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Abstract

Random-effects models are frequently used to synthetize information from different stud-
ies in meta-analysis. While likelihood-based inference is attractive both in terms of limiting
properties and in terms of implementation, its application in random-effects meta-analysis
may result in misleading conclusions, especially when the number of studies is small to mod-
erate. The current paper shows that methodology designed to reduce the asymptotic bias
of the maximum likelihood estimator of the variance component can also yield substantial
improvement on inference about the mean effect size. The results are derived for the more
general framework of random-effects meta-regression, which allows the mean effect size to
vary with study-specific covariates.
Keywords: Bias reduction; Heterogeneity; Meta-analysis; Penalized likelihood; Random ef-
fects; Restricted maximum likelihood

1 Introduction

Meta-analysis is a widely applicable approach to combine information from different comparable
studies about a common effect of interest. One of the major topics of debate in meta-analysis
is how to best deal with the heterogeneity across studies. The popular formulation for meta-
analysis described in DerSimonian & Laird (1986) accounts for the between-study heterogene-
ity via a random-effects specification. The meta-analytic estimator of the mean effect size is
a weighted average of the study-specific estimators, with weights depending on the unknown
random-effect variance. There is ample evidence that frequentist inference, typically carried out
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relying on first-order asymptotic arguments, can result in misleading conclusions, especially in
the not unusual setting of a limited number of studies (e.g., van Houwelingen et al., 2002). The
same considerations apply to the random-effects meta-regression model that is a direct exten-
sion of random-effects meta-analysis allowing for study-specific covariates to further describe
the heterogeneity across studies.

Several proposals have been discussed to account for the finite number of studies, including
modification of the limiting distribution of test statistics (Knapp & Hartung, 2003), restricted
maximum likelihood (Viechtbauer, 2005) and second-order asymptotics (Guolo, 2012). Recently,
Zeng & Lin (2015), on the pages of this journal, proposed a double bootstrap approach that
outperfoms several alternatives in terms of empirical coverage probability of confidence intervals
for the mean effect size.

The current paper studies the extent of the bias of the maximum likelihood estimator of
the random-effect variance and introduces a bias-reducing penalized likelihood that yields a
substantial improvement on the estimation of the random-effect variance. The bias-reducing
penalized likelihood in the present setting is closely related to the approximate conditional
likelihood of Cox & Reid (1987) and restricted maximum likelihood for inference on the random-
effects variance. The associated penalized deviance can be used for inference about the fixed-
effect parameters. Real-data examples and a simulation study illustrate the improvement in
finite-sample performance against various alternative methods from the recent literature.

2 Random-effects meta-regression and meta-analysis

Suppose that there are K studies about a common effect of interest, each of them providing pairs
of summary measures (yi, σ̂

2
i ), where yi is the study-specific estimate of the effect, and σ̂2i is the

associated estimation variance (i = 1, . . . ,K). As with much of the literature in meta-analysis,
assume that the within-study variances σ̂2i are estimated accurately enough to be considered as
known and equal to the values reported in each study.

In some situations, the pairs (yi, σ̂
2
i ) may be accompanied by study-specific covariates, aimed

at describing the heterogeneity across studies. The random-effects meta-regression model pos-
tulates that y = (y1, . . . , yK)> are realizations of random variables Y = (Y1, . . . , YK)> that are
independent conditionally on independent random effects U = (U1, . . . , UK)>. The conditional
distribution of Yi given Ui = ui is assumed to beN(ui+x

>
i β, σ̂

2
i ), where xi = (xi1, . . . , xip)

> is the
p-vector that collects study-specific covariates, and β indicates the corresponding p-dimensional
vector of effects. Typically xi1 = 1 and the random effect Ui is assumed to be distributed ac-
cording to N(0, ψ) (i = 1, . . . ,K), where ψ describes the between-study heterogeneity. In matrix
notation, and conditionally on U = u, the random-effects meta-regression model is

Y = Xβ + u+ ε, (1)

where X is the model matrix of dimension K × p with x>i in its ith row, and ε = (ε1, . . . , εK)>

is a vector of independent errors each with a N(0, σ̂2i ) distribution. Under this specification, the
marginal distribution of Y is multivariate normal with mean Xβ and variance Σ̂ +ψIK ,, where
IK is the K ×K identity matrix and Σ̂ = diag(σ̂21, . . . , σ̂

