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Abstract. Many applications in geohazards prevention involve large deformations of 
unsaturated soils, e.g. rainfall induced landslides, embankment collapses due to wetting etc. 
These phenomena can be investigated with multiphase implementations of the Material Point 
Method (MPM) able to account for the behaviour of unsaturated soils. This paper compares two 
formulations: (i) a fully coupled three-phase formulation (3P) in which the governing equations 
are derived from the momentum balance and the mass balance equations of solid, liquid and 
gas phase assuming non-zero gas pressure, the primary unknowns are the absolute accelerations 
of the phases (aS–aL–aG formulation); (ii) a simplified approach that neglects the momentum 
balance equation of the gas (2P_s). Potentialities and limitations of these approaches are 
highlighted considering a 1D infiltration problem. Despite the introduced simplifications, the 
simplified formulation gives reasonably good results in many engineering cases. 

 
 
1 INTRODUCTION 

Many natural hazards involve large deformations of unsaturated soils, e.g. rainfall induced 
landslides, embankment collapses due to wetting etc. These phenomena can be investigated 
with multiphase implementations of the Material Point Method (MPM) able to account for the 
behavior of unsaturated soils. 

Recently, Yerro et al. [1] proposed a single-point three-phase (SP-3P) MPM formulation in 
which the governing equations are derived from the momentum balance and the mass balance 
equations of solid, liquid and gas phase assuming non-zero gas pressure. This approach takes 
into account the relative accelerations and relative velocities of the pore fluids and the primary 
unknowns are the absolute accelerations of the phases (aS–aL–aG formulation). The formulation 
is lagrangian for the solid phase; the material points (MPs) move with the kinematic of the solid 
skeleton, but carry the information of all phases (single-point approach). 

In contrast, Bandara et al. [2]  and Wang et al. [3] used a simplified approach, which neglects 
the momentum and the mass balance equations of the gas, thus reducing the computational cost. 
The formulation proposed in Wang et al. is an extension of the two-phase formulation 
developed in [4] for saturated soils. The governing equations are derived from the dynamic 



First A. Author, Second B. Author and Third C. Author 

 2 

equilibrium of the liquid phase and the mixture and the primary unknowns are the absolute 
accelerations of the soild and the liquid (aS–aL formulation). In Section 2.2 this formulation is 
introduced showing that can be derived as a simplified version of the one presented in Yerro et 
al. [1]. In Bandara et al. the relative acceleration of the liquid with respect to the solid skeleton 
is neglected and the primary unknowns are the absolute acceleration of the solid skeleton and 
the relative velocity of the fluid.   

The simplifying assumptions introduced in [2,3] are reasonable in many engineering cases, 
but sometimes deviations from the full three-phase formulation can be relevant. This paper 
highlights the differences between these approaches, considering a 1D infiltration example 
simulated with an internal version of the software Anura3D (www.anura3D.eu) (Section 3). 

2 MPM FORMULATIONS FOR UNSATURATED SOILS 
The unsaturated porous media are assumed to be a combination of three different phases 

(ph): solid (S), liquid (L) and gas (G). The solid phase is made by solid grains that constitutes 
the solid skeleton of the media; meanwhile the liquid and the gas phases fill the voids. The 
fluids are a mixture of two components (c): water (w) and dry air (a) (Fig. 1). The mass fraction 
of a component in a phase are defined as: 

𝜔𝜔𝑝𝑝ℎ
𝑐𝑐 =

𝑚𝑚𝑝𝑝ℎ
𝑐𝑐

𝑚𝑚𝑝𝑝ℎ
 (1) 

The total mass of a component is: 

𝑚𝑚𝑐𝑐 = �𝑚𝑚𝑝𝑝ℎ
𝑐𝑐

𝑝𝑝ℎ

 (2) 

