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Abstract

Weakly bound and unbound three-body nuclei are studied by using the pseudostate
method within the hyperspherical formalism. After introducing the theoretical frame-
work, the method is applied first to the 9Be nucleus, showing a good agreement with the
available data for its low-lying dipole response. Then, recent results on the structure and
decay of the two-neutron emitters 26O and 16Be are presented. In particular, the role of
the n-n correlation in shaping their properties is discussed.
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1 Introduction

Recent advances in radioactive ion beam physics and detection techniques have triggered the
exploration of the exotic properties and decay modes of light nuclear systems at the limit
of stability and beyond the driplines. Large experimental and theoretical efforts have been
devoted to understanding the structure and reaction dynamics of loosely bound systems, such
as halo nuclei, where continuum effects are of utmost relevance [1]. Of particular interest
is the case of two-neutron halo nuclei, e.g., 6He, 11Li or 14Be. These core + N + N nuclei
are Borromean, i.e., three-body systems in which all binary subsystems cannot form bound
states. While the correlations between the valence neutrons are known to play a fundamental
role in shaping the properties of two-neutron halo nuclei [2], a proper understanding of their
structure requires also solid constrains on the unbound binary subsystems 5He, 10Li or 13Be [3].
The evolution of these correlations beyond the driplines gives rise to two-neutron emitters,
e.g., 16Be or 26O [4, 5]. A similar situation can be found for proton-rich nuclei. For instance,
the Borromean 17Ne nucleus, characterized by the properties of its unbound subsystem 16F,
has been proposed to exhibit a two-proton halo, while other exotic systems, such as 6Be and
11O (the mirror nuclei of 6He and 11Li, respectively), are two-proton emitters [6]. Since they
have a marked core+N+N character, three-body models are a natural choice to describe their
structure and processes involving them [7]. The description of the continuum in three-body
nuclei, however, is not an easy task.

In this contribution, we present some recent developments in the description of weakly
bound and unbound three-body nuclei. First, we introduce the hyperspherical framework,
and we briefly discuss the pseudostate method and its possible applications. As an example,
we study the dipole response of 9Be in a three-body α + α + n model. Then, we recall dif-
ferent approaches to identify and characterize few-body resonances in a discrete basis, and
we focus on the case of the two-neutron unbound systems 26O and 16Be using a core+ n+ n
representation. Finally, the main conclusions of this work are summarized.

2 Hyperspherical formalism for three-body systems

Three-body systems, such as the Borromean stable nuclei 9Be (α+α+ n) and 12C (α+α+α),
the exotic two-neutron halo 6He (α+n+n) and 11Li (9Li+n+n), or the unbound two-nucleon
emitters 6Be (α + p + p) and 26O (24O + n + n), can be described using the hyperspherical
harmonics (HH) framework [7,8]. In this approach, Hamiltonian eigenstates are expanded as

Ψ jµ(ρ,Ω) = ρ−5/2
∑

β

R j
β
(ρ)Y jµ

β
(Ω), (1)

where the hyperspherical coordinates ρ =
Æ

x2 + y2 and Ω = {α, bx , by}, tanα = x/y , are
introduced. Here, the hyper-radius (ρ) and the hyperangle (α) are defined from the scaled

036.2

https://scipost.org
https://scipost.org/SciPostPhysProc.3.036


SciPost Phys. Proc. 3, 036 (2020)

1

2

3

~x
~y

Figure 1: Jacobi coordinates for a three-body system.

Jacobi coordinates {x , y} depicted in Fig. 1. These are related to physical distances by

x = r x

√

√ A1A2

A1 + A2
, y = r y

√

√

√ A3(A1 + A2)
A1 + A2 + A3

. (2)

The index β ≡ {K , lx , l y , l, Sx , jab} in Eq. (1) represents the channels coupled to total angular

momentum j, so that R j
β
(ρ) is the radial part for each one, and Y jµ

β
(Ω) follows the coupling

order
Y jµ
β
(Ω) =

n
�

Υ
lx l y

Klml
(Ω)⊗ κsx

�

jab
⊗φI

o

jµ
. (3)

In the previous expression, lx and l y are the orbital angular momenta associated to x and
y , respectively, and l = l x + l y ; Sx is the total spin of the particles related by x , so that
j ab = l+Sx ; and the total angular momentum j is obtained by coupling jab with the spin of the
third particle I (which is assumed to be fixed), i.e., j = j ab+ I . Equation (3) is written in terms

of hyperspherical harmonics (HH) Υ
lx l y

Klml
, which are the eigenfunctions of the hypermomentum

operator bK and follow the analytical form

Υ
lx l y

Klml
(Ω) = ϕ

lx l y

K (α)
�

Ylx
(x )⊗ Yl y

(y)
�

lml
, (4)