2
K). The random-effects meta-analysis

model is a meta-regression model where X is a column of ones.
Parameter β is naturally esimated by weighted least squares as

β̂(ψ) = {X>W (ψ)X}−1X>W (ψ)Y , (2)

with W (ψ) = (Σ̂ + ψIK)−1. Inference on β critically depends on the availability of an ac-
curate estimate of the between-study variance ψ. A large body of applications has resorted
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in using the DerSimonian & Laird (1986) estimator ψ̂DL = max {0, (Q− n+ p)/A}, where
Q = (y − Xβ̂F)>Σ̂−1(y − Xβ̂F) is the Cochran statistic, with β̂F = β̂(0) the estimate of β
in the fixed-effects model obtained by dropping the random effect u in (1), and A = tr(Σ̂−1)−
tr{(X>Σ̂−1X)−1X>Σ̂−2X}. Inference on β is based on the fact that under model (1), β̂(ψ) has
an asymptotic normal distribution with mean β and variance X>W (ψ)X. The considerable loss
of efficiency of ψ̂DL (Hardy & Thompson, 1996; Guolo, 2012) has motivated the use of several
likelihood-based approaches under both frequentist and Bayesian perspectives (see, e.g., van
Houwelingen et al., 2002; Guolo & Varin, 2015, for recent reviews).

The log-likelihood function for θ = (β>, ψ)> in model (1) is

`(θ) = −1

2
log |W (ψ)| − 1

2
R(β)>W (ψ)R(β), (3)

where |W (ψ)| denotes the determinant of W (ψ) and R(β) = y − Xβ. A calculation of the
gradient s(θ) of `(θ) shows that the maximum likelihood estimator θ̂ML = (β̂>ML, ψ̂ML)> for θ
results from the solution of the system of equations{

s(β)(θ) = X>W (ψ)R(β) = 0p

s(ψ)(θ) = R>(β)W (ψ)2R(β)− tr [W (ψ)}] = 0
, (4)

where s(β)(θ) = ∇β`(θ) and s(ψ)(θ) = ∂`(θ)/∂ψ, so that β̂ML = β̂(ψ̂ML). As is observed in Zeng
& Lin (2015), a major drawback of maximum likelihood inference is the poor performance of
associated procedures based on first-order asymptotics, when the number of studies K is small
to moderate.

3 Bias reduction

3.1 Bias-reducing penalized likelihood

Using the results in Kosmidis & Firth (2009, 2010) and some algebraic effort, the first term
in the expansion of the bias function (first-order bias) of the maximum likelihood estimator is
found to be b(θ) = {0>p , b(ψ)(ψ)}>, where 0p denotes a p-dimensional vector of zeros and

b(ψ)(ψ) = −tr{W (ψ)H(ψ)}
tr{W (ψ)2}

. (5)

In the above expression, H(ψ) = X{X>W (ψ)X}−1X>W (ψ) is the ‘hat’ matrix. The derivation
of the first-order bias is sketched in the Appendix.

The non-zero entries of W (ψ) and the diagonal entries of H(ψ) are all necessarily positive.
Hence, equation (5) demonstrates that the maximum likelihood estimator of ψ is subject to
downwards bias, which, as also noted elsewhere (Viechtbauer, 2005), has direct consequences
on the performance of first-order procedures for hypothesis tests and confidence intervals for
β. Specifically, a downwards bias of ψ̂ has the effect of over-estimating the non-zero entries of
W (ψ), and hence, over-estimating the information matrix

F (θ) = Eθ {I(θ)} =

[
X>W (ψ)X 0p

0>p
1
2tr
{
W (ψ)2

} ] ,
where I(θ) = −∂2`(θ)/∂θ∂θ> is the observed information matrix on θ. This, in turn, can
result in hypothesis tests with large Type I error and confidence intervals or regions with actual
coverage sensibly lower than the nominal level.
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An estimator that corrects for the first-order bias of θ̂ML results by solving the adjusted score
equations s∗(θ) = s(θ)− F (θ)b(θ) = 0p+1 (Firth, 1993; Kosmidis & Firth, 2009). In the specific
case of the random-effects meta-regression model, s∗(β)(θ) = s(β)(θ) and, hence, the adjusted

score equation for β is exactly the same as in (4). On the other hand, the score equation for ψ
is adjusted to

s∗(ψ)(θ) = R>(β)W (ψ)2R(β)− tr [W (ψ){IK −H(ψ)}] = 0 . (6)