The volumetric concentration ratio of solid, liquid, and gas are defined respectively as 𝑛𝑛𝑆𝑆, 
𝑛𝑛𝐿𝐿, and 𝑛𝑛𝐺𝐺 , moreover 𝑛𝑛𝑆𝑆 + 𝑛𝑛𝐿𝐿 + 𝑛𝑛𝐺𝐺 = 1, 𝑛𝑛 = 1 − 𝑛𝑛𝑆𝑆 = 𝑛𝑛𝐿𝐿 + 𝑛𝑛𝐺𝐺=porosity. Note that in 
unsaturated soils, the concentration ratio of porous fluids (𝑛𝑛𝐿𝐿 and 𝑛𝑛𝐺𝐺) is controlled by the degree 
of saturation 𝑆𝑆𝑝𝑝ℎ = 𝑉𝑉𝑝𝑝ℎ/𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (𝑆𝑆𝐿𝐿 = 1 − 𝑆𝑆𝐺𝐺) as 𝑛𝑛𝐿𝐿 = 𝑛𝑛𝑆𝑆𝐿𝐿 and 𝑛𝑛𝐺𝐺 = 𝑛𝑛𝑆𝑆𝐺𝐺. 

 
Figure 1 Definition of phases and components in an unsaturated medium (after [1]) 
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2.1 Three-phase (3P) 
The 3P-SP formulation [1] considers one set of MPs that represent a partially saturated 

porous media. Each MP carries information of the three phases interacting in the continuum 
(i.e., solid skeleton “𝑆𝑆”, liquid “𝐿𝐿, and gas “𝐺𝐺”), and while it provides a Lagrangian description 
of the solid (MPs move according to the solid), the fluid phases filling the voids are represented 
by means of a Eulerian approach.  

Three main governing equations are posed at the nodes of the computational grid: the 
dynamic linear momentum balances of the gas phase (Eq. 3), liquid phase (Eq. 4), and mixture 
(Eq. 5), being the accelerations of each phase (𝒂𝒂𝐺𝐺 , 𝒂𝒂𝐿𝐿, and 𝒂𝒂𝑆𝑆) the primary unknowns of the 
system.  

𝜌𝜌𝐺𝐺𝒂𝒂𝐺𝐺 = ∇𝑝𝑝𝐺𝐺 − 𝒇𝒇𝐺𝐺𝑣𝑣 + 𝜌𝜌𝐺𝐺𝒃𝒃   (3) 

𝜌𝜌𝐿𝐿𝒂𝒂𝐿𝐿 = ∇𝑝𝑝𝐿𝐿 − 𝒇𝒇𝐿𝐿𝑣𝑣 + 𝜌𝜌𝐿𝐿𝒃𝒃   (4) 

𝑛𝑛𝑆𝑆𝜌𝜌𝑆𝑆𝒂𝒂𝑆𝑆 + 𝑛𝑛𝐿𝐿𝜌𝜌𝐿𝐿𝒂𝒂𝐿𝐿 + 𝑛𝑛𝐺𝐺𝜌𝜌𝐺𝐺𝒂𝒂𝐺𝐺 = ∇ ∙ 𝝈𝝈 + 𝜌𝜌𝑚𝑚𝒃𝒃   (5) 

where the density of the mixture is 𝜌𝜌𝑚𝑚 =  𝑛𝑛𝑆𝑆𝜌𝜌𝑆𝑆 + 𝑛𝑛𝐿𝐿𝜌𝜌𝐿𝐿 + 𝑛𝑛𝐺𝐺𝜌𝜌𝐺𝐺 , the liquid and gas pressures 
are 𝑝𝑝𝐿𝐿 and 𝑝𝑝𝐺𝐺 respectively, and 𝝈𝝈 is the total stress tensor. One assumption is that the liquid and 
gas seepages are assumed laminar in slow velocity regime; hence, drag forces (𝒇𝒇𝐺𝐺𝑣𝑣  and 𝒇𝒇𝐿𝐿𝑣𝑣) fulfill 
Darcy’s law.  

As usual in MPM, Eq. 3, 4, and 5 are discretized in space by means of the Galerkin method 
and solved in time with a semi-explicit time discretization scheme.  