ϕ
lx l y

K (α) = N
lx l y

K (sinα)lx (cosα)l y P
lx+

1
2 ,l y+

1
2

n (cos 2α) , (5)

with Pa,b
n a Jacobi polynomial of order n= (K− lx − l y)/2 and N

lx l y

K a normalization constant.
Using the above definitions, and inserting the expansion (1) in the Schrödinger equation, the
problem reduces to solving a set of coupled equations in the hyperradial coordinate,

�

−
ħh2

2m

�

d2

dρ2
−

15/4+ K(K + 4)
ρ2

�

− ε
�

R j
β
(ρ) +

∑

β ′

V jµ
β ′β
(ρ)R j

β ′
(ρ) = 0, (6)

involving the coupling potentials

V jµ
β ′β
(ρ) =

D

Y jµ
β
(Ω)

�

�

�V12 + V13 + V23

�

�

�Y jµ
β ′
(Ω)

E

. (7)

3 The Pseudostate method

Equation (6) can be solved for negative (bound) or positive (scattering) energy eigenstates by
imposing standard boundary conditions. The latter, however, is computationally challenging
because the expansion (1) for scattering states requires a combination of incoming and outgo-
ing channels (see, e.g., Ref. [9]). Moreover, for systems comprising several charged particles
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Figure 2: a) THO basis functions, obtained with b = 1 fm and different values of the
γ parameter, compared with a standard HO function for a given channel component
(K = 2, i = 1). b) Resulting PS spectra up to 6 MeV with respect to the three-body
threshold, for a system characterized by a single bound state, obtained with three
different THO basis with the same values of γ shown in the left panel.

the matching with the asymptotics poses additional challenges due to the long-range nature of
the Coulomb interaction [10]. An alternative to this approach is the so-called pseudo state (PS)
method [11], in which the true continuum is approximated by a set of discretized, normaliz-
able states. In this method, the set of coupled equations is replaced by a standard eigenvalue
problem, so the hyperradial functions are expanded in a given basis,

Rn j
β
(ρ) =

∑

i

Dn j
iβUiβ(ρ). (8)

Here, index i counts the hyperradial excitations up to N (i.e., the number of basis functions
included for each channel), and Dn j

iβ coefficients are obtained by diagonalizing the three-body
Hamiltonian in the basis {Uiβ}. Note the new index n which labels the finite number of states,

Ψ
jµ
n , associated to discrete energies εn. Eigenstates corresponding to negative-energy eigen-

values describe the bound states of the system, and those with positive energies provide a
discrete representation of the continuum.

Different choices for the basis functions have been explored in the literature [12–14]. In
this work, we use the analytical transformed harmonic oscillator (THO) basis [15]. The basis
functions are built from the harmonic oscillator (HO) ones by performing a local scale trans-
formation,

UTHO
iβ (ρ) =

√

√ ds
dρ

UHO
iK [s(ρ)], (9)

with the condition that the asymptotic behavior show an exponential decay, rather than a e−ρ
2

behavior. This can be achieved by using the analytical transformation proposed in Ref. [16],

s(ρ) =
1
p

2b





1
�

1
ρ

�4
+
�

1
γ
p
ρ

�4





1
4

, (10)

depending on parameters b and γ. An interesting feature of this transformation is that the
ratio γ/b governs the asymptotic behavior of the basis functions, thus changing the density
of PS, after diagonalization, as a function of the energy. This is illustrated in Fig. 2, where
we show that a smaller γ parameter (for a fixed oscillator length b) provides basis functions
with larger hyperradial extension and tends to concentrate more PS in the energy region close
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to the breakup threshold. In some cases, one is interested in this kind of dense, detailed
representation of the continuum, for instance to compute decay-energy spectra or electromag-
netic transition probability distributions. In other cases, however, one can choose a THO basis
with a smaller hyperradial extension (i.e., larger γ), which leads to a continuum represen-
tation characterized by a small number of states close to the breakup threshold. As shown
in Ref. [17], this can be used to identify three-body resonances following the so-called stabi-
lization method [18, 19]. Examples on these two approaches will be shown in the following
sections.