The adjusted score functions s∗(β)(θ) and s∗(ψ)(θ) can also be obtained as the derivatives of the
penalized log-likelihood function

`∗(θ) = `(θ)− 1

2
log
∣∣F(ββ)(ψ)

∣∣ , (7)

where `(θ) is as in (3), F(ββ)(ψ) = X>W (ψ)X is the β-block of the information matrix F (θ),
and

∣∣F(ββ)(ψ)
∣∣ denotes the determinant of F(ββ)(ψ). So, the maximum penalized likelihood

estimator θ̂MPL of θ is also a reduced-bias one.
Notice here that for β = β̂(ψ), (7) reduces both to the logarithm of the approximate con-

ditional likelihood of Cox & Reid (1987) for inference on ψ, when β is treated as a nuisance
component, and to the restricted log-likelihood function (Harville, 1977). In particular, the re-
stricted log-likelihood function is constructed to reduce underestimation of variance components
in finite samples as a consequence of failing to account for the simultaneous estimation of the
fixed effects β. Smyth & Verbyla (1996) and Stern & Welsh (2000) have shown the equivalence of
the restricted log-likelihood with approximate conditional likelihood in the more general context
of inference on variance components in normal linear mixed models.

3.2 Estimation

Given a starting value ψ(0) for ψ, the following iterative process has a stationary point that
maximizes (7). At the jth iteration (j = 1, 2, . . .), a new candidate value β(j+1) for β is obtained
by calculation of the weighted least squares estimator (2) at ψ = ψ(j), and, then, a candidate
value for ψ(j+1) is computed through a line search for solving the adjusted score equation (6)
evaluated at β = β(j+1). The iteration is repeated until either the candidate values do not
change across iterations or the adjusted score functions are sufficiently close to zero, when the
value of θ̂MPL is returned.

Example 3.1: Meat consumption data. Larsson & Orsini (2014) investigate the association
between meat consumption and relative risk of all-cause mortality. The data set comprises 16
prospective studies, eight of them about unprocessed read meat consumption and the remaining
eight about processed meat consumption. The current example considers a meta-regression
model with covariate the binary indicator of the type of meat consumption. The DerSimonian
& Laird estimate of ψ is ψ̂DL = 0.57× 10−2, the maximum likelihood estimate is ψ̂ML = 0.85×
10−2and the maximum penalized likelihood estimate is ψ̂MPL = 1.18× 10−2. The corresponding
estimates of β are almost identical with β̂ML = (0.10, 0.11)>, β̂MPL = (0.09, 0.11)> and β̂DL =
(0.11, 0.10)>, where the first element in each vector of estimates corresponds to the intercept
parameter and the second to the parameter for meat consumption. Figure 1 displays the boxplots
for the distribution of the various estimators of ψ, as calculated from 10 000 samples simulated
under the maximum likelihood fit. The dashed line is the value of the parameters used in the
simulation and the point inside each box is the average of the estimates for the corresponding
method. As expected, the maximum likelihood estimator of ψ is subject to downwards bias,
while the other estimators manage to almost fully compensate for that bias. The distribution of
the DerSimonian & Laird estimator of ψ appears to have a heavier right tail than the maximum
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Figure 1: Boxplot for the DerSimonian and Laird (DL), maximum likelihood (ML) and maxi-
mum penalized likelihood (MPL) estimators of ψ as calculated from 10 000 simulated samples
under the maximum likelihood fit in Example 3.1. The horizontal dashed line is the parameter
value used for the simulation and the point inside each box is the average of the estimates for
the corresponding method.

penalized likelihood estimator, which links to the findings of past studies on its loss of efficiency
(e.g., Viechtbauer, 2005).

3.3 Penalized likelihood inference

Apart from a way to improve the bias in the estimation of ψ, the profiles of the penalized likeli-
hood function can be used to construct confidence intervals and regions, and carry out hypothesis
tests for β. If β = (γ>, δ>)>, and the γ̂MPL,δ and ψ̂MPL,δ are the estimators from maximising

(7) for fixed δ, then the penalized deviance 2{`∗(γ̂MPL, δ̂MPL, ψ̂MPL)− `∗(γ̂MPL,δ, δ, ψ̂MPL,δ)} has
the usual limiting χ2

q distribution, where q = dim(δ). To show that, note that the adjustment
to the scores is additive and O(1) (see § 3.1), and, hence, the extra terms depending on it
and its derivatives in the asymptotic expansion of the profile penalized likelihood disappear as
information increases.