The model enables mass exchange between fluid phases, in order to account for dissolved 
air in the liquid and water vapour in the gas, and the mass balance equations are formulated for 
each component (i.e. solid, water “𝑤𝑤”, air “𝑎𝑎”): 

��
𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑚𝑚𝑝𝑝ℎ
𝑐𝑐

𝑉𝑉
� + ∇ ∙ 𝒋𝒋𝒑𝒑𝒑𝒑𝒄𝒄 �

𝑝𝑝ℎ

= 0 (6) 

Where  𝑉𝑉 is the volume of the mixture and  𝒋𝒋𝒑𝒑𝒑𝒑𝒄𝒄  is the flux of the component in the phase. 
Yerro et. al [1] show that the mass balance equations of the solid, water, and air, can be 
manipulated, leading to the following expressions: 

𝐷𝐷𝑛𝑛
𝐷𝐷𝜕𝜕

= 𝑛𝑛∇ ∙ 𝒗𝒗𝑆𝑆 (7) 

𝑛𝑛
𝜕𝜕(𝜔𝜔𝐿𝐿

𝑤𝑤𝜌𝜌𝐿𝐿𝑆𝑆𝐿𝐿 + 𝜔𝜔𝐺𝐺
𝑤𝑤𝜌𝜌𝐺𝐺𝑆𝑆𝐺𝐺)

𝜕𝜕𝑝𝑝𝐿𝐿
�̇�𝑝𝐿𝐿 + 𝑛𝑛

𝜕𝜕(𝜔𝜔𝐿𝐿
𝑤𝑤𝜌𝜌𝐿𝐿𝑆𝑆𝐿𝐿 + 𝜔𝜔𝐺𝐺

𝑤𝑤𝜌𝜌𝐺𝐺𝑆𝑆𝐺𝐺)
𝜕𝜕𝑝𝑝𝐺𝐺

�̇�𝑝𝐺𝐺
= −𝛁𝛁 ∙ [𝜔𝜔𝐺𝐺

𝑤𝑤𝑛𝑛𝜌𝜌𝐺𝐺𝑆𝑆𝐺𝐺(𝒗𝒗𝑮𝑮 − 𝒗𝒗𝑺𝑺)]  − 𝛁𝛁 ∙  [𝜔𝜔𝐿𝐿
𝑤𝑤𝑛𝑛𝜌𝜌𝐿𝐿𝑆𝑆𝐿𝐿(𝒗𝒗𝑳𝑳 − 𝒗𝒗𝑺𝑺)]

− (𝜔𝜔𝐺𝐺
𝑤𝑤𝜌𝜌𝐺𝐺𝑆𝑆𝐺𝐺 + 𝜔𝜔𝐿𝐿

𝑤𝑤𝜌𝜌𝐿𝐿𝑆𝑆𝐿𝐿)𝛁𝛁 ∙  𝒗𝒗𝑺𝑺 − 𝛁𝛁 ∙ 𝒊𝒊𝑮𝑮𝒘𝒘 

(8) 

𝜕𝜕(𝜔𝜔𝐿𝐿
𝑎𝑎𝜌𝜌𝐿𝐿𝑆𝑆𝐿𝐿 + 𝜔𝜔𝐺𝐺

𝑎𝑎𝜌𝜌𝐺𝐺𝑆𝑆𝐺𝐺)
𝜕𝜕𝑝𝑝𝐿𝐿

�̇�𝑝𝐿𝐿 + 𝑛𝑛
𝜕𝜕(𝜔𝜔𝐿𝐿

𝑎𝑎𝜌𝜌𝐿𝐿𝑆𝑆𝐿𝐿 + 𝜔𝜔𝐺𝐺
𝑎𝑎𝜌𝜌𝐺𝐺𝑆𝑆𝐺𝐺)

