and eye movements as much as possible.

Pre-registered data analysis
Further detail about analysis, including removal of artefacts,  
is available from the preregistration record: https://osf.io/uf59a.

Event-related potential (ERP) analysis. The ERP analysis 
was performed with Matlab toolbox EEGLAB (Delorme & 
Makeig, 2004). The continuous EEG signal was off-line band-
pass filtered (0.1 - 45Hz) using a Hamming windowed sinc 
finite impulse response filter (filter order = 16500) and down-
sampled at 250 Hz. The EEG was segmented offline starting 
from 200 ms before the cue onset and ending 300 ms after the  
stimulus onset. The length of the analysed epoch was 1600 ms,  
starting from cue onset and included 300 ms of cue/fixation 
cross presentation, 1000 ms of ISI, and 300 ms from stimu-
lus onset. Our original hypothesis, driven by the results of our 
previous study (Duma et al., 2017), was that PPA phenomena 

may rely on a prestimulus sustained ERP activity, presumably  
resulting in the amplitude modulation of the CNV component. 
For this reason, our confirmatory, pre-planned analysis purposely 
targeted the temporal window between 300 ms and 1300 ms  
from trial onset.

All epochs were visually inspected to remove bad channels 
and rare artefacts. Artefact-reduced data were then subjected to 
Independent Component Analysis (Stone, 2002). All independ-
ent components were visually inspected, and those related to 
eye blinks, eye movements, and muscle artefacts according to 
their morphology and scalp distribution were discarded. The 
remaining components were then projected back to the electrode  
space to obtain cleaner EEG epochs. The remaining epochs 
containing excessive noise or drift (±100 µV at any electrode) 
were rejected. After this step, removed bad channels were 
reconstructed. Data were then re-referenced to the average of 
all electrodes, and the signal was aligned to the baseline by  
subtracting the mean signal amplitude in the pre-stimulus interval.  
Subject average and grand average ERPs were generated f 
or each electrode site and experimental condition. In the 
Table 1, we report the average epochs and standard deviation  
for each experimental condition across participants. 

To provide a spatial representation of the anticipatory 
ERP activity, we used the Brainstorm software’s dedicated  
software (Tadel et al., 2011). This allowed us to extract  
videos of obtained time-resolved scalp map projections of the  
grand average ERP activity from 0 ms to 1350ms.

Brain source analysis. Baseline corrected epochs (-200 to 0 ms)  
were imported to Brainstorm software (Tadel et al., 2011) 
with the purpose of reconstructing the cortical generators of 
pre-stimulus ERP activity. Conductive head volume was mod-
elled according to the Boundary Element Method (BEM) 
using Open MEEG toolbox (Gramfort et al., 2010; Kybic  
et al., 2005). The solution space was constrained to the  
cerebral cortex, which was modelled as a three-dimensional 
grid of 15002 vertices. Furthermore, the inverse transforma-
tion was applied to the Montreal Neurological Institute (MNI)  
canonical mesh (http://brainmap.org/training/BrettTransform.html)  
of the cortex to approximate real anatomy. The EEG sensor  
positions were co-registered with the default anatomical mesh 
by employing rigid rotations and translations of digitized  
landmarks (anterior and posterior commissure, interhemi-
spheric scissure, nasion, and left and right tragus). The 

Table 1. Mean and standard deviation of epochs of each experimental condition across 
subjects.

Faces 
(Low Arousal)

Faces 
(High Arousal)

Sounds 
(Low Arousal)

Sounds 
(High Arousal)

Passive Task 46.61 (6.40) 42.97(4.03) 46.78(5.93) 45.78(7.07) 

Active Task 45.18(7.24) 44.25(7.19) 45.14(7.61) 43.41(6.60) 

Faces (total) Sounds (Total) 

Passive Task 89.55(7.33) 92.55(8.41) 

Active Task 90.44(10.20) 99.44(10.72) 
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inverse modelling was based on sLORETA implemented 
as a routine of the Brainstorm platform. A noise covariance  
matrix was generated for each participant based on the aver-
age baseline time window. For each participant, the sources 
were projected using the standard anatomical template provided 
by the MNI, and their activity was transformed in Z scores  
relative to the baseline.

ERP statistical analysis. We compared face vs. sound pre-stimulus  
ERP activity (300-1300ms) at the sensor level, including all 128 
electrodes. Moreover, to further address the role of arousal in 
anticipation of random events, we also compared the high- and 
low-arousal stimuli within each sensory category. Given that 
a 128-channel recording system and a time resolution of 2ms  
(500 Hz) were employed, performing a systematic comparison of 
all samples present a severe risk of false positives. Hence, we used 
a non-parametric, mass-univariate statistical approach based on  
paired t-test permutations (Groppe et al., 2011) already employed 
by our group in previous ERP studies (Duma et al., 2017; Mento  
et al., 2018; Mento, 2017; Mento & Vallesi, 2016; Mento & Valenza, 
2016). Specifically, 1000 Monte Carlo permutations with cluster 
correction were applied, using Fieldtrip (Oostenveld et al., 2011) 
functions, implemented in Brainstorm.

Exploratory analysis. The above-mentioned statistical analy-
ses were preregistered and hypothesis driven. We expected to 
find that the presence of anticipatory effects of random stimuli 
was reflected in an amplitude change of the CNV component 
elicited during the ISI. However, it should be noted that the real 
nature of anticipatory brain activity of statistically unpredictable 
stimuli has not been fully explored. Hence, it is possible that the  
exact spatial and temporal locus of PPA effects could be outside 
the time windows expected based on previous evidence. Thus, 
while the use of a confirmatory approach increases the reli-
ability and reproducibility of the results, it may exclude possible  
interesting effects extending over temporal windows or spatial 
areas originally ignored in the pre-declared analyses. For this 
reason, we implemented additional exploratory analyses extend-
ing the epoch of interest to the entire pre-stimulus time window 
(i.e., from the onset of the fixation cross to the end of stimu-
lus presentation) with the aim of looking for possible earlier  
effects than those expected. To test for any data-driven  
difference between experimental conditions, a Support  
Vector Machine (SVM) analysis was performed. The SVM  
belongs to the class of supervised machine learning models.  
Given a set of training data, in which the two categories  
are labelled, the SVM algorithm generates a model that is 
able to assign new examples to one category or the other. The  
K-folds cross-validation technique implemented in Brainstorm  
(Tadel et al., 2011) has been used to validate the SVM 
model using the ERP of each subject as data. Cross- 
validation is a resampling procedure for model selection.  
K-fold approach ‘involves randomly dividing the set of observa-
tions into k groups, or folds, of approximately equal size. The 
first fold is treated as a validation set, and the method is fit on the  
remaining k − 1 folds’ (James et al., 2013). For each task, we 
contrasted face and sound stimuli and high- and low-arousal 
stimuli separately within each stimulus category. The results of 
the SVM approach are expressed as the dynamic, time-resolved 
evolution of the discrimination accuracy between two categories.  