3.1 Example: Dipole response in 9Be using PS

As an example of the three-body description of weakly bound systems using PS within the hy-
perspherical framework, we consider the case of the Borromean nucleus 9Be (α+α+n), which
has previously attracted remarkable theoretical and experimental attention. On the one hand,
9Be is stable, but has a small binding energy of the last neutron, so continuum effects have been
shown to be important in describing low-energy nuclear reactions [20] involving this nucleus.
On the other hand, its formation via the α(αn,γ)9Be reaction followed by 9Be(α, n)12C has
been linked to the r-process nucleosynthesis [15,21]. In this context, the structure properties
of its ground state and low-lying resonances play a key role.

In Ref. [15], we presented a study of 9Be by using the PS method in hyperspherical coordi-
nates, focusing on the properties of its ground state and its low-lying E1 and M1 continuum.
Three-body α+α+ n states for total angular momenta jπ = 1/2±, 3/2±, 5/2± were described
in a THO basis, with effective n-n and α-n interactions as main ingredients.

For the 3/2− ground state, converged calculations were achieved by including hypermo-
menta up to Kmax = 30 and N = 20 hyperradial excitations in each channel. A THO basis
with b = 0.7 fm and γ = 1.4 fm1/2 was employed, although results for the ground state were
independent on this choice. An additional small three-body force was needed in Eq. (7) to
recover the ground-state energy of -1.574 MeV. The computed charge radii (rch = 2.508 fm)
and quadrupole moment (Q2 = 4.91 efm2) were in rather good agrement with the available
data. The ground-state wave function was found to contain 8Be(g.s.) + n and 8Be(2+) + n
configurations with 52.5% and 46.6% of the total norm, respectively, pointing towards large
core excitations in effective two-body models for 9Be.

Details on the calculations for 1/2+, 3/2+, 5/2+, 1/2− and 5/2− states can be found in
Ref. [15]. In these cases, THO bases with smaller γ values were used to increase the PS density
close to the breakup threshold, ensuring a good representation of the low-energy continuum.
From the matrix elements of the E1 and M1 operators, we computed the corresponding elec-
tromagnetic dipole transitions from the 3/2− ground state and states with different angular
momenta (illustrated in Fig. 3a), looking in particular for the appearance of resonant peaks.
In Fig. 3b, we present the computed photodissociation cross section for 9Be, obtained from the
electromagnetic transition probability distributions (O = E or M) through [23,24]

σ(Oλ)γ (εγ) =
(2π)3(λ+ 1)
λ[(2λ+ 1)!!]2

� εγ

ħhc

�2λ−1 dB(Oλ)
dε

, (11)

and compared with two different sets of experimental data [21,22]. Our calculations are able
to describe the data rather well, in particular reproducing the low-lying peaks arising from
the 1/2+ and 5/2− resonances in 9Be. In addition, four-body continuum-discretized coupled-
channels (CDCC) calculations using our set of PS were also found to provide a good represen-
tation of the continuum for the scattering of 9Be on heavy ions at near-barrier energies [25].
Note that our approach treats resonant and non-resonant states on the same footing, thus
confirming the suitability of the PS approach within the hyperspherical framework to describe
bound and continuum states in weakly bound three-body nuclei.
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Figure 3: a) Spectra for 3/2−, 1/2+ and 5/2− states in 9Be up to 4 MeV above the
α+α+n threshold. b) Photodissociation cross section for 9Be resulting from E1 (red)
and M1 (blue) transitions, including also the contribution to 3/2+, 5/2+ and 1/2−

states, compared with the data from Refs. [21,22].

3.2 Three-body decay energy in 26O

The 26O nucleus was observed for the first time in a proton-knockout reaction from 27F, its
ground state being located only a few keV above the 24O + n + n threshold [5, 26]. A more
recent experiment reported this 0+ ground-state resonance energy to be 18 keV, together with
a second state (likely the first 2+) at 1.28 MeV [27]. Since 25O is also unbound, characterized
by a low-lying d3/2 resonance at 750 keV [27], the sequential decay of the 26O nucleus is ener-
getically unavailable, bringing interest in the context of two-nucleon decays and two-neutron
radioactivity. A theoretical investigation of the decay dynamics of 26O within a 24O + n + n
model, using the Green’s function method to study the three-body decay energy spectrum, was
recently shown to describe rather well the available data [28]. In that work, a 24O+n potential
was adjusted to reproduce the energy of the d3/2 ground-state resonance in 25O. In addition,
they employed a density-dependent pairing interaction, whose depth was fixed to reproduce
the two-neutron separation energy in 26O.

