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Abstract: The optimization of irrigation use in agriculture is a key challenge to increase 

farm profitability and reduce its ecological footprint. To this context, an understanding of 

more efficient irrigation systems includes the assessment of water redistribution at the 

microscale. This study aimed to investigate rainfall interception by maize canopy and to 

model the soil water dynamics at row scale as a result of rain and sprinkler irrigation with 

HYDRUS 2D/3D. On average, 78% of rainfall below the maize canopy was intercepted by 

the leaves and transferred along the stem (stemflow), while only 22% reached the ground 

directly (throughfall). In addition, redistribution of the water with respect to the amount 

(both rain and irrigation) showed that the stemflow/throughfall ratio decreased logarithmically 

at increasing values of incident rainfall, suggesting the plant capacity to confine the water 

close to the roots and diminish water stress conditions. This was also underlined by higher 

soil moisture values observed in the row than in the inter-row at decreasing rainfall events. 

Modelled data highlighted different behavior in terms of soil water dynamics between 

simulated irrigation water distributions, although they did not show significant changes in 

terms of crop water use efficiency. These results were most likely affected by the soil type 

(silty-loam) where the experiment was conducted, as it had unfavorable physical 

conditions for the rapid vertical water movement that would have increased infiltration  

and drainage. 
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1. Introduction 

The competition for freshwater between agricultural, industrial and civil uses has intensified over 

the last few years, worsened by the negative effects of climate change and pollution. The sustainable 

use of water in agriculture is therefore a priority in order to minimize potential future inter-sectorial 

conflicts and meanwhile increase benefits in terms of farm profitability and ecological footprint. 

Innovations are mainly required in the irrigation sector [1], which accounts for ca. 85% of the 

global freshwater consumption [2]. Advances in irrigation have focused on the assessment of water 

interception by the crop canopy [3,4] and its effect on water redistribution [5]. Indeed, incident rainfall 

is partly intercepted by the leaves and then flows down the stem (i.e., stemflow) and partly falls 

directly to the ground without leaf interception (i.e., throughfall). This results in microscale variability 

in infiltration, distribution and root water uptake [6]. Van Weesenbeck and Kachanoski [7] studied the 

soil moisture dynamics in maize, observing that in-row soil water infiltration was greater than in the 

inter-row, as a consequence of stemflow interception. These results were confirmed by Hupet and 

Vanclooster [6], who measured a wide variability of rainfall beneath the maize canopy, ranging from 

78% to 189%, with some areas receiving up to 4.5-times more water than incident rainfall. Paltineanu 

and Starr [8] found an inverse third-order relationship between the stemflow/throughfall ratio and 

rainfall that highlighted a sharp increase of water interception localized on the stem at decreasing 

values of incident rainfall. 

So far, traditional simulation models have assumed that in the “soil-plant-atmosphere” system, the 

incident rain that reaches the ground is uniform and evenly distributed on the soil surface [6]. 

However, representing the canopy interception effects in hydraulic models could be useful for 

simulating irrigation water dynamics at the microscale. This would be helpful for selecting the most 

appropriate irrigation systems and, in some cases, justifying the adoption of down canopy application 

systems, such as low-energy precision application (LEPA) irrigation [9,10]. 

Although several studies have measured the redistribution of rainfall by maize vegetation, only a 

few have conceptualized the dynamics of the plant interception at various rainfall intensities and its 

effects on water distribution in the soil [6,8]. Therefore, a key question is whether the maize canopy 

interception is a major factor for an optimal prediction of water use efficiency in irrigation systems.  

In order to investigate the role of canopy interception on water balance at the microscale, we aimed to 

measure and conceptualize the rainfall canopy redistribution below a fully-developed maize canopy. 

Its effects on water dynamics were then simulated by a numerical model with the final goal of 

comparing sprinkler irrigation with an alternative down canopy method.  
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2. Materials and Methods  

2.1. Description of Experimental Site and Agronomic Management 

The study was conducted at the Experimental Farm of the University of Padova, Legnaro, Italy 

(45°20′26″ N; 11°58′0″ E). The local climate is sub-humid, with mean annual rainfall of about  

850 mm distributed fairly uniformly throughout the year. From December to February, the temperature 

rarely falls below zero, while maximum temperatures in summer vary from 25 to 30 °C during the day 

and 18 to 20 °C during the night. The summer period (from June to August) is generally characterized 

by a mean rainfall of ca. 210 mm, with a maximum of 100 mm observed in June (95%) and a 

minimum of 50 mm in August (95%). Rainfall intensity can reach up to 30 mm·h−1 with a recurrence 

interval of 10 years, while more frequently (recurrence interval of 1 year), rain falls with an intensity 

of 20 mm·h−1. Finally, the average duration of rain events is 2.5 h (standard error = 0.26).  