4 Simulation study

Following Zeng & Lin (2015), the proposed bias-reducing penalized likelihood is compared with
alternative methods using the simulation set-up of Brockwell & Gordon (2001). The study-
specific effects yi are simulated from the random-effect meta-analysis with true effect β = 0.5 and
variance σ̂2i +ψ (i = 1, . . . ,K), where the σ̂2i are independently generated from a χ2

1 distribution
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Figure 2: Empirical coverage probabilities of nominal 95% confidence intervals for increasing
values of ψ, when (a) K = 10 and (b) K = 20 and for increasing values of K when (c) ψ = 0.03
and (d) ψ = 0.07. The plotted curves correspond to the proposed penalized likelihood method
(solid), the DerSimonian & Laird method (dashed), the Zeng & Lin double resampling method
(dotted), and the Skovgaard’s statistic (dotted-dashed). The solid, grey horizontal line is the
nominal level.

multiplied by 0.25 and then restricted to the interval (0.09, 0.6). The between-study variance ψ
varies from 0 to 0.1 and the number of studies K from 5 to 50. For each considered combination
of ψ and K, 10 000 data sets are simulated.

The results in Zeng & Lin (2015, Section 5) show that the double resampling approach
therein outperforms several existing methods in terms of the empirical coverage probabilities
of confidence intervals at nominal level 95%. The methods considered in Zeng & Lin (2015)
include profile likelihood (Hardy & Thompson, 1996), modified DerSimonian & Laird (see Sidik
& Jonkman, 2002, and Knapp & Hartung, 2003, for the method, and Copas, 2003, for a cri-
tique), quantile approximation (Jackson & Bowden, 2009) and the approach described in Henmi
& Copas (2010). The present simulation study takes advantage of the availability of these previ-
ous simulation results, and Figure 2 compares the performance of double resampling confidence
interval with that from the profile penalized likelihood. Remarkably, the profile penalized likeli-
hood confidence interval has empirical coverage that is sensibly closer to the nominal level than
double resampling. It should be emphasised that the equivalence shown in § 3.1 is between
the penalized likelihood for β = β̂(ψ) and the approximate conditional likelihood for inference
on ψ only. Hence, this equivalence does not relate and cannot be used to explain the good
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finite-sample performance of profile penalized likelihood confidence intervals for β.
Figure 2 also includes a symmetric normal-theory confidence interval based on the classical

DerSimonian & Laird estimator β̂(ψDL) and its estimated variance
∑K

i=1 1/(σ̂i + ψ̂DL). Not
surprisingly, the empirical coverage of this confidence interval is grossly smaller than the nominal
confidence level. Lastly, Figure 2 also includes results for the confidence intervals based on
the Skovgaard’s statistic (see Guolo, 2012, for details) that is designed to produce second-
order accurate p-values for tests on the mean effect size, and is implemented in the R (R
Core Team, 2015) package metaLik (Guolo & Varin, 2012). The Skovgaard’s statistic yields
empirical coverages slightly closer to the nominal level for a wider range of values for ψ than
the penalized likelihood. Nevertheless, the penalized likelihood does not only offer a device for
obtaining reasonable p-values and confidence intervals for β as the Skovgaard’s statistic does,
but also allows for bias-reduced estimation of the degree of heterogeneity ψ, which is a quantity
of interest in the medical literature. Furthermore, the construction of confidence intervals for β
based on the Skovgaard’s approach requires numerical inversion of the statistic with potential
instabilities due to its discontinuity around zero.

5 Examples

Example 5.1: Local anesthesia data. Ambulatory hysteroscopy is a useful instrument to iden-
tify intrauterine pathologies. Cooper et al. (2010) perform a meta-analysis about the efficacy of
different types of local anesthesia used to control pain during hysteroscopy. The data considered
here refer to the use of paracervical anesthesia and consist of information from five randomized
controlled trials, expressed in terms of standardized mean difference of pain scores measured at
the time of hysteroscopy and as vasovagal episodes. The DerSimonian & Laird estimate of ψ
is ψ̂DL = 1.08, while the maximum likelihood estimate is the sensibly larger ψ̂ML = 2.31. The
maximum penalized likelihood estimate is even larger, ψ̂MPL = 2.93.