𝜕𝜕𝑝𝑝𝐺𝐺
�̇�𝑝𝐺𝐺

= −𝛁𝛁 ∙ [𝜔𝜔𝐺𝐺
𝑎𝑎𝑛𝑛𝜌𝜌𝐺𝐺𝑆𝑆𝐺𝐺(𝒗𝒗𝑮𝑮 − 𝒗𝒗𝑺𝑺)]  − 𝛁𝛁 ∙  [𝜔𝜔𝐿𝐿

𝑎𝑎𝑛𝑛𝜌𝜌𝐿𝐿𝑆𝑆𝐿𝐿(𝒗𝒗𝑳𝑳 − 𝒗𝒗𝑺𝑺)]
− (𝜔𝜔𝐺𝐺

𝑎𝑎𝜌𝜌𝐺𝐺𝑆𝑆𝐺𝐺 + 𝜔𝜔𝐿𝐿
𝑎𝑎𝜌𝜌𝐿𝐿𝑆𝑆𝐿𝐿)𝛁𝛁 ∙  𝒗𝒗𝑺𝑺 − 𝛁𝛁 ∙ 𝒊𝒊𝑳𝑳𝒂𝒂 

(9) 
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Where 𝒊𝒊𝒑𝒑𝒑𝒑𝒄𝒄  is the diffusive flux, modelled by the Fick’s law. Note that the previous 
expressions can be simplified when the liquid and gas phases are considered as simply water 
(𝜔𝜔𝐿𝐿

𝑎𝑎 = 0; 𝒊𝒊𝑮𝑮𝒘𝒘 = 𝟎𝟎) and dry air (𝜔𝜔𝐺𝐺
𝑤𝑤 = 0 ;  𝒊𝒊𝑳𝑳𝒂𝒂 = 𝟎𝟎); the examples in Section 3 are solved under 

these hypothesis..  
The mass balance equations (Eq. 7, 8, 9) are posed at the MPs and solved in terms of changes 

in porosity, liquid pressure and gas pressure. In this formulation, the solid mass remains 
constant thorough the calculation, and the mass balance of the solid phase is automatically 
fulfilled. However, the conservation of the fluid masses is totally controlled by the accuracy in 
which the mass balance equations are solved.  

The constitutive stresses controlling the unsaturated soil behavior, net stress (𝝈𝝈� = 𝝈𝝈 − 𝑝𝑝𝐺𝐺𝑰𝑰) 
and suction (𝑠𝑠 = 𝑝𝑝𝐺𝐺 − 𝑝𝑝𝐿𝐿), are updated at the MPs by considering a constitutive equation. 
Finally, the degree of saturation and the hydraulic permeability are updated taking into account 
the corresponding hydraulic constitutive equations, i.e., the soil-water retention curve, and the 
Hillel expression, respectively as introduced in Section 2.3. 

2.2 Two-phase with suction (2P_s) 
The governing equations of the two-phase formulation with suction effect (2P_s) are derived 

in this section highlighting the additional hypothesis introduced with respect to the 3P 
formulation explained in Section 2.1. 

Assuming that: 
1) no air is dissolved in liquid (𝜔𝜔𝐿𝐿

𝑎𝑎 = 0, 𝜔𝜔𝐺𝐺
𝑎𝑎 = 1) and no water vapour is present in the gas 

phase (𝜔𝜔𝐺𝐺
𝑤𝑤 = 0, 𝜔𝜔𝐿𝐿

𝑤𝑤 = 1), 
2) no diffusion fluxes of air in the liquid phase (𝒊𝒊𝑳𝑳𝒂𝒂 ≈ 0) and water in the gas (𝒊𝒊𝑮𝑮𝒘𝒘 ≈ 0) 
3) gas density is negligible compared to the other phases (𝜌𝜌𝐺𝐺 ≈ 0), 
4) the gas pressure is constant and equal to 0, 
5) the gradient of the product 𝑛𝑛𝜌𝜌𝐿𝐿𝑆𝑆𝐿𝐿 is negligible, i.e. 𝛁𝛁(𝑛𝑛𝜌𝜌𝐿𝐿𝑆𝑆𝐿𝐿) ≈ 𝟎𝟎 

the momentum balance equation and the mass balance equation of the gas can be neglected, 
while the momentum balance of the mixture reduces to Eq. 10. 