The soil is a silt loam (sand, 16.7%; silt, 78.5%; clay, 4.8%) Fluvi-Calcaric Cambisol [11], whose 

infiltration rates vary from 0.1 to 10 cm·h−1 [12], with 6.8 g·kg−1 of organic carbon.  

The experiment was conducted in 2011 from 25 June to 13 August on a field (9880 m2) cultivated 

with maize (Zea mays L. cultivar “Pioneer PR31N25”-FAO 600) when the canopy was fully developed 

and uniformly distributed with a leaf area index (LAI) of 4. During experimentation, the mean daily 

temperature varied between 16.3 °C on 24 July and 27.1 °C on 12 July, while the daily air relative 

humidity was 66% (Figure 1), and the wind speed was always below 1.3 m·s−1 during irrigation events, 

following the standard provided by ISO 7749-2 (1990) [13].  

 

Figure 1. Weather conditions during the experimental season: (a) daily air temperature and 

(b) air relative humidity (RH) and global solar radiation (GSR).  
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The seedbed had been prepared in autumn with a 30-cm ploughing depth. The sowing was in April 

at a depth of 3 cm and a distance of 75 cm between the rows, 20 cm in the row. The nitrogen (N) 

fertilization consisted of three split-applications, 200 kg·N·ha−1 as cattle slurry in autumn,  

24 kg·N·ha−1 and 138 kg·N·ha−1 as mineral fertilizer at sowing and inter-row hoeing, respectively. A single  

travelling big gun sprinkler was used for irrigation twice at doses of 43 mm depth on 4 July and 28 mm 

depth on 2 August, with an average intensity of 15 mm·h−1. 

2.2. Stemflow and Throughfall Water Collection 

In order to quantify the rainfall redistribution within the field and its allocation between stemflow 

and throughfall, an experimental plot of 324 m2 was equipped with a set of water collectors. Standard 

rain gauges were laid out in a grid of 3 m × 3 m to quantify the total water amount and distribution 

above the canopy from sprinkler irrigation and rainfall events (Figure 2). Rainfall redistribution 

between stemflow and throughfall was measured on 12 individual plants positioned in pairs across the 

plot, while soil water content (SWC) and the uniformity of water interception on the furrow (i.e., of 

throughfall) were measured in three different areas of the plot labeled as A, B and C (Figure 2).  

 

Figure 2. Plot setup with the relative position of throughfall and stemflow collectors, rain 

gauges and soil moisture sampling points. 

The collectors for stemflow determination (Figure 3a), similar to those used by Lamm and  

Manges [3], were built at the Laboratory of Agricultural Mechanics of the University of Padova. They 

were designed as conical funnel-shaped polyvinyl chloride (PVC) cylinders, 18 cm tall with a 5-cm 

upper diameter; below this, a slot with a plastic pipe was connected to a can for draining the stemflow 

water. Each stemflow collector was fitted on a maize plant stem at about 20 cm above the ground. 

Throughfall collectors (Figure 3b) were 75 cm × 20 cm trays, with a central hole of 5 cm in diameter to 

avoid stemflow interception. A small plastic hose, glued into a hole at the corner of the base, drained 

the water into a tank in order to collect throughfall water. Each tray was positioned approximately  

20 cm above the ground. Stemflow and throughfall collectors were placed on adjacent plants to avoid 

maize stress. All collected volumetric data were converted into depth (mm) considering the sowing 

density (0.15 m2·seed−1).  
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Figure 3. Stemflow (a) and throughfall (b) collectors at the study site. 

Throughfall water distribution was collected for each area (A, B and C) by a polystyrene board with 

27 plastic glasses (7.5 cm upper diameter) laid out in an array of 3 × 9, placed side-by-side. Stemflow 

and throughfall amounts were measured a few hours after rainfall events. 