The DerSimonian & Laird method strongly supports the significance of the local anesthesia
efficacy with a p-value of 0.007, as the double resampling approach does with a p-value of 0.018.
Converse conclusion is obtained using the penalized deviance, which returns a p-value equal to
0.137. The result is also confirmed by the Skovgaard’s statistic, with a p-value of 0.158.

Example 5.2: Meat consumption data (cont.). Continuing from Example 3.1, the DerSimonian
& Laird method indicates weak evidence for a higher risk associated to the consumption of red
processed meat than unprocessed meat, with a p-value of 0.054. In contrast, the penalized
deviance and the Skovgaard’s statistic both agree that there is no evidence of difference between
the two types of meat, with p-values of 0.132 and 0.145, respectively.

6 Final remarks

An alternative estimator of ψ that corrects for the first-order bias is ψ̂BC = ψ̂ − b(ψ)(ψ̂) (see
Efron, 1975, for proof that the new estimator is free from first-order bias), and as such has no
associated inference function like (7) for the maximum penalized likelihood estimator.

The impact of using the penalized likelihood for estimation and inference in random-effects
meta-analysis and meta-regression is more profound for small to moderate number of studies.
As the number of studies increases the log-likelihood derivatives dominate the bias-reducing ad-
justment in (6) in terms of asymptotic order, and, so, inference based on the penalized likelihood
becomes indistinguishable from likelihood-based inference.
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Appendix

Sketch derivation of the expression for the first-order bias

The first-order bias of θ̂(ML) has the form b(θ) = −{F (θ)}−1A(θ) (Kosmidis & Firth, 2010),
where A(θ) has components

At(θ) = −1

2
tr
[
{F (θ)}−1 {Pt(θ) +Qt(θ)}

]
(t = 1, . . . , p+ 1) .

In the above expression, Pt(θ) = Eθ{s(θ)s(θ)>st(θ)} and Qt(θ) = Eθ{−I(θ)st(θ)}. The model
assumptions imply that Eθ{Ri(β)m} is 0 if m is odd and (m− 1)!!/wi(ψ)m/2 if m is even, where
wi(ψ) = 1/(σ̂2i + ψ), and (m − 1)!! denotes the double factorial of m − 1 (m = 1, 2, . . . ; i =
1, . . . ,K). Using this fact, direct matrix calculations give that

Pt(θ) +Qt(θ) = 0(p+1)×(p+1) (t = 1, . . . , p) ; Pp+1(θ) +Qp+1(θ) =

[
X>W (ψ)2X 0p

0>p 0

]
,

where 0p×p is the p × p zero matrix. Hence, At(θ) = 0 for t ∈ {1, . . . , p} and Ap+1(θ) =

tr
[{
X>W (ψ)X

}−1
X>W (ψ)2X

]
= tr {W (ψ)H(ψ)}. Plugging the expressions for the com-

ponents of A(θ) in the expression for b(θ) gives b(θ) = {0>p , b(ψ)(ψ)}>, where b(ψ)(ψ) is as in
(5).
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R version, package details and other functions

The current report reproduces the real-data analyses that appear in the examples of main text
of the paper “Improving the accuracy of likelihood-based inference in meta-analysis and meta-
regression” by I. Kosmidis, A. Guolo and C. Varin.

The resultant output in the current report has been produced using R version 3.2.1 (R Core
Team, 2015), and the R package metaLik version 0.42.0 (Guolo & Varin, 2012).

The file functionsMPL.R that accompanies the current report (at the time of writing the
file can be also be obtained from http://www.ucl.ac.uk/~ucakiko/files/functionsMPL.R)
contains a function to maximize the penalized likelihood in meta-regression settings (see expres-
sion (7) in the main text and the function BiasFit in functionsMPL.R), a function to perform
hypothesis tests for the parameters of a meta-regression model using the profiles of the penalized
likelihood (see §3.3 of the main text and the function lrtest in functionsMPL.R), an imple-
mentation of the double resampling approach in Zeng & Lin (2015) for hypothesis testing in
meta-analysis, and other helper functions for the above.