In the present work, we study the properties of 26O and its decay energy spectrum after
one-proton removal from 27F by using the PS method. For that purpose, we use the same
24O + n potential developed in Ref. [28]. The corresponding phase shifts for d3/2, f7/2 and
p3/2 states are shown in Fig. 4a. For the interaction between the valence neutrons, we employ
the GPT n-n parametrization [29]. Instead of fixing the depth of this interaction, we add a phe-
nomenological three-body force which acts as a small correction on the spectrum to reproduce
the 0+ energy. However, as discussed above, the PS method provides different representa-
tions of the continuum depending on the basis choice. Therefore, a question arises on how
to identify the ground-state resonance within this approach. In this case, since the 0+ state
in 26O is almost bound and is characterized by a extremely small width, its properties can be
described reasonably by using the so-called stabilization approach [18,19]. This implies that
stable, square-integrable eigenstates close to the resonance energy provide a good represen-
tation of the inner part of the exact scattering wave function. The stability of the states within
the PS approach can be analyzed, for instance, by studying the evolution of the spectrum with
the number of basis functions N . Preliminary results are shown in Fig. 4b, where the lowest
eigenstate converges rather fast to the resonance energy. These calculations correspond to
Kmax = 20 in the hyperspherical expansion. The computed spectra have been obtained using
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Figure 4: a) 24O+n phase shifts using the potential from Ref. [28]. b) PS spectra for
0+ states in 26O as a function of the number of basis functions.

a THO basis characterized by b = 0.7 fm and γ= 1.4 fm−2, although we have checked that the
resonance follows the same trend under other basis choices. This makes clear that quasibound
states, such as the ground state in 26O, provide an ideal case for the stabilization approach. The
calculated ground-state wave function, adjusted to the correct three-body energy, contains only
∼ 60% of (d3/2)2 configurations, showing a large mixing with negative-parity components. As
discussed in Refs. [7, 30], this mixing favors the formation of a dominant dineutron arrange-
ment in the wave function, as shown in Fig. 5 and already reported in the original calculations
of Ref. [28].

The three-body decay energy spectrum for 26O, populated by knocking out a proton from
27F in inverse kinematics, can be obtained by starting from a reference wave function for the
beam nucleus. This is achieved in Ref. [28] by using the Green’s function method. As compared
to 26O, the extra d5/2 proton of 27F provides enough energy to bind the system. This is due
to the tensor force between the valence proton and neutrons, which can be modeled in our
three-body approach by modifying the effective spin-orbit strength in the core+n potential (see
Ref [31] and references therein). By fixing this strength to reproduce the energy of the d3/2
bound state in 26F, the experimental two-neutron separation energy of 27F can be recovered. In
the present calculations, the computed wave function for 27F has a dominant (d3/2)2 character
(∼ 85%) and is concentrated at smaller distances due to the increased binding energy with
respect to 26O. Using these ingredients, in the present work we propose a simple estimation for
the decay of 26O by assuming that the proton knockout from 27F is a sudden process. Under
such assumption, the decay energy distribution is proportional to the square of the overlap
function between the initial and final nuclei. In our discrete PS representation,

P(εn) = 〈26O(εn)|27F〉2, (12)

such that the sum over all εn values is normalized to unity. This yields a discrete spectrum
which can be compared with experimental data after folding with the corresponding energy
resolution. Note that, in order to achieve a detailed description of the low-energy continuum,
it is now convenient to describe the states of 26O using a THO basis characterized by a smaller
γ parameter and a larger basis set N . Preliminary results, using two different bases, are shown
in Fig. 6. In the lower panel, it is shown that while the different discretizations provide rather
different representations of the non-resonant continuum, the resonant strength (located just
above the three-body threshold) is not affected. This is a consequence of the validity of the
stabilization approach to describe low-lying resonances. Note that the computed resonant
strength amounts for ∼ 80% of the total. In the upper panel, we compare the folded decay
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energy distribution with the data from Ref. [27], normalized to the same total strength. The
resonant peak associated to the 0+ ground-state resonance is very well reproduced, and we
show that the calculated spectra using different THO bases are equivalent. If we repeat the
calculations without the n-n interaction, the resonant peak is shifted to ∼ 1.5 MeV, i.e., twice
the d3/2 single-particle level in the adopted model. This means that the neutron-neutron pair-
ing is essential in defining the properties of 26O, as discussed in Refs. [28, 31]. Calculations
for the 2+ state, as well as a full study of the nn correlation and its evolution at the dripline
crossing for N = 18, are ongoing.