2.3. Soil Moisture Monitoring 

Soil moisture was monitored in order to quantify the effect of canopy interception on soil water 

distribution. Measurements were performed manually in the field following the rainfall events and 

gradually decreasing the sampling frequency from 4 times·day−1 after rainfall to once·day−1 during the 

following 8 days. A frequency domain reflectometry (FDR) probe (PR2, Delta-T Devices Ltd., 

Cambridge, UK) was used to measure the soil moisture profile at four different depths (10, 20, 30 and 

40 cm). In each area (A, B and C), 6 probes were installed in an array of 2 × 3 at a distance of  

40 cm × 37.5 cm, respectively, to monitor SWC in both the row and inter-row (Figure 2). FDR probes, 

calibrated in the laboratory, had an accuracy of ±4%.  

2.4. Modelling Canopy Interception Effects with HYDRUS 2D/3D Model 

Effects of canopy interception on water dynamics were simulated with the numerical model 

HYDRUS 2D/3D Version 1.11 [14]. The model was first calibrated and validated in the experimental 

conditions and then used to predict the performances of sprinkler and alternative irrigation method. 

2.4.1. Calibration/Validation of HYDRUS 2D/3D 

SWC data, monitored by the 24 sensors in each Site (A, B and C) at the four depths, were used to 

calibrate the soil hydraulic properties using the inverse solution approach [14]. Hydraulic properties 

were defined according to Van Genuchten and Mualem functions [15]. Inversion was applied to the 

first 22 days of experimental data, while the remaining 20 days were used for the validation.  

The 2D domain (width 37.5 cm and depth 80 cm) encompasses the area between the row and the 

inter-row where the moisture probes were inserted (Figure 4), assuming the isotropy of the soil profile. 
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Variable flux conditions were assigned at the upper boundary for describing the spatial redistribution 

of the stemflow and throughfall. The stemflow flux was assigned to the top left corner in 

correspondence to the stem position (Figure 4, in green), while the throughfall flux was assigned to the 

upper boundary line (Figure 4, in pink). 

 

Figure 4. 2D domain geometry, mesh composition and node positions in HYDRUS 2D/3D 

for the inverse solution. 

Potential evapotranspiration rates, calculated according to Allen et al. [16], were used as atmospheric 

boundary conditions. Root distribution was set according to Dal Ferro et al. [17], while the root water 

uptake followed the models proposed by Feddes et al. [18]. Initial water content conditions were 

specified using data measured by FDR, while free drainage was set as the lower boundary condition.  

The goodness of validation was tested according to the linear regression between observed and 

simulated SWC and the residual deviation index (RPD) [19] as follows:  

RMSE

SD
RPD =

 
(1)

where SD is the standard deviation of observed data and RMSE is the root mean square error of fitted 

versus observed data.  
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2.4.2. Numerical Simulation of Irrigation Systems with HYDRUS 2D/3D 

In order to compare sprinkler irrigation with an alternative down canopy method, 3D numerical 

simulations were performed at each field site (A, B and C). Three different upper boundary conditions 

distributions were considered: (1) rainfall application with an optimal uniform distribution down 

canopy (uniform rainfall, RU); (2) stemflow and throughfall fluxes, where the former was redistributed 

on the row and the latter on the inter-row according to the experimental data (ST); and (3) water 

application beneath the canopy as a low-energy precision application (LEPA) system into every  

other inter-row. 

The lower boundary condition was free drainage, while the initial conditions of soil water content 

had a linear distribution between the top (0.25 m3·m−3) and the bottom (0.18 m3·m−3) of the soil 

domain. The 3D domain was 0.8-m depth, 0.75-m width and 1-m length; the root distribution was set 

according to Dal Ferro et al. [17], while the root water uptake followed the model proposed by  

Feddes et al. [18].  

Simulations were performed during the 47-day experimental period. Two different water managements 

were simulated: the first one was according to the crop evapotranspiration (ETc) compensation method, 

considering seven irrigation treatments as typical for sprinkler irrigation in Northeastern Italy.  

The second scenario was a deficit irrigation with 60% of ETc adopting the same irrigation frequency. 

Rainfall intensity was 5 mm·h−1 for both simulations. The system performance was evaluated in terms 

of ET, i.e., actual crop evapotranspiration (mm), and ET/ETc, i.e., the ratio between ET and the crop 

evapotranspiration under standard conditions [16] and drainage (mm). 