It worth mentioning that Machine Learning (ML) approach 
with EEG signal shows different results based one the features 
of the EEG signal to classify, the feature selection criterion  
and the classifier algorithm (Lotte et al., 2007). Moreover, to the 
best of our knowledge, ML approach have never been applied 
to classify brain activity for statistical unpredictable stimu-
lus presentation. For these reasons, we tested different cut-off  
frequency (20Hz, 10Hz, 7Hz, 5Hz, 4Hz, and 3Hz) in order 
to understand which frequency maximized the classification  
accuracy of the algorithm.

Results
Behavioural findings
The descriptive statistics relative to the percentages of the  
correct predictions of faces and sounds in the active block are  
reported in Table 2.

Sensor-level ERP
The mean number of artefact-free trials per subject accepted 
for averaging was comparable both in the passive (Faces: 
90 ± 7.79; Sounds: 92 ± 9.3) as well as in the active (Faces: 
90.60 ± 10.1; Sounds: 99 ± 10) task. Likewise, the number 
of high- and low-arousal stimuli within each stimulus cat-
egory was comparable both in the passive (Low Arousal Faces:  
46.6 ± 6.34; High Arousal Faces: 43.4 ± 4.52; Low Arousal 
Sounds: 46.5 ± 6.6; High Arousal Sounds: 45.67 ± 6.83) and 
active task (Low Arousal Faces: 46.21 ± 7.6; High Arousal Faces: 
44.4 ± 6.8, Low Arousal Sounds: 45.35 ± 7.57; High Arousal 
Sounds: 43.68 ± 6.56). This confirmed that the true-random  
trial sorting procedure was effective in generating an equiva-
lent number of trials per condition, ensuring a comparable  
ERP signal-to-noise ratio.

As expected based on previous literature (Mento et al., 2013;  
Walter et al., 1964), the visual inspection of ERP waveforms 
revealed the presence of a reliable CNV component in all tasks. 
This component was represented as an increase in fronto- 
central negativity about 500 ms from trial onset and lasting for  
the full duration of the ISI duration until stimulus onset. The 
topographical distribution of this activity for each task is shown  
in Figure 2 and Figure 3 for face vs. sound and high-  

Table 2. Means and 
standard deviations 
of the percentages 
of correct faces and 
sounds predictions.

Faces Sounds

Mean 52.6 51.0

SD 5.7 5.7

The inferential statistics based 
on a one-tailed, one-sample 
t-test with the null hypothesis 
of 50% corresponding to 
the chance level yielded the 
following results: Faces, t-test = 
2.3; p = .01; effect size d = .45; 
95% CI = .019 - .85; Sounds, 
t-test = .97; p = .16; effect size 
d = .19; 95% CI = -.20 - .60.

Page 6 of 23

F1000Research 2019, 8:1508 Last updated: 05 FEB 2020



vs. low-arousal contrasts, respectively (see also https://doi.
org/10.6084/m9.figshare.6874871.v3 (Tressoldi et al., 2018) for 
a time-resolved dynamic spatial representation of the CNV over  
the whole scalp).

Faces vs. sounds
The visual inspection of the high scalp-resolution maps obtained 
by averaging the CNV time window (i.e., 300–1300ms) 
showed prestimulus differences in the topographical distribu-
tion between faces and sounds, with a greater fronto-central  
negativity for face type stimuli (Figure 2). This difference was  
less evident in the active block.

High- vs. low-arousal stimuli
Concerning arousal level, the scalp distribution maps displayed 
an increase in the fronto-central negativity for high-arousal 

face stimuli compared to low-arousal stimuli in the passive task, 
as well as a differential map localization of the CNV between 
high- and low-arousal sound stimuli. Notably, this brain activ-
ity pattern was not consistent across tasks. In the active task,  
low- and high- arousal stimuli elicited a comparable fronto-
central negativity, although a larger posterior positivity was  
evident for low-arousal face and high-arousal sound (Figure 3).

Although the visual inspection of the spatial maps revealed 
qualitative topographical differences, in none of the two tasks 
did the non-parametric, permutation analyses performed in the 
pre-registered anticipatory epoch (300–1300ms from warning 
onset) reveal statistically significant effects, whether when com-
paring stimulus categories or when contrasting stimuli arousal  
within categories.

A possible explanation of the lack of significant statistical  
corroboration of visual differences may be that mass univari-
ate statistical tests are strongly sensitive to the presence of 
random factors, as in the case of including the whole spatial  
information (128 electrodes). This may ultimately result in 
excluding experimental effects strictly localized in specific 
scalp regions or temporal windows. As mentioned above, the 
hypotheses about the spatio-temporal properties of PPA induced 
by the present experimental manipulations were driven by  
our previous study (Duma et al., 2017), which showed a broad 
fronto-central and long lasting CNV modulation in antici-
pation of random simulated car accidents. However, in that 
study, we used a low spatial resolution EEG system (32 vs.  
128 channels) as well as a lower signal acquisition sampling 
rate (i.e., 250 vs. 500 Hz). In hindsight, this methodological  
difference may explain the disappearance of significant results 
due to a strong multiple-comparison correction. In line with this  
possible explanation, we observed that the fronto-central  
electrode activity in both tasks showed significant modulatory 
effects when permutations were performed without applying  
cluster-based correction for controlling Type 1 error.