4 Resonance identification

The stabilization approach introduced in the preceeding section can be used to describe mul-
tichannel resonant states, understood as localized continuum structures, in a discrete, bound-
state basis. It is, however, best suited for narrow resonances at low continuum energies. More-

036.8

https://scipost.org
https://scipost.org/SciPostPhysProc.3.036


SciPost Phys. Proc. 3, 036 (2020)

0

1

2

3

4

ε
  
(M

e
V

)

1
-

2
+

H

-20

-15

-10

-5

0

m

1
-

2
+

M

Figure 7: Example spectra of ÒH (left) and ÒM (right) for 1− and 2+ states in 6He.
Adopted from Ref. [32].

over, stable eigenstates associated to resonances do not provide, a priori, information about
the decay mechanism nor the decay width. Recently, in Ref. [32] we proposed an alternative
procedure to identify and characterize few-body resonances, based on the diagonalization of
a resonance operator in a basis of Hamiltonian pseudostates,

ÒM = ÒH−1/2
bVÒH−1/2; ÒM |ψ〉= m|ψ〉; |ψ〉=

∑

n

Cn|n〉. (13)

As opposed to non-resonant continuum states, resonances are expected to be more localized in
the range of the nuclear potential. Thus, resonant states can be identified from the eigenstates
of ÒM corresponding to the lowest negative eigenvalues m. In this method, the expansion of the
states in terms of energy eigenstates |n〉 allows us to build energy distributions and compute
resonance widths from their time evolution. For details see Ref. [32].

As an example of the resonance identification, in Fig. 7 we show the eigenstates of ÒH and
ÒM for jπ = 1−, 2+ states in the two-neutron halo nucleus 6He described within a three-body
α+n+n model [14]. This system is known to exhibit a low-lying quadrupole resonance, which
is clearly separated from the rest of continuum states and corresponds to a large negative value
of m. Note that this state could not be trivially identified from the spectrum of ÒH in a large
discrete basis.

4.1 Two-neutron decay in 16Be

The new method to identify and characterize few-body resonances was developed to address
the two-neutron decay of the unbound system 16Be. This nuclear system was claimed to pro-
vide the first experimental observation of a correlated dineutron emission [4]. In Refs. [17,32],
we used the 14Be+ n potential employed in [9] to construct 16Be wave functions in a three-
body model. With this potential, the 15Be ground state is a d5/2 resonance at 1.8 MeV above
one-neutron emission. In our calculations, the 0+ ground-state resonance of 16Be, adjusted
to the known two-neutron separation energy of -1.35 MeV, was characterized by a width of
0.16 MeV. This value was found to be in good accord with the findings in Ref. [9] that use
the hyperspherical R-matrix method to compute the actual three-body scattering states, a fact
which supports the realiability of the method to describe the properties of unbound three-body
systems using a discrete basis. With the same Hamiltonian, we were able to predict also a 2+

resonance at higher excitation energies, while no 1− resonance could be found by using the
adopted model. An experimental confirmation of these predictions is still pending.
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Figure 8: Probability density (fm−2) for the 0+ ground state (left) and 2+ resonance
(right) in 16Be, as a function of rx = rnn and ry = rc−nn.

Our three-body calculations for 16Be present a strong dineutron component for the 0+

ground state, which is not dominant for the 2+ state. This is shown in Fig. 8, and would favor
the picture of a correlated two-neutron emission from the ground state. The experimental sig-
nature for such a decay can be accessed from the n-n relative energy distributions [4,33]. The
theoretical interpretation of this observable could be achieved from the currents describing the
flux of the resonance density escaping the potential well. Preliminary calculations on this line,
compared with recent experimental data currently under analysis [33], suggest that a strong
signal at low relative energies might appear as a direct consequence of the n-n interaction. A
systematic study of the decay, including that of the 2+ excited state, is ongoing and will be
presented elsewhere.

5 Conclusions

We have presented recent results on the description of unbound states in three-body nuclear
systems using a discrete-basis representation, the so-called pseudostate method. As an ex-
ample, we have considered the low-lying dipole response in 9Be. Then, we have discussed
the case of 26O and 16Be, which are two-neutron emitters. For 26O, we have shown that the
stabilization approach is able to capture the properties of its barely unbound 0+ ground state
and the corresponding three-body decay-energy spectrum. In the case of 16Be, we have em-
ployed an identification method based on the eigenstates of a resonance operator, confirming
the dominant dineutron component of its 0+ ground state and predicting a new 2+ resonance.
The next steps will include a full study of the n-n correlations in these systems and their role
in shaping their decay properties.
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