3. Results 

3.1. Rainfall Redistribution by Canopy Interception and Soil Water Dynamics 

Total rainfall during the experimental period was 159 mm on average (±2 mm), as partly provided 

by rainfall events, which were homogeneous throughout the study area, and partly by sprinkler 

irrigation, which changed depending on the distance from the sprinkler. Rainfall events provided  

87.5 mm (55%) of total incoming water, which is in line with the typical climatic conditions of the 

area [20], while 45% was provided by sprinkler irrigation. A total of five rain events (Figure 5) were 

used for the evaluation of water redistribution below the fully-developed maize canopy. On average, 

rainfall intensity was 3.7 mm·h−1, ranging from a minimum of 4.6 mm that fell intermittently during  

1 July (maximum rainfall intensity = 2.2 mm·h−1) to a maximum observed on 24 July, when 36 mm 

fell in 19 h. This last rainfall event also showed the highest intensity during the experimentation 

(maximum rainfall intensity = 19.4 mm·h−1). Finally, during the night between 30 and 31 July, 17 mm 

fell in just 3 h, while between 6 and 7 August, 10 mm fell uniformly in 10 h.  

Rainwater below the maize canopy was 78% intercepted by the leaves and transferred along the 

stem (i.e., stemflow), while only 22% reached the ground directly (i.e., throughfall). The maximum 

difference between stemflow and throughfall occurred during the most abundant event (13.5 mm,  

24 July), while the minimum was observed on 1 July (2.9 mm). It is worth noting that in all cases, 

stemflow was greater than throughfall (Figure 5).  
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Figure 5. Rain redistribution as affected by stemflow and throughfall interception. Error 

bars indicate standard errors. 

Sprinkler irrigation was applied on 4 July and 2 August, amounting to 43 mm (standard error,  

±11 mm) and 28 mm (standard error, ±2 mm) throughout the study area, on average. Irrigation was not 

uniformly distributed in the study area, as it depended on the proximity to the sprinkler. Generally,  

a lower uniformity was observed during the first irrigation than the second one. In fact, the radius 

adjustment screw of the sprinkler was differently regulated to search an optimal setting, leading to a 

different spatial distribution between irrigations.  

During the first irrigation event (Figure 6a), a linear decrease of water applied was observed, with a 

maximum of 57 mm, 6 m from the sprinkler, which reduced to a minimum of 10 mm at 37 m. As a 

result, water exceeded the mean value of 20 mm close to the sprinkler; vice versa, a difference of  

−21 mm between the amount applied and the mean value was found in the farthest sampling position. 

Water was mostly intercepted by the canopy as a stemflow (69.6%, on average), the distribution 

gradually increasing from 64% (6 m from the sprinkler) to 73% (37 m from the sprinkler). 

During the second irrigation event (Figure 6b), the variability of the distribution (from 30 to 11 mm) 

was lower than that observed in the first one. Less variability was also observed when water 

interception by the canopy (i.e., stemflow) was compared with throughfall. In fact, the major 

difference was observed at 13 m from the sprinkler, where stemflow reached 78% of water 

interception, while it was slightly reduced at 27 m, reaching values of 64%.  

Throughfall was mainly concentrated in the middle of the inter-row (Figure 7), reaching a peak of 

17% at 29 cm from the row and decreasing to ca. 7% in proximity to both sides. Nevertheless, a slight 

asymmetry in water distribution was found between the right and left side of the inter-row that may be 

affected by the directional impact of water drops due to atmospheric conditions (e.g., wind direction).  
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Figure 6. Spatial variability of sprinkler rainfall and its partitioning between stemflow and 

throughfall (a) during the first event (4 July) and (b) the second event (2 August). Error 

bars indicate standard errors. 

 

Figure 7. Spatial variability of the throughfall measurements collected with throughfall 

collectors. Mean values of the three trays are reported. Error bars indicate standard errors. 
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A general overview of water redistribution with respect to the amount (both rainfall and irrigation) 

showed that the stemflow/throughfall ratio decreased logarithmically (Figure 8) at increasing values of 

incident rainfall, underlining the plant maize capacity to intercept water during low rainfall events. 

Indeed, for incident rainfalls, <10 mm stemflow was four-times higher than throughfall, while for more 

abundant events (e.g., 35 mm), stemflow/throughfall was reduced to 2.6. By contrast, both the 

maximum and mean rainfall intensity data did not show a significant correlation with the 

stemflow/throughfall ratio.  

 

Figure 8. Relationship between total rainfall amounts and stemflow/throughfall ratio. Error 

bars indicate standard errors. 