Source level results
Our pre-registered analyses included the reconstruction of 
the source level maps. Although the massive cluster-based 
correction for multiple comparisons did not yield statisti-
cally significant observed differences between the conditions,  
we report the cortex activation results in Figure 4.

From the cortical source map reconstruction, it is possible to 
identify a common activation for both tasks and stimulus cat-
egories in the superior frontal gyrus bilaterally, namely the Sup-
plementary Motor Area that in literature has been identified 
as one of the most reliable neural generators of CNV (Mento  
et al., 2013; Mento et al., 2015; Mento, 2017). In addition 
to this, the cortical maps suggest the possible presence of  
stimulus-driven differences in primary sensory areas. In spite 
of this, the source-level results can be considered merely 
descriptive, rather than offering reliable hints for any inferen-
tial reasoning. In fact, considering the absence of statistically  
significant results at the sensor level, any strong interpreta-
tion from source space findings is to be discouraged as a  
precaution. While bearing these methodological issues in mind, 

Figure 2. Scalp maps of the mean activity in the 300–1300 ms 
prestimulus time window in passive (central column) and active 
(right column) tasks for face (first row) and sound (second row) 
stimuli after collapsing the arousal level.

Figure 3. Scalp map mean activity in the 300 – 1300ms  
prestimulus window in the passive (left column) and active 
(right column) task for faces and sound (high and low  
arousal, third and fourth row, respectively).
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one should nonetheless take into account that both sensor- and  
source-level descriptive results could be deemed suggestive of 
the possible presence of subtle effects to be further explored 
with ad-hoc analyses. To follow up on this indication, we  
performed additional exploratory statistical analyses extending 
over earlier temporal windows in an attempt to specifically 
focus on the possible presence of specific, fine-grained  
experimental effects.

Exploratory results
Support vector machine results. The data were analyzed 
with SVM algorithm by applying different exploratory  
frequency thresholds (20Hz, 10Hz, 7Hz, 5Hz, 4Hz, and 3Hz, 
with a folding parameter of 5). The best algorithm perform-
ance in terms of experimental condition discrimination was 
obtained by applying a 4 Hz threshold, which was then set as  
the target SVM frequency. As shown in Figure 6, the 
application of SVM in the passive task succeeded in  
discriminating between Face and Sound in the time window  
100–300ms, reaching a discrimination accuracy value of 71.43%  
(see Figure 5).

In the active task, the SVM was able to correctly differ-
entiate between high- and low-arousal sounds, reaching a 
decoding accuracy of 68%, but in a later temporal window,  
between 1100 and 1300ms (see Figure 6).

To statistically confirm the SVM findings while accounting 
for all spatial information, we applied cluster-based permuta-
tion statistics taking into account all 128 channels, this time  
targeting the specific contrasts and temporal windows indicated  
by the SVM algorithm as exhibiting effects.

Concerning the passive task, the results showed a bilateral  
posterior significant cluster of electrodes (p = .01966, cluster  
statistic = 39, cluster size = 28) when we compared face and 
sound stimuli in the 100–300ms time window. Concerning the 
active task, we found a significant left centro-posterior cluster  
(p = .047, cluster statistic = 25, cluster size = 18) when high-
arousal sounds are compared to low-arousal sounds. These  
differences are presented in Figure 7. The ERP waveforms 
corresponding to the comparison Faces vs Sounds Passive 
Task and High vs. Low arousal stimuli in the active task have 
been added in the Supplementary material as Supplementary  
Figure 1 and Supplementary Figure 2 respectively available at:  
https://doi.org/10.6084/m9.figshare.6874871.v6.

SVM guided source level
To further address the functional nature of these phenom-
ena, we performed the reconstruction of the cortical source of 
both effects described above. Both the source-level topologi-
cal distribution (source mean activity between 300–1300ms) 
and temporal evolution over the whole prestimulus epoch are  
depicted in Figure 8.

Relative to the early anticipatory effect, we observed a higher 
recruitment of the occipital–parietal left cortical regions,  
especially the lateral occipital gyrus, which was more activated  
before the presentation of faces regardless of the arousal they 
expressed. The visual inspection of the temporal dynam-
ics showed that this region is highly activated at about 200 ms  
from the presentation of the fixation cross when a face was 
presented. No other relevant modulations are present in the  
late prestimulus interval spanning the CNV timing. A second 
remarkable finding was a larger recruitment of neural activ-
ity in the right superior temporal gyrus, again at about 200ms  
when a sound was presented. Both of the above findings  
corroborate our original, pre-declared hypothesis that PPA brain 
activity is category-dependent, since it engages in the same  
primary sensory areas that will be activated after target  
presentation. In other words, the anticipation of a face  
pre-activates visual occipital areas lefts lateralized, whereas the  
anticipation of a sound pre-activates auditory temporal areas  
more lateralized in the right hemisphere.

When performed on the second temporal window showing late 
prestimulus ERP amplitude modulation between high- and  
low-arousal auditory stimuli in the active task, the cortical recon-
struction showed that high-arousal stimuli were preceded by 
the recruitment of a broader cortical network as compared to  
low-arousal stimuli. Indeed, in both cases, the fronto-central 
areas around the SMA were commonly activated. However, 
when the fixation was actually followed by the presentation of  
high-arousal stimuli, we observed an additional involvement  
of the left superior parietal area, maximally expressed between 
1100 and 1300ms from its onset (see Figure 9).

Discussion
In a recent study (Duma et al., 2017), we reported evidence of 
differential anticipatory brain activity preceding unpredictable,  

Figure 4. Normalized source maps of the mean activity in the 
pre-stimulus time window (between 300–1300ms) relatively to 
each task and condition.
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Figure 5. Support Vector Machine decoding accuracy in time in the passive task.

simulated car crashes or safe journeys. Here, we sought 
to further investigate the evidence of psychophysiological  
predictive activity (PPA; Mossbridge et al., 2014) of random  
events while further ruling out potential methodological  
shortcomings due to the randomization process and stimu-
lus timing. As a general consideration, it must be taken into  
account that the available evidence in existing literature about 
the neurophysiological mechanisms underpinning the antici-
pation of random events is limited. Hence, it is difficult to  
generate clear and reliable hypotheses with regard to the spatial 
and temporal neural locus of such phenomena. Notwithstand-
ing this caveat, a commonly accepted idea is that if the brain is 
able to anticipate statistically unpredictable random stimuli,  
different forthcoming stimuli categories should rely on specific 
and dissociable anticipatory neural patterns. More precisely,  
this anticipatory effect might be reflected in the pre-activation 

of the brain regions that subtend the elaboration of the physical 
features of upcoming stimuli (e.g., a pre-activation of the audi-
tory cortical regions preceding the onset of a sound as well as 
of visual regions preceding face presentation). Following this 
line of reasoning in our previous work, we had argued that the  
capability of anticipating potentially threatening events (e.g. 
simulated car accidents) may result in the mobilization of 
psychophysical resources to implement a possible reaction,  
this mechanism putatively playing a key role in survival.