𝑛𝑛𝑆𝑆𝜌𝜌𝑆𝑆𝒂𝒂𝑆𝑆 + 𝑛𝑛𝐿𝐿𝜌𝜌𝐿𝐿𝒂𝒂𝐿𝐿 = ∇ ∙ 𝝈𝝈 + 𝜌𝜌𝑚𝑚𝒃𝒃   (10) 

where the mixture density is 𝜌𝜌𝑚𝑚 =  𝑛𝑛𝑆𝑆𝜌𝜌𝑆𝑆 + 𝑛𝑛𝐿𝐿𝜌𝜌𝐿𝐿. 
 The mass balance equation of the liquid is rewritten as: 

𝑛𝑛
𝐷𝐷(𝜌𝜌𝐿𝐿𝑆𝑆𝐿𝐿)
𝐷𝐷𝑝𝑝𝐿𝐿

�̇�𝑝𝐿𝐿 = −(1 − 𝑛𝑛)(𝜌𝜌𝐿𝐿𝑆𝑆𝐿𝐿)∇ ∙ 𝒗𝒗𝑺𝑺 − 𝑛𝑛(𝜌𝜌𝐿𝐿𝑆𝑆𝐿𝐿)∇ ∙ 𝒗𝒗𝑳𝑳 (11) 

 The left hand side of Eq. 11 can be reformulated by  
1) introducing the constitutive equation for the water: �̇�𝜌𝐿𝐿 = −𝜌𝜌𝐿𝐿 𝐾𝐾𝐿𝐿⁄ �̇�𝑝𝐿𝐿, 𝐾𝐾𝐿𝐿=liquid bulk 

modulus 
2) considering that 𝑆𝑆𝐿𝐿 is a function of 𝑝𝑝𝐿𝐿 which leads to Eq. 12. 

�−
𝑆𝑆𝐿𝐿𝑛𝑛
𝐾𝐾𝐿𝐿

+ 𝑛𝑛
𝜕𝜕𝑆𝑆𝐿𝐿
𝜕𝜕𝑝𝑝𝐿𝐿

� �̇�𝑝𝐿𝐿 = 𝑛𝑛𝑆𝑆𝐿𝐿∇ ∙ 𝒗𝒗𝑳𝑳 + (1 − 𝑛𝑛)𝑆𝑆𝐿𝐿∇ ∙ 𝒗𝒗𝑺𝑺 (12) 

The derivative of the degree of saturation with respect to suction is given by the soil-water 
retention curve (Section 2.3).  
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Note that, due to the introduced simplifications, the difference between the 3P and the 2P_s 
formulation increases when 

1) gas density increases 
2) suction increases 
3) gas pressure is not zero (i.e. atmospheric pressure) 
4) degree of saturation decreases 
5) derivative of the degree of saturation increases 

The effect of these simplifications will be more clear with the infiltration examples reported in 
Section 3. 

2.3 Hydraulic constitutive equations 

The well know Van Genuchten soil-water retention curve (SWRC) [5] can be used with 
assumed constant parameters 𝜆𝜆 and 𝑝𝑝0. 

𝑆𝑆𝐿𝐿 = 𝑆𝑆𝑚𝑚𝑣𝑣𝑚𝑚 + �1 + �
𝑠𝑠
𝑝𝑝0
�

1
1−𝜆𝜆

�

−𝜆𝜆

(𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 − 𝑆𝑆𝑚𝑚𝑣𝑣𝑚𝑚) (13) 

 Alternatively, an approximated linear law (Eq.14) can be used to compute 𝑆𝑆𝐿𝐿.  

𝑆𝑆𝐿𝐿 = 1 − 𝑎𝑎𝑣𝑣 ∙ 𝑠𝑠 (14) 

Furthermore, since the hydraulic conductivity parameter is susceptible of variable water 
content in soil unsaturated zones, the seepage process should be modelled with permeability 
laws function of 𝑆𝑆𝐿𝐿. An example of this kind of law is the Hillel expression [6] as function of 
the saturated hydraulic conductivity and an exponent r, which assumes values between 2 and 
4.  