require(metaLik)

source("functionsMPL.R")
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2

Meat consumption data

########################

## Meat consumption data

larsson <- data.frame(y = c(-0.3425, 0.2546, 0.1740, 0.1655,

-0.0834, 0.0953, 0.2151, 0.3988,

0.0488, 0.1484, 0.2231, 0.2390,

0.1823, 0.3577, 0.0583, 0.1484),

sigma2 = c(0.017224, 0.001271, 0.000663, 0.005027,

0.003383, 0.003603, 0.062186, 0.118504,

0.071613, 0.000310, 0.000501, 0.001160,

0.000759, 0.005087, 0.031266, 0.023078),

type = c(rep("a", 8), rep("b", 8)))

## Fit the model using metaLik

m1 <- metaLik(y ~ type, data = larsson, sigma2 = sigma2)

## Example 1

## The various estimates for psi

estimates1 <- BiasFit(m1)

psi1_ml <- estimates1$ML[3]

psi1_dl <- estimates1$DL[3]

psi1_mpl <- estimates1$MPL[3]

psi1_estimates <- c(psi1_ml, psi1_dl, psi1_mpl)

names(psi1_estimates) <- c("ML", "DL", "MPL")

round(psi1_estimates, 4)

## ML DL MPL

## 0.0085 0.0057 0.0118

## The various estimates for beta

beta1_ml <- estimates1$ML[1:2]

beta1_dl <- estimates1$DL[1:2]

beta1_mpl <- estimates1$MPL[1:2]

beta1_estimates <- data.frame(ML = beta1_ml, DL = beta1_dl, MPL = beta1_mpl)

round(beta1_estimates, 2)

## ML DL MPL

## (Intercept) 0.10 0.11 0.09

## typeb 0.11 0.10 0.11

## Example 3

## p-values for testing the effect of meat consumption

pvalue1_dl <- 2 * (1 - pnorm(m1$DL[2] / sqrt(m1$vcov.DL[2, 2])))

pvalue1_pd <- lrtest(m1, what = 2, type = "penloglik", null = 0.0, optMethod = "BFGS")$pvalue

pvalue1_Skovgaard <- test.metaLik(m1, param = 2, value = 0, print = FALSE)$pvalue.rskov

pvalues1 <- c(pvalue1_dl, pvalue1_pd, pvalue1_Skovgaard)

names(pvalues1) <- c("DerSimonian Laird", "Penalized deviance", "Skovgaard")

round(pvalues1, 3)

## DerSimonian Laird Penalized deviance Skovgaard

## 0.054 0.132 0.145
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Local anesthesia data

########################

## Local anesthesia data

cooper <- data.frame(y = c(0.00, -1.71, -0.19, -0.58, -4.27),

sigma2 = c(0.03959288, 0.07731804, 0.02265332, 0.01759683, 0.16040842))

## Fit the model using metaLik

m2 <- metaLik(y ~ 1, data = cooper, sigma2 = sigma2)

## Example 3

## The various estimates for psi

estimates2 <- BiasFit(m2)

psi2_ml <- estimates2$ML[2]

psi2_dl <- estimates2$DL[2]

psi2_mpl <- estimates2$MPL[2]

psi2_estimates <- c(psi2_ml, psi2_dl, psi2_mpl)

names(psi2_estimates) <- c("ML", "DL", "MPL")

round(psi2_estimates, 2)

## ML DL MPL

## 2.31 1.08 2.93

## p-values for testing local anesthesia efficacy

pvalue2_dl <- 2*pnorm(m2$DL / sqrt(m2$vcov.DL))

pvalue2_dr <- double.resampling(0.0, m2, B = 1000, myseed = 123)

pvalue2_pd <- lrtest(m2, what = 1, type = "penloglik", null = 0.0, optMethod = "BFGS")$pvalue

pvalue2_Skovgaard <- test.metaLik(m2, param = 1, value = 0, print = FALSE)$pvalue.rskov

pvalues2 <- c(pvalue2_dl, pvalue2_dr, pvalue2_pd, pvalue2_Skovgaard)

names(pvalues2) <- c("DerSimonian Laird", "Double resampling", "Penalized deviance", "Skovgaard")

round(pvalues2, 3)

## DerSimonian Laird Double resampling Penalized deviance Skovgaard

## 0.007 0.018 0.137 0.158

References

Guolo, A. & Varin, C. (2012). The R package metaLik for likelihood inference in meta-
analysis. J. Stat. Softw. 50, 1–14.

R Core Team (2015). R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing.

Zeng, D. & Lin, D. Y. (2015). On random-effects meta-analysis. Biometrika, to appear.

Authors: I. Kosmidis, A. Guolo, C. Varin — Date: September 2, 2015