Based on the above assumptions, the aim of the present study 
was two-fold. On the one hand, we tried to address some  
potential methodological issues that may have somehow biased 
our previous study. These included either the implementation of a 
pseudo-random instead of truly random trial sorting procedure or 
the use of a variable temporal trial structure. On the other hand, 
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Figure 6. Support Vector Machine Decoding accuracy in time in the active task.
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Figure 7. Statistically significant differences in the 100–300ms time window. a) in the occipital cluster for face vs sound stimuli  
comparison in the passive task; b) in the parietal cluster for high- vs low-arousal sound comparison in the active task.
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Figure 8. The source activations represent the mean activity in the source space between 100–300ms (neutral fixation cross time 
window). The time series below represent the time evolution of the source activation, highlighting the difference between 100–300ms (blue 
rectangle), respectively of the lateral occipital left (on the left) and superior temporal right (on the right).

we tried to extend our previous results into other stimuli category  
with the aim of deepening the understanding of the sources  
of anticipatory brain activity of randomly presented stimuli.

To address these goals in the present study, we recorded the 
high spatial resolution EEG activity when presenting two dif-
ferent stimulus categories in a random, unpredictable sequen-
tial order. These included pictures of faces and sounds as visual 
and auditory sensory categories, respectively. Moreover, we 
further manipulated the psychophysiological activation mean-
ing of those categories by matching them by arousal level  
(high or low). All stimuli were randomly presented by interfacing 
with a true random number generator. As in our original hypoth-
esis, we expected to identify at the EEG sensor level a stimulus 
type and/or arousal level dependent difference during the pres-
timulus time window. Specifically, following our pre-registered 
hypothesis we expected to observe some stimulus-driven  
amplitude differential effects arising from about 1000ms before 
stimulus onset. Moreover, we hypothesized that such differ-
ences may stem from specific neural patterns mimicking the 
sensory nature of the stimulus. That is, we expected to observe 
source-level pre-activation of visual cortical areas before  
faces and pre-activation of auditory cortical areas before sounds.

The cluster-based permutation analyses of the target pre-stimulus  
time window (i.e., 300–1300ms from trial onset) showed 
only a marginally significant CNV modulation due to experi-
mental manipulation. Indeed, the application of a massive  
cluster-based multiple-comparison correction taking into account 
the whole spatial information (128 electrodes) as well as a  

huge temporal window (as long as 1 second, i.e., between 300 
and 1300ms from trial onset) did not confirm this effect from a  
statistically point of view.

As mentioned above, a possible explanation for this null effect 
is that the implementation of a whole-scalp analysis may have 
been too conservative for a subtle experimental effects. In 
fact, in our previous study (Duma et al., 2017) we used a lower  
resolution EEG system (32 electrodes), which ultimately resulted 
in a considerably smaller number of multiple comparisons. In 
other words, the analysis of a large, complex spatiotemporal  
dataset may have requested a stronger statistical power.

However, we decided to further analyse our data by apply-
ing an exploratory approach. To this purpose we used an SVM 
as a machine-learning classificatory algorithm. In the passive  
task, this analysis revealed a data-driven discrimination  
accuracy of 71.43% between visual and auditory stimuli which 
occurred in an early temporal window (100–300ms from  
trial onset). In the active task, the SVM algorithm revealed 
a later data-driven effect (maximum peak 68%) spanning in 
the late CNV range (1100–1300ms from trial onset), which 
was specific for the arousal level. It should be underlined that 
SVM results have been used as a guide indicating in which  
conditions and temporal windows focusing the analysis. These 
results were further confirmed by a cluster-based permutation  
statistics, which were performed targeting the specific tem-
poral windows identified by the SVM. In fact, by applying  
cluster-based permutation statistics over the temporal window  
(100–300ms) and conditions (passive face vs. sound), as  
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evidenced by SVM results, we observed a significant bilateral 
occipital cluster of electrodes showing larger amplitude when the 
fixation cross at trial onset was followed by visual than auditory 
stimuli. These prestimulus activities were supported by different  
cortical networks. Indeed, we found that the visual areas 
(i.e., the left lateral occipital lobe) were more activated at 
about 200ms from trial onset in trials displaying faces than 
in those delivering sounds. Differently the right auditory  
cortex was more activated in trials containing sounds than in  
those delivering faces.

Additionally, we found that in the active task when  
participants were explicitly asked to guess the category of the  

forthcoming stimulus (face or sound) the percentage of correct 
responses (52%) was significantly higher than chance level. This  
behavioural finding was accompanied by a larger CNV  
activity in the late prestimulus interval (1100–1300ms) for  
high- vs. low-arousal stimuli. This effect was localized in the left  
centro-posterior scalp regions and originated from a specific  
pre-activation of the left superior parietal cortex, which showed 
a larger sustained activity before high-arousal stimuli in the 
late prestimulus interval. Although the exact functional role  
of the superior parietal cortex in the anticipation of random, 
high-arousal sounds is not well understood on the basis of  
current scanty literature, a possible generic explanation may 
maintain that this region is involved in the pre-allocation of  

Figure 9. Mean activity in 1100–1300ms time window of high- and low-arousal sound stimuli in the active block. Below in the figure, it 
is represented the time course of the superior parietal left area of the Desikan-Killaney atlas.
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cognitive resources needed to process predicted high-arousal  
stimuli.