3.2. Inter-Row and Intra-Row Soil Water Dynamics 

At the beginning of the experiment, soil water content (SWC) was similar in the three sampling 

areas, between the row and inter-row (Figure 9), with larger variations observed in the 0 to 20 cm soil 

profile (−0.02 m3·m−3) than in the 20 to 40 cm on (−0.03 m3·m−3). An increase in soil water content 

was generally observed from the top soil layer (10 cm depth) to a 40-cm depth, ranging from 0.18 to 

0.27 m3·m−3, respectively.  

Large variations were observed during the experiment in the top layer as affected by rainfall events, 

while they were gradually reduced in the deepest soil layers. Four different peaks in soil moisture were 

clearly visible at 10 cm (Figure 9), corresponding to the higher rainfall events. At 10 cm, the maximum 

soil water content was observed after the most abundant event (4 July, corresponding to sprinkler 

irrigation), reaching a peak of 0.26 m3·m−3. At greater depths (from 20 to 40 cm), all sampling sites 

showed reduced soil moisture variations as a result of soil water distribution after the rainfall events. 

Differences in terms of water storage between inter-row and row were negligible for all three study 

sites, as these were less than 1%, on average. However, higher soil moisture values were observed in 

the topsoil row position than in the inter-row as a consequence of low rainfall events (Figure 9), 
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particularly after 19 and 20 July, when total rainfall was only 11 mm. In this case, SWC in the row 

exceeded 0.08 m3·m−3 of that in the inter-row. 

 

Figure 9. Daily evolution of (a) meteorology and profile soil water content (SWC) for:  

(b) 0 to 10 cm; (c) 10 to 20 cm; (d) 20 to 30 cm; (e) 30 to 40 cm. Error bars indicate  

standard errors. 
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3.3. Calibration/Validation of HYDRUS 2D/3D 

Experimental SWC values matched the predicted ones well, indicating that HYDRUS 2D/3D was 

able to predict the effects of canopy interception on water dynamics. This was confirmed by the linear 

regression between observed and predicted data, both for the inversion solution (Figure 10a; R2 = 0.75) 

and validation (Figure 10b; R2 = 0.66), as well as by the model accuracy estimated by means of  

RPD (1.45) [21].  

 

Figure 10. Linear regression between observed and predicted data as a result of (a) model 

inversion and (b) validation. 

The Van Genuchten and Mualem models indicated that Sites A, B and C had similar soil structure 

characteristics (Table 1). Furthermore, the inversion process showed that the profiles were 

homogenous and properly described by a single soil material. 

Table 1. Soil hydraulic parameters estimated by means of model inversion using 

HYDRUS 2D/3D for experimental Sites A, B and C. 

Site 
SWCr a 

(m3·m−3) 
SWCs 

(m3·m−3) 
α b 

(cm−1) 
n c Ks d (cm·h−1) 

SWC (m3·m−3) 
−330 cm 

SWC (m3·m−3) 
−15,000 cm 

A 0.031 0.461 0.005 1.51 0.71 0.319 0.078 

B 0.000 0.460 0.002 1.39 0.26 0.395 0.115 

C 0.071 0.460 0.006 1.52 0.48 0.324 0.109 

Notes: a SWC = residual (r) soil water content, at saturation (s) and at suctions of −330 and −15,000 cm;  
b α = parameter linked to the air entry suction; c n = parameter linked to pore size distribution; d Ks = saturated 

hydraulic conductivity. 

3.4. Numerical Simulations 

The first simulated water management (here called full irrigation) was based on crop 

evapotranspiration compensation with non-limiting water conditions for maize during ripening. 

Therefore, during simulations, total rainfall was 210 mm, corresponding to the crop evapotranspiration 

requirement (Table 2). Full irrigation management did not show water stress conditions for maize 

growth, since the ratio between actual evapotranspiration (ET) and crop ETc (unstressed crop ET)  
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was 0.92, on average. Generally, ET/ETc was higher in A than in B and C (0.97, 0.89 and 0.89, 

respectively) as a result of more favorable soil conditions for the crop. For example, plant growth was 

fostered in Site A compared to B and C at low moisture values, since it was characterized by a low 

water content at the wilting point (−15,000 cm; Table 1). 

Table 2. Water mass balance estimated for two different irrigation management scenarios.  