𝑘𝑘𝐿𝐿 = 𝑘𝑘𝑠𝑠𝑎𝑎𝑠𝑠 ∙ 𝑆𝑆𝐿𝐿𝑟𝑟 (15) 

3 NUMERICAL EXAMPLES 
In order to compare the formulations presented in the previous section a one-dimensional 

infiltration problem, similar to the one presented in [7], is considered here. A 1m column has 
an initial suction of s0=500kPa; for t>0, zero suction is applied at the head of the column and 
the suction begins to decrease with time. 

The equation that represents the movement of water in unsaturated soils is the Richards 
equation. However, because of the nonlinearities of soil hydraulic parameters (for instance, 
permeability depends on degree of saturation, and degree of saturation depends on fluid 
pressures), it is very difficult to obtain an analytical solution to describe the unsaturated flow. 
In order to derive an analytical solution the following assumptions are introduced [8]: 

• vertical liquid flow, 
• deformability of the solid skeleton and the solid grains are neglected, 
• neither water vapour nor dissolved air are considered in the gas and liquid phases 
respectively, 
• validity of the Darcy’s law and constant permeability,  
• barotropic behaviour of the liquid, 
• linearized water retention curve, i.e. Eq. 14 
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The mathematical expression that describes the one-dimensional vertical water flow within 
an unsaturated soil can be derived from the mass balance equation of the liquid (Eq. 11). 

Under the aforementioned assumptions it reduces to Eq. 16 

�
𝑛𝑛𝑆𝑆𝐿𝐿
𝐾𝐾𝐿𝐿

+ 𝑛𝑛𝑎𝑎𝑣𝑣�
𝜕𝜕𝑝𝑝𝐿𝐿
𝜕𝜕𝜕𝜕

=
𝑘𝑘
𝜌𝜌𝐿𝐿𝑔𝑔

𝜕𝜕2𝑝𝑝𝐿𝐿
𝜕𝜕𝑦𝑦2

 (16) 

Which can be written as 

𝜕𝜕𝑝𝑝𝐿𝐿
𝜕𝜕𝜕𝜕

= 𝐶𝐶𝑣𝑣
𝜕𝜕2𝑝𝑝𝐿𝐿
𝜕𝜕𝑦𝑦2

 (17) 

This expression is the diffusion equation, where y is the infiltration direction and Ci 
corresponds to 

𝐶𝐶𝑣𝑣 =
𝑘𝑘

𝑛𝑛𝜌𝜌𝐿𝐿𝑔𝑔 �
𝑆𝑆𝐿𝐿
𝐾𝐾𝐿𝐿

+ 𝑎𝑎𝑠𝑠�
 (18) 

Assuming that the variation of 𝐶𝐶𝑣𝑣 is small in the considered process, a dimensionless time T 
can be defined as function of Ci and the column height h as 

𝑇𝑇 =
𝐶𝐶𝑣𝑣𝜕𝜕
ℎ2

 (19) 

The analytical solution that comes out applying the boundary conditions previously 
described, is the following: 

𝑠𝑠
𝑠𝑠0

=
4
𝜋𝜋
�

(−1)𝑗𝑗−1

2𝑗𝑗 − 1

∞

𝑗𝑗=1

cos �(2𝑗𝑗 − 1)
𝜋𝜋
2
𝑦𝑦
ℎ
� 𝑒𝑒−(2𝑗𝑗−1)2𝜋𝜋

2

4
𝐶𝐶𝑖𝑖𝑠𝑠
ℎ2  (20) 

being s suction (s = pG-pL), s0 initial suction, h the infiltration length, and t time. 
Note that the previous equation is equivalent to the one-dimensional consolidation problem 

in saturated media, the well-known Terzaghi’s solution. 
Figure 2 compares the numerical results with the analytical solution for different values of 

av assuming s0=500kPa. Material parameters are summarized in Table 1. In this conditions the 
degree of saturation varies between 0.5 and 1 for the case av=1.0e-3 kPa-1 and between 0.995 
and 1 for the case av=1.0e-5 kPa-1. When SL is close to 1 and the derivative 𝜕𝜕𝑆𝑆𝐿𝐿 𝜕𝜕𝑠𝑠⁄  is small, 
the additional terms comparing in the 3P formulation are small, thus the two formulations give 
the same results. When reducing the initial suction to 5kPa in case av=1e-3kPa-1, a good 
agreement between the two formulations is recovered as the suction varies only between 0.995 
and 1. 