Although obtained by exploratory, rather than originally planned, 
confirmatory hypotheses, these results are in line with the  
expectations of a stimulus-dependent pre-activation of those 
brain regions that will be engaged in processing the upcoming  
stimulus.

While we feel reasonably confident in excluding that the pres-
ence of anticipatory effects of random events may have been 
biased by possible methodological shortcomings, the interpre-
tation of the possible nature of such phenomena is still debated. 
In line with one of the most shared theoretical accounts, our 
results may be explained in the theoretical framework of 
the Predictive Anticipatory Activity (PAA) of Mossbridge  
et al. (2014). The underlying assumption of this kind of empiri-
cal evidence maintains that PAA might be thought of as an  
unconscious anticipation of a conscious future events, suggest-
ing the possibility of quantum-like temporal entanglement effects 
in human physiological processes (Fisher, 2015; Hameroff,  
2012; Jedlicka, 2017; Tressoldi et al., 2015). The endorse-
ment of quantum-like phenomena as possible mediating mecha-
nisms of physiological processes taking place in random event  
prediction, implies the possibility of temporal symmetry in the 
interpretation of reality (Reznik & Aharonov, 1995) or even  
possible retrocausal effects (Ma et al., 2012).

Whatever the specific physical and physiological nature of 
anticipatory mechanisms, which is beyond the original purpose 
of the present study, we report a methodologically-controlled 
and replicable experimental setting that suggests the reliability  
of PPA phenomena. To the best of our knowledge, this 
is the first work in which advanced techniques, such as  
high-spatial resolution EEG and source reconstruction, 
have been applied to the investigation of PPA phenomena in  
combination with the implementation of both confirmatory 
and exploratory methodological approaches. This allowed us 
to present new data complementing previous evidence because  
we argue that PPA phenomena may be driven by specific brain 
processes, which involves discrete brain areas according to the  
sensorial category of the upcoming stimulus.

In scientific literature, criticism have been raised regarding 
the anticipatory effects for statistically unpredictable stim-
uli (Galak et al., 2012; Ritchie et al., 2012; Wagenmakers 
et al., 2011), criticizing the findings reported by Bem (2011). 
Nonetheless, we believe that those criticisms cannot be 
related to our work, both for theoretical and methodological  
reasons. First, Bem’s results were referred to the so called ‘Ret-
roactive Facilitation of Recall’. In fact, as stated by the author, 
in his experimental task “Participants were first shown a set 
of words and given a free recall test of those words. They were 
then given a set of practice exercises on a randomly selected 
subset of those words. The psi hypothesis was that the prac-
tice exercises would retroactively facilitate the recall of those  
words, and, hence, participants would recall more of the to-be-
practiced words than the unpracticed words” (Bem, 2011). By 
contrast, our theoretical framework emerges from the already 
published results of Duma et al., 2017, Mossbridge et al. (2012), 

Mossbridge et al. (2014), and Radin et al. (2011), who investigated  
physiological activity (EEG, EMG, pupillary response) before 
stimuli randomly presented, finding positive results. Therefore, 
considering the evidence already published, and the evident  
difference between Bem’s study and the one we are presenting, 
both in the type of measures (behavioural vs. electrophysiologi-
cal), and the experimental paradigm (words recall vs. face/sound 
passive presentation), we believe that the possible criticisms raised 
by the abovementioned authors cannot be by default applied  
to all the studies investigating anticipatory phenomena, including 
the present one.

We are aware that the present topic needs additional confirms 
from scientific literature. For this reason, we believe that the 
present results may be a stimulus to other researchers to inves-
tigate, with a rigorous and fully reproducible methodological 
approach, the real nature of anticipatory effects for statistically  
unpredictable stimuli, deepening in this way our understanding.

For example, future replications of the present study may 
include single-subject MRI scans with the objective of localizing 
a single subject’s visual and auditory cortex, using those 
areas as ROI to be entered in a multivariate statistic approach.  
Taking in account the growing body of literature providing  
experimental results to the human capability of anticipating  
randomly presented stimuli, we believe that this topic deserves 
a precise and rigorous scientific investigation, as it happens 
for all cognitive human activities, in order to understand  
this controversial but nevertheless fascinating phenomena.

Data availability
Underlying data
Figshare: EEG anticipation of random high and low arousal  
faces and sounds, https://doi.org/10.6084/m9.figshare.6874871.v6  
(Tressoldi et al., 2018).

This project contains that following underlying data:
•    EEG metafile;

•    EEG data related to the Passive, Active and Predictive  
conditions;

•    High (H) and Low (L) arousal visual and auditory stimuli;

•    Video clips of the EEG activity before stimulus  
presentation.

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).

NIMSTIM archive materials available from http://www. 
macbrain.org/resources.htm. Registration and acceptance of the 
terms and conditions of the website must be completed in order  
to use the stimulus set.

International Affective Digitized Sounds (IADS) archive  
materials available from: https://csea.phhp.ufl.edu/media/ 
iadsmessage.html. Those wishing to use these materials must  
submit the IADS Researcher Information Form and sign the IADS 
User Agreement.
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Thank you for your detailed and thoughtful responses. Really appreciated.
It is great to see the kind of electrodes that were used and that DC amplifiers were in charge of amplifying
their signals, as is appropriate for getting CNVs, which are mostly slow negative drifts having close to zero
Hertz frequency.

Unfortunately, the limit of the digital high-pass filter was set at 0.1 Hz which is not great for this kind of
frequency. Data have to be reprocessed using 0.01 Hz or even smaller. I guarantee CNVs will be larger.

CNVs are the largest ERP ever found. They can sometimes be seen on the raw EEG of some
participants, as their amplitude can be greater than 20 microvolts (thus,   greater than what is in themuch
supplementary material of the version 2 of that paper). To this extent, CNVs require much fewer trials to
get a decent average (I thus maintain my recommendation of a first processing excluding artifacted trials).

Moreover, despite the references quoted in the response, I also maintain that the average reference is far
from zero, going against the only argument one can provide to use it. This is, for a big part, due to the
neck and thus to the fact no electrode can be placed there, i.e., below the head.

Nevertheless, I do agree that, sometimes (as in Crago   (2019) ) significant CNV differences (alsoet al.
predicting random events) are found despite a less than ideal technique. But, what a waste!