Site Irrigation Simulations a 
RF 

(mm)
ET 

(mm)
ETc 

(mm) 
ET/ETc

Drainage 
(mm) 

WCin b 
(mm) 

WCfin c 
(mm) 

A 

Full 
RU 210 261 270 0.97 0.90 172 122 
ST 210 261 270 0.97 0.91 172 122 

LEPA 210 261 270 0.97 1.00 172 120 

Deficit 60% 
RU 126 217 270 0.80 0.90 172 82 
ST 126 220 270 0.81 0.90 172 81 

LEPA 126 213 270 0.79 0.90 172 86 

B 

Full 
RU 210 241 270 0.89 0.19 172 142 
ST 210 241 270 0.89 0.19 172 142 

LEPA 210 243 270 0.90 0.19 172 138 

Deficit 60% 
RU 126 190 270 0.70 0.19 172 108 
ST 126 193 270 0.71 0.19 172 107 

LEPA 126 186 270 0.69 0.19 172 113 

C 

Full 
RU 210 240 270 0.89 0.34 172 144 
ST 210 241 270 0.89 0.34 172 144 

LEPA 210 241 270 0.89 0.35 172 143 

Deficit 60% 
RU 126 193 270 0.71 0.34 172 108 
ST 126 196 270 0.72 0.34 172 106 

LEPA 126 189 270 0.70 0.34 172 112 

Notes: a RU (uniform rainfall) = rainfall application with an optimal uniform distribution down canopy;  

ST = stemflow/throughfall water redistribution; LEPA = low-energy pressure application; b WCin = initial 

soil water content; c WCfin = final soil water content. 

By comparing the water distributions, it was observed that the different irrigation simulations did 

not show any difference in terms of ET/ETc, since it was always 0.97 in Site A and largely 0.89 in 

Sites B and C. Water losses due to drainage were negligible in all simulations and always less than  

1 mm in Site A, 0.19 mm and 0.35 mm in B and C, respectively. The visual representation of soil 

water dynamics at increasing time steps (Figure 11) highlighted the effect of different water 

distributions. For example, after an irrigation event (at Hour 264), the ST model tended to increase the 

soil moisture below the maize row (central position of the soil domain) and gradually reduced it 

towards the inter-row (right and left areas of the domain). Irrigation only affected the first 40-cm depth 

of the soil profile, while the soil water content (0.15 to 0.19 m3·m−3) did not change in the layer below 

(40 to 80 cm). By contrast, with the LEPA irrigation system, water was mainly concentrated in  

ca. 40 cm around the area of application, influencing the soil water content both in the row and in the 

furrow of application (left side, inter-row). For example, SWC, at 266-h time step, ranged between 

0.46 and 0.19 m3·m−3 within the soil profile.  
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Figure 11. Visual 3D representation of soil water content (SWC, m3·m−3) in the 3D 

HYDRUS domain under full irrigation and characterized by: ST, stemflow/throughfall 

redistribution; RU, uniform rainfall application; LEPA, low-energy precision application 

system. The maize row is placed in the middle position of the soil domain (red line). 

Generally, ET/ETc with deficit irrigation (Figure 12) was lower than under full irrigation, as it was 

−20% on average, with a maximum observed in ST, Site A (ET/ETc = 0.81), and a minimum in LEPA, Site 

B (ET/ETc = 0.69), highlighting critical conditions for maize growth. In such cases, the higher root density 

below the row contributed to a reduction in soil water content as a result of increased water uptake.  
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Figure 12. Visual 3D representation of soil water content (SWC, m3·m−3) in the 3D 

HYDRUS domain under deficit irrigation and characterized by: ST, stemflow/throughfall 

redistribution; RU, uniform rainfall application; LEPA, low-energy precision application 

system. The maize row is placed in the middle position of the soil domain (red line). 