Table 1. Material Parameters of the infiltration problem (* parameters not used in 2P_s) 

Solid density 2700 kg/m3 Gas bulk modulus* 10 kPa 
Liquid density 1000 kg/m3 Intrinsic permeability liquid 5∙10-11m2/s 
Gas density* 10 kg/m3 Intrinsic permeability gas* 5∙10-11m2/s 
Porosity  0.3 Liquid viscosity 10-6 kPa s 
Liquid bulk modulus 80000 kPa Gas viscosity* 2∙10-8 kPa s 
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Figure 2: Numerical results of normalized suction evolution along depth; comparison between 2P_s and 3P 

for av=1e-3kPa-1 and av=1e-5kPa-1 in case s0=500kPa 

 
Figure 3: Numerical results of suction evolution along depth y, comparison between 2P_s and 3P for av=1e-

3kPa-1 in case s0=5kPa 

The simulations are now repeated using the Van Genuchten water retention curve and the 
Hillel law. Two sets of parameters have been used (Tab. 2, Fig. 4), which are close to typical 
values for clay (soil A) and sand (soil B).  

Assuming an initial suction corresponding to an initial degree of saturation of 0.85 the 3P 
and the 2P_s gives very similar results (Fig. 5). The normalized time T in Figure 5 is computed 
for a value of Ci,ref  calculated with the values of k, SL, and 𝑎𝑎𝑣𝑣 = 𝜕𝜕𝑆𝑆𝐿𝐿 𝜕𝜕𝑝𝑝𝐿𝐿⁄  at the beginning of 
the simulation.  
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These conditions are probably the most frequent in many geohazard problems such as dam 
and levee stability or shallow landslides. 

When running these simulations in a common laptop computer, the 2P_s is 6 times faster 
than the 3P, thus the use of the 2P_s can be more convenient for problems when SL is relatively 
close to 1 and varies in a narrow range. 

 
Figure 4: SWRC for parameters in Table 2 

Table 2: Parameters of Van Genuchten SWRC 

 Soil A Soil B 
𝑆𝑆𝑚𝑚𝑣𝑣𝑚𝑚 0.2 0.125 
𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 1 1 
𝑝𝑝0 5 3 
λ 0.17 0.7 

 

 
(a) Soil A, s0=10kPa 

 
(b) Soil B, s0=2kPa 

Figure 5: Comparison between MPM results using different hydraulic conductivity curves: evolution of the 
degree of saturation with depth for soil A (a) and B (b). 

Increasing the suction to values corresponding to an effective degree of saturation 𝑆𝑆𝑒𝑒 =
𝑆𝑆𝐿𝐿−𝑆𝑆𝑚𝑚𝑖𝑖𝑚𝑚

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚−𝑆𝑆𝑚𝑚𝑖𝑖𝑚𝑚
= 0.13 the results obtained by the two formulations are slightly different, especially 

for the lower values of SL. 
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(a) Soil A, s0=80000kPa 

 
(b) Soil B, s0=7kPa 

Figure 6 Comparison between MPM results using different hydraulic conductivity curves: evolution of the 
degree of saturation with depth for soil A (a) and B (b). 

4 CONCLUSIONS 
This paper briefly illustrates two mathematical formulations for unsaturated soils recently 

implemented in the MPM code Anura3D, namely the full three-phase formulation and the 
simplified two-phase formulation with suction effect. The results obtained with 3P and 2P_s 
are compared for different material parameters in a one-dimensional infiltration case showing 
that the differences increases when 

1) suction increases 
2) degree of saturation decreases 
3) derivative of the degree of saturation increases, i.e. the SWRC is relatively steep like in 

Soil B of Fig. 4 
In many real cases under analysis for geohazard assessment the differences between 3P and 

2P_s are negligible, thus the simplified formulation can be used to reduce significantly the 
computational cost.  
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