As this is not the case here, I continue to think that much better CNV signals could be obtained with
off-line re-referencing to a channel as distant as possible from those where max CNV differences are
observed between conditions. Given the ERPs of the new figure with 20 channels, this should provide an
opportunity to find simple and straightforward significant CNV effects that would be 100% reproducible by
any lab. Using ICA and SVM is more sophisticated and, as such, introduce doubts...

References
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 No competing interests were disclosed.Competing Interests:

Reviewer Expertise: Event-related brain potentials and cognition

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons
outlined above.

Author Response 05 Feb 2020
, Università di Padova, Padova, ItalyPatrizio Tressoldi

We thank the reviewer for the precious suggestions, it is evident that all the given
recommendations are focused on the improvement of the work. His main criticisms derive from the
different EEG analytic approach, driven from the different EEG recording systems.

We totally understand that with a 32 channels montage CNV or other sustained potentials are
obtained with mastoids or other references. In fact, in our previous work with 32 channels ‘Duma,
G. M., Mento, G., Manari, T., Martinelli, M., & Tressoldi, P. (2017). Driving with intuition: A
preregistered study about the EEG anticipation of simulated random car accidents. PloS one,
12(1)’, we investigated a sustained potential, that we defined as CNV-like activity, with mastoids
reference.

Nonetheless, with high density, and especially with Geodesic caps, it is the standard practice to
use average reference instead of mastoid or ear lobe. Geodesic cap has an optimal channel
configuration, including electrodes on the cheeks and also at the beginning of the neck, generating
in this way an optimal head covering. That’s why using average references is recommended, for
the mathematical reasons already discussed.
It is also true that Geodesic signals requires a bigger effort in the pre-processing, due to the
electrodes without gel. When the electrodes start to dry, the signal quality starts to decrease a bit.
For this reason, it is a common procedure to interpolate bad channels, without removing epochs
with noisy electrodes. In fact, by removing epochs the SNR would be dramatically decreased. By
contrast, thanks to channels interpolation it is possible to save a lot of trials and therefore a
precious information. Furthermore, in order to save information, we also applied ICA to correct
blink instead of removing epochs containing them.
We totally agree that CNV is one of the larger potential ever identified, but rejecting epochs
containing blinks or other artifacts increase the risk to obtain a CNV coming from 10 epochs, which
it is not reliable at all. For this reason, we still think that ICA correction is the best approach to use
in this study.
It is certainly true that CNV has been classically investigated by using a high-pass filter of 0.01 Hz,
nonetheless there are several examples of recent studies investigating CNV, even inside our
group, which used higher filters like 0.05/0.1 Hz (see the following references):
 
Cravo, A. M., Rohenkohl, G., Santos, K. M., & Nobre, A. C. (2017). Temporal anticipation based on
memory. Journal of cognitive neuroscience, 29(12), 2081-2089.
Sergent, C., Faugeras, F., Rohaut, B., Perrin, F., Valente, M., Tallon-Baudry, C., ... & Naccache, L.
(2017). Multidimensional cognitive evaluation of patients with disorders of consciousness using
EEG: a proof of concept study. NeuroImage: Clinical, 13, 455-469.
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EEG: a proof of concept study. NeuroImage: Clinical, 13, 455-469.
Jang, J., Jones, M., Milne, E., Wilson, D., & Lee, K. H. (2016). Contingent negative variation (CNV)
associated with sensorimotor timing error correction. Neuroimage, 127, 58-66.
Kulashekhar, S., Pekkola, J., Palva, J. M., & Palva, S. (2016). The role of cortical beta oscillations
in time estimation. Human brain mapping, 37(9), 3262-3281.
Mento, G. (2017). The role of the P3 and CNV components in voluntary and automatic temporal
orienting: A high spatial-resolution ERP study. Neuropsychologia, 107, 31-40.
 
It is also important to underline that the main goals of the study was to investigate the source
reconstructed activity at the cortical level, that is possible only by using a high-density system.
Reducing the EEG analysis on the 20 electrodes would dramatically decrease the spatial
resolution of the source reconstruction as shown by: Song, J., Davey, C., Poulsen, C., Luu, P.,
Turovets, S., Anderson, E., ... & Tucker, D. (2015). EEG source localization: sensor density and
head surface coverage. Journal of neuroscience methods, 256, 9-21; Lantz, G., De Peralta, R. G.,
Spinelli, L., Seeck, M., & Michel, C. M. (2003). Epileptic source localization with high density EEG:
how many electrodes are needed? Clinical neurophysiology, 114(1), 63-69.

On the other side, we understand the concerns of the reviewer. In fact, we probably misled the
readers by focusing on the CNV potential. Our target was a sustained negative potential that in our
previous work (Duma, G. M., Mento, G., Manari, T., Martinelli, M., & Tressoldi, P. (2017). Driving
with intuition: A preregistered study about the EEG anticipation of simulated random car accidents.
PloS one, 12(1)), we defined as CNV-like activity. We were not looking for a ‘canonical’ CNV
modulation expressed over fronto-central electrodes, but indeed on a modulation of the
preparatory/anticipatory activity which is usually observed as slow negative potential. This
modulation could have been expressed over different electrodes sites based on the sensory nature
of the forthcoming stimuli. In our case we found a difference in the pre-stimulus activity based on
the sensory nature (face vs sound) of the forthcoming stimulus.
Starting from this consideration if the reviewer agrees, we could better revise the manuscript
substituting the CNV term with CNV-like or sustained slow potential.

For the above mentioned reasons, we think that reanalyzing the data in the way suggested by the
reviewer would result in less reliable outcomes both at the sensors and at the source level and
would change the aim of the study.

However, given that our data are freely available for independent and different analyses, we invite
those interested in this line of investigation to re-analyze them. 

 I'm the corresponding authorCompeting Interests:

Version 1
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1.  

2.  

© 2019 Zheng X et al. This is an open access peer review report distributed under the terms of the Creative Commons
, which permits unrestricted use, distribution, and reproduction in any medium, provided the originalAttribution License

work is properly cited.