4. Discussion 

Water partitioning between stemflow and throughfall was affected by the rainfall amount and 

described by a negative logarithmic equation (Figure 8). Nevertheless, the source of uncertainty could 

be due to the water evaporation from the maize canopy, although being estimated at less than  

10% [22]. A similar stemflow/throughfall partitioning had already been observed in other studies [8], 

where the water redistribution between the row and the inter-row was measured in the field with 

conditions similar to ours (i.e., closed maize canopy with LAI = 3.6 ± 0.2): the authors showed that the 

lowest rainfall events were associated with the highest stemflow/throughfall ratio, while with higher 

rainfall (ca. ≥20 mm), the ratio stabilized at values <10. Most likely, high rainfall events increase the 

probability of dripping in the inter-row, as raindrops overload and bend the leaves and accordingly 

decrease stemflow volumes. Conversely, Hupet and Vanclooster [6] reported that the stemflow/throughfall 
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ratio increased with increasing rainfall, although their results were obtained with a low maize leaf 

coverage (2.5 < LAI < 3.6) and were not representative of a wide range of data, since the rainfall 

amounts were low (i.e., <20 mm). Rainfall redistribution below the maize canopy was crucial to 

allocate the water in the soil, particularly after medium and low events, while during intense rainfall, 

the soil water was fairly uniform between stemflow and throughfall. As a result, the variation was 

large when rainfall was <40 mm (20 July), while a negligible effect was found after significant events 

(e.g., 4 July), as also observed by other authors [8]. According to Logsdon et al. [5], the high 

stemflow/throughfall ratio led to an abrupt increase of the row soil moisture that was followed by its 

decrease a few days after the rainfall event. This was probably due to the activity of maize roots that 

were mostly concentrated below the stem, leading to site-specific evapotranspiration rates and 

consequently decreasing the soil water content. Extensive literature has already reported that root 

water uptake within the maize rows is spatially variable, both laterally and vertically [6,7], and can be 

influenced by incident rainfall [23]. As a result, the soil moisture differences observed between 

stemflow and throughfall in a silty-loam soil were rapidly smoothed by root activity. Nevertheless, 

local soil conditions and moisture characteristics could have partly affected the heterogeneity in the 

root distribution and, as a consequence, the variation of water partitioning. Moreover, capillary forces 

increased the horizontal infiltration and consequently reduced the SWC difference induced by 

stemflow and throughfall. This was also supported by the simulations performed with diversified 

fluxes (stemflow and throughfall): in spite of the soil receiving higher amounts of water along the row 

according to ST redistribution (i.e., in the middle of the soil domain; Figures 11 and 12), it was also the 

fastest to dry out due to a greater root water uptake.  

Simulations under different water distributions provided significant indications of the effectiveness 

of irrigation management during maize ripening. In general, optimal crop growth conditions were 

observed with irrigation scheduling based on maize evapotranspiration compensation, responding to 

the ETc demand and limiting the water loss by drainage (always less than 1% total rainfall). This 

emphasized that maize root water uptake, in our silty-loam soil, was weakly sensitive to irrigation 

systems. Similar results were also supported by Schneider and Howell [24], who measured maize 

growth under full irrigation with LEPA and a spray sprinkler (i.e., irrigation below and above the 

canopy), reporting no significant yield differences between the systems. 

Water use efficiency, estimated by means of the ratio ET/ETc, did not change with RU and ST when 

compared with LEPA under full irrigation management as a consequence of soil water content 

variations between row and inter-row. Conversely, with deficit irrigation, SWC was a limiting factor 

for crop evapotranspiration, and ET/ETc was slightly lower in LEPA than ST and RU. In particular, a 

sharp distinction in SWC was observed between alternate furrows under LEPA. In fact, the left side of 

the soil domain received rainfall that was gradually distributed in the row, while the right side of the 

furrow was only marginally affected by water input, limiting the optimal water uptake in proximity to 

a higher root density (i.e., close to the soil surface). 

5. Conclusions  

Experimental data suggested the importance of considering rainfall canopy interception to improve 

water use efficiency and dynamics in the vadose zone, because the natural crop architecture was able 
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to intercept water and direct it along the stem. This effect was particularly significant at low rainfall 

amounts, emphasizing maize’s ability to mitigate water stress conditions as it localized water close to 

the roots. This was confirmed by soil moisture data, since the only differences observed between row 

and inter-row were found at rainfall amounts <15 mm.  

Modelled data highlighted different behavior in terms of soil water dynamics between water 

distributions with both full and deficit irrigation management, although it did not affect the actual root 

water uptake and, consequently, the water use efficiency (ET/ETc). Most likely, these results were 

affected by the soil type (silty-loam) where the experiment was conducted, as it showed unfavorable 

physical conditions for a rapid vertical water movement that would increase infiltration through the 

profile and, finally, drainage (e.g., low hydraulic conductivity). This suggests a need to test rainfall 

redistributions in further experiments considering a wider soil variability, in order to provide insights 

into water use efficiency under different irrigation managements.  
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