 Xifu Zheng
School of Psychology, South China Normal University, Guangzhou, China

 Jingchu Hu
South China Normal University, Guangzhou, China

The manuscript "EEG anticipation of random high and low arousal faces and sounds" reports results from
a study involving anticipatory activity, wherein sensory characteristic and arousal level are experimentally
manipulated. By using a machine learning algorithm (Support Vector Machine), they found a significantly
larger amplitude in occipital cluster of electrodes before the presentation of faces with respect to sounds,
along with a larger amplitude in the right auditory cortex before the presentation of sounds with respect to
faces. The study is well designed and well written; the results are interesting and add insight to the
ongoing effort to understand the sources of anticipatory brain activity. In addition, the authors adopt open
science practices, which increase the level and quality of reporting. There are a few minor issues to
address:

The authors should report exact number of participants in last paragraph of their introduction,
instead of "a group of healthy volunteers".
 
The sample size is somehow small, and is not consistent with what they declared in the OSF, the
reviewer believe 6 more subject will increase the power, and it's not that difficult to have 6 more. 

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 No competing interests were disclosed.Competing Interests:

Reviewer Expertise: Affective neuroscience

We confirm that we have read this submission and believe that we have an appropriate level of
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We confirm that we have read this submission and believe that we have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Author Response 28 Nov 2019
, Università di Padova, Padova, ItalyPatrizio Tressoldi

1. The authors should report exact number of participants in last paragraph of their introduction,
instead of "a group of healthy volunteers".

Reply: We thank the reviewer for the suggestion we added this information in the new version of
the manuscript.

2. The sample size is somehow small, and is not consistent with what they declared in the OSF,
the
reviewer believe 6 more subject will increase the power, and it's not that difficult to have 6 more.

Reply: Unfortunately, in this moment we are not able to increase the sample size due to laboratory
and technical issue. However, with respect to the preregistered statistical power, with the final
number of participants it reduced from .90 to .82 which is still an acceptable level.
Furthermore, we are planning a multicentric study, involving other labs to run a confirmatory study,

 based on the present results.
 No competing interests were disclosed.Competing Interests:

 18 October 2019Reviewer Report

https://doi.org/10.5256/f1000research.22279.r54538

© 2019 Debruille J. This is an open access peer review report distributed under the terms of the Creative Commons
, which permits unrestricted use, distribution, and reproduction in any medium, provided the originalAttribution License

work is properly cited.

   J. Bruno Debruille
Department of Neuroscience, McGill University, Montreal, QC, Canada

For this first round of review, the first thing to do is to add the ERPs elicited by the cross from the time the
baseline started to be computed up to the end of the ERPs elicited by the stimuli for all experimental
conditions. 

The type of electrodes (which material?) and the characteristics of the amps and their band pass have to
be included in the method section as well as the gain used. Then, the digital band pass used to process
the EEG have to be added (with the details about the cut-offs).

Given that the CNV is usually maximal at central or fronto-central electrode sites, data will first have to be
re-referenced  to one (or two linked) electrodes that are as far as possible from these sites, in order to
boost CNV amplitudes and see details. This might also boost effect sizes and give simple statistical
analyses a chance to find CNV differences.
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analyses a chance to find CNV differences.

These ERPs should be in a figure including a sufficient number of channels (e.g, 20) to give a general
idea of the scalp distribution of every component. This will allow for a comparison of the CNV activity
found with those found in prior CNV studies. 

In this reprocessing, bad channels should not be removed and reconstructed.

Given the extremely high scientific stakes of this study, a simple and FULLY reproducible
technique should be used as a strat (even ICA is not fully replicable, its results vary a bit). Any fancy
technic should be removed first so that readers can have an idea of the ERPs and CNV obtained.

To do the reprocessing, I suggest to focus on the 20 channels mentioned above. Each time one channel
is bad in an EEG epoch: the whole trial should be suppressed. Please give the trial selection criteria (max
voltage, flat line...).

Then, please mention the average number of trials that had to be rejected for each experimental condition
and the standard deviation across participants.

I will be glad to review the study again and will provide new comments fast according to new results.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly

 No competing interests were disclosed.Competing Interests:

Reviewer Expertise: Event-related brain potentials and cognition

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons
outlined above.

Author Response 28 Nov 2019

, Università di Padova, Padova, ItalyPatrizio Tressoldi
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1.  

, Università di Padova, Padova, ItalyPatrizio Tressoldi

We are very grateful to dr. Debruille for his insightful comments and suggestions. In the current
revision we tried to address, to the best of our possibility, most of the issues he raised. 
Specifically, we provided additional data and pictures by plotting averaged waveforms from a
restricted number of electrodes (n=19) to allow an easy visual inspection of the results. These data
have been added as Supplementary Materials available at: 
https://doi.org/10.6084/m9.figshare.6874871.v5.  Moreover, to provide the reviewer with an easy
comparison of the waveform pattern with previous CNV literature, we reported a plot of the whole
epoch waveforms by using a linked-mastoid reference (see Figure 1b in the Supplementary
Materials).
Notwithstanding this, we would like to point out that the dataset was not re-analyzed according to
what suggested by the reviewer. In the below point-by-point letter we thoroughly explain the
rationale of our choice.
Reply to the reviewer are provided in italic.
 

For this first round of review, the first thing to do is to add the ERPs elicited by the cross from the time the
baseline started to be computed up to the end of the ERPs elicited by the stimuli for all experimental
conditions.

A: We are happy to provide the ERPs of all the conditions starting from the fixation cross as
suggested. To make easy the visual inspection of the waveforms we selected 19 electrodes
according to the 10:20 system. The new pictures show the comparison between the visual and
auditory conditions separately for the active and the passive task.
 
2.The type of electrodes (which material?) and the characteristics of the amps and their band pass have to
be included in the method section as well as the gain used. Then, the digital band pass used to process
the EEG have to be added (with the details about the cut-offs).
 
A: We thank the reviewer for the suggestion, we added the information required in the Method
section of the manuscript.
 
3.Given that the CNV is usually maximal at central or frontocentral electrode sites, data will first have to be
rereferenced to one (or two linked) electrodes that are as far as possible from these sites, in order toboost CNV amplitudes and see details. This might also boost effect sizes and give simple statistical
analyses a chance to find CNV differences.
 
A: We understand the reviewer’s point and we thank him for the opportunity to better explain the
choice of using an average reference. When using high-density EEG system, the average
reference is the gold standard for referencing, as explained by Michel, C. M., Koenig, T., Brandeis,
D., Gianotti, L. R., & Wackermann, J. (2009). In fact, there is not an electrical inactive point on the
scalp, neither the mastoids. However, as stated by these authors “[…] the properties of the EEG
forward solution are such that for any source, the voltage integral across the entire head surface is
zero. If we could cover the entire head with a sufficient number of electrode, we could approximate
this voltage integral by the sum of the measurements at all electrodes. Accordingly, we could
assume that the sum of the potential differences from all recorded electrodes would be equal to
zero. The sum of the potential differences would thus approximate a ‘’correct’’ zero-reference.
Mathematically, this is achieved by using as a reference the average of the measurement at all
electrodes. This reference is called, average reference. The validity of the assumption […]
depends on the goodness of coverage of the head by the electrode array” (p35, Michel, C. M.,
Koenig, T., Brandeis, D., Gianotti, L. R., & Wackermann, J. (Eds.). (2009). Electrical neuroimaging.

Cambridge University Press). 
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Cambridge University Press). 
 
Based on this statement we could assume a that a good coverage of the scalp, as the one
provided by an array of 128 geodesic system, would justify the application of the average
reference. Moreover, several papers by both our and other groups have been already published
with the use of the average reference successfully reporting CNV task-dependent modulations
(Mento; Tarantino, Vallesi, Bisiacchi, 2015; Mento and Vallesi, 2016; Mento, 2017; Jang, Jones,
Milne, Wilson, Lee, 2016). Furthermore, considering also the statistical approach we used, which
includes a whole-scalp explorative analysis,
 
4.These ERPs should be in a figure including a sufficient number of channels (e.g, 20) to give a general
idea of the scalp distribution of every component. This will allow for a comparison of the CNV activity
found with those found in prior CNV studies.
In this reprocessing, bad channels should not be removed and reconstructed.
Given the extremely high scientific stakes of this study, a simple and FULLY reproducible
technique should be used as a strat (even ICA is not fully replicable, its results vary a bit). Any fancy
technic should be removed first so that readers can have an idea of the ERPs and CNV obtained.
To do the reprocessing, I suggest to focus on the 20 channels mentioned above. Each time one channel
is bad in an EEG epoch: the whole trial should be suppressed. Please give the trial selection criteria (max
voltage, flat line...).
Then, please mention the average number of trials that had to be rejected for each experimental condition
and the standard deviation across participants. 
 
A: We agree that ICA manual components removal may change a bit across experimenters,
nonetheless it is a reliable procedure commonly accepted by ERP scientific community, as stated
by several studies (Mennes, M., Wouters, H., Vanrumste, B., Lagae, L., & Stiers, P. (2010).
Validation of ICA as a tool to remove eye movement artifacts from EEG/ERP. Psychophysiology,
47(6), 1142-1150; Jung, T. P., Humphries, C., Lee, T. W., Makeig, S., McKeown, M. J., Iragui, V.,
& Sejnowski, T. J. (1998). Extended ICA removes artifacts from electroencephalographic

 recordings. In Advances in neural information processing systems (pp. 894-900); Li, R., & Principe,
J. C. (2006, August). Blinking artifact removal in cognitive EEG data using ICA. In 2006
International Conference of the IEEE Engineering in Medicine and Biology Society (pp.

Drisdelle, B. L., Aubin, S., & Jolicoeur, P. (2017). Dealing with ocular artifacts5273-5276). IEEE. 
on lateralized ERPs in studies of visualspatial attention and memory: ICA correction versus epoch
rejection.  ,  (1), 83-99.Psychophysiology 54 ). Moreover, in our case the variability intrinsic to this
procedure has been sensibly reduced since we exclusively targeted eye-, muscle- and
heartbeat-related artifacts. As an additional consideration, with the High-Density EEG, the ICA is
the best way to correct artifacts specially in the case of eye-related artifacts. In fact, due to the high
number of electrodes around the eyes (around 20), their activity is very spread across frontal
electrodes, especially if considering that an average reference usually magnifies dipolar scalp
configuration. This in turn may result in the contamination of posterior electrodes, that could show
residual eye-related artefactual activity overlapped to the CNV. 
It follows that simply applying a threshold would reject lots of trials, seriously undermining the
signal-to-noise ratio and underpowering the statistical comparison. 
In other words, while we in principle agree with the reviewer that an artifact correction procedure
may introduce some variability in the reproducibility of the results, at the same time we believe that
a too rigid cleaning procedure based on a threshold-based artifact rejection may 1) not being
effective in eye-related artifact cleaning and 2) cause an excessive lack of statistical power due to
a dramatic reduction of the signal-to-noise ratio resulting from a massive trial rejection. For this

reason, we still believe that ICA is the best approach in the High-Density EEG recording. Anyway,
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reason, we still believe that ICA is the best approach in the High-Density EEG recording. Anyway,
in order to assure replicability, we could provide upon request a list of the components removed for
each subject.
 
Concerning bad channels interpolation removal and reconstruction, we would assure the reviewer
that this is a standard method of HD-EEG preprocessing, also suggested in the Makoto’s pipeline

 for EEG analysis and in the Prepipeline toolbox, (https://vislab.github.io/EEG-Clean-Tools/), which
is a method to standardize EEG recordings across experimenters. Given that, it is not possible to
avoid bad channel identification and correction. We also want to specify that the number of
interpolated electrodes was very low (around 8-10 electrodes over 128) and was restricted to the
external belt ones surrounding the ears, as a possible aspect of the geodesic sensor net is that
those electrodes sometime do not adhere perfectly to the scalp. 
 
Concerning the mean number of trials and standard deviation for each experimental condition
across participants we added this information in the manuscript, see Table 1.
 
Finally, we would like to add that we are really pleased that our manuscript found the reviewer’s
interest. Nonetheless, we desire to underline that the main purpose of the paper is to bring the
scientific community attention to the possibility that random anticipatory effect may be actual, in
order to generate independent replication of our findings. 
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