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Abstract. Aerial manipulators have many important application scenarios, 

such as inspection and maintenance, search and rescue, structure assembly, and 

logistics. One important challenge in aerial manipulation is related to the vibra-

tions induced on the manipulator and its end-effector by the Unmanned Aerial 

Vehicle (UAV), which significantly affect the grasping and manipulation preci-

sion/performance. In this paper, vibration analysis of a heavy payload octocop-

ter has been carried out using Experimental Modal Analysis (EMA). A simpli-

fied Mass-Spring-Damper (MSD) dynamic model of the system has then been 

proposed, whose dynamic parameters have been identified by analyzing select-

ed experimental modes of vibration. The identified model will be useful for the 

design of the manipulator and related vibrations isolation system. 

Keywords: Aerial Manipulator, Vibrations, Experimental Modal Analysis, 

Identification, Mass-Spring-Damper Model. 

1 Introduction 

Aerial manipulation is a new and emerging field of research [1]. Aerial manipulators 

(i.e., rotary-wing Unmanned Aerial Vehicles (UAVs) augmented with a robotic ma-

nipulator) have many important potential application scenarios, such as (i) inspection 

and maintenance (e.g., in the offshore or nuclear industry), (ii) search and rescue in 

case of a disaster or in hazardous environment, (iii) structure assembly (one or more 

cooperative aerial manipulators), and (iv) logistics (e.g., in industrial environment). 

One important challenge in aerial manipulation is related to the vibrations induced on 

the manipulator and its end-effector by the UAV, which significantly affect the grasp-

ing and manipulation precision/performance. 

Vibrations in UAVs have been studied in the literature since many years, because 

they can affect the accuracy of accelerometers and gyroscopes used for their control 

(and therefore their flight stability) [2, 3], and also because they can affect the quality 

of images captured with onboard vision systems [4]. In particular, in [2] propellers are 

identified as the main source of vibrations and numerical simulations of the vibrations 

on a hexacopter structure using a Finite Elements (FE) model are compared with re-

sults obtained using Experimental Modal Analysis (EMA), with a good match be-

tween experimental and numerical results. In [5] it has been demonstrated that an 
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accurate balancing of the propeller blades may significantly reduce the propeller-

induced vibrations. The vibrations which appears during the rotation of quadcopters 

around roll or/and pitch axis are analyzed in [6], and it is demonstrated that these 

vibrations can be eliminated by using doubled propellers. The performance of differ-

ent types of dampers for minimizing structural vibrations in UAVs are compared in 

[3]. A T-type damper for vibration isolation of a UAV mounted radar system is pro-

posed and experimentally validated in [7]. In [8] an active camera mount system us-

ing an inertial piezostack actuator in the conventional rubber mount for controlling 

unwanted vibrations in a UAV is proposed and experimentally validated. In [9] it is 

demonstrated that propeller induced structural resonance of quadrotor UAVs can be 

avoided by optimizing the lengths, diameters, and initial and final fiber orientation 

angles of the arms and landing gears. In [4] the main vibration sources in UAVs are 

analyzed and a survey of the available methodologies for designing a stabilized opti-

cal imaging system is presented. The vibration analysis of an aerial manipulator has 

not been carried out yet. Nevertheless, methods have been already developed for the 

identification of joint stiffness of a manipulator using EMA [10], and for minimiza-

tion of the dynamic disturbances transferred by a manipulator to a moving base [11, 

12], which can be useful for the reduction/control of vibrations in aerial manipulators. 

In this paper, the vibrations analysis of a heavy payload octocopter has been car-

ried out using EMA, and a simplified Mass-Spring-Damper (MSD) dynamic model of 

the system has been proposed, whose dynamic parameters have been identified by 

analyzing selected experimental modes of vibration. The identified model will be 

useful for the design of the manipulator and related vibrations isolation system, with 

particular attention to the reduction/control of vibrations at the end-effector. 

2 Tested UAV 

The UAV considered in this work is a DJI S1000 heavy payload octocopter (Fig. 1). It 

is composed of (i) a main body, which comprises the eight arms carrying the motors 

and propellers, (ii) a suspended body, composed by a plate to which the battery is 

fixed and that will be used as mechanical interface to the  robot  manipulator,  (iii)  an  

 

 

  

Fig. 1. DJI S1000 octocopter (sx) and experimental setup (dx). 
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isolation system, composed by four rubber mounts, and (iv) a landing gear composed 

by two retractable legs.  

3 Testing equipment and methods 

Experimental results obtained by EMA in the laboratory should be representative of 

the actual behavior of the system under testing [13], in this specific case of UAV 

vibrations during typical operations. Since the focus of this research is on aerial ma-

nipulation, the UAV was suspended from a structure by means of four small ropes. 

This solution makes it possible: to support the weight of the UAV without any contact 

with the ground; to isolate the UAV from sources of excitation other than the hammer 

blow used for modally testing the system; to minimize the added constraints. Actual-

ly, the four ropes generate pendulum motions of the system, but they are low frequen-

cy and are well separated from the “true” modes of the UAV. 

Excitation was performed by means of a hammer for modal testing (PCB 086C03, 

sensitivity 2.351 mV/N), and the response of the UAV was measured by means of a 

triaxial accelerometer (PCB 356A17, sensitivity 50 mV/(m/s
2
) in the three directions). 

Since the UAV is a fully 3D system, a 3D modal model has to be obtained from the 

experimental tests. Thus, a rowing response modal analysis was carried out moving 

the triaxial accelerometers to 66 points located in the arms, main body, and suspended 

body of the UAV. Experimental data were acquired by means of a NI 9234 board and 

modal analysis was carried out by means of the ModalVIEW software. 

4 Experimental results 

To give an example of the measured Frequency Response Functions (FRFs), the 

modulus and the phase of the direct point FRF [14] are represented in Fig. 2a and 2b, 

respectively. 

 

 

Fig. 2. Direct point FRF (modulus (a) and phase(b)) and CMIF of the measured FRFs (c). 

(a)

(b)

(c) 
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In the range of frequencies 0÷200 Hz the modulus plot shows some clear peaks and 

the phase plot shows large phase variations at the same frequencies. These phenome-

na highlight the presence of modes of vibration of the UAV. 

A preliminary analysis of the 198 measured FRFs was made using the Complex 

Mode Indicator Function (CMIF) [14]. The CMIF plot (Fig. 2c) highlights the pres-

ence of modes of vibration at about 20, 45, 65 and 140 Hz. There are also small peaks 

in the range 0÷10 Hz, which are related to pendulum modes of the UAV caused by 

the ropes of the suspension system. Thus, modal analysis was carried out in the range 

of frequencies characterized by the largest values of the CMIF function; results are 

summarized in Table 1. 

Table 1. Identified modal properties. 

Mode Frequency [Hz] Damping ratio Type 

1 19.57 2.668% Main body and suspended body in opposition 

2 46.17 1.303% Main body and motors in opposition 

3 63.02 0.8385% Torsion 

 

The first mode of vibration of the UAV (19.57 Hz), which is depicted in Fig. 3, is 

characterized by the relative motion between the main body and the suspended body, 

which vibrate in phase opposition. Thus, this mode is strongly influenced by the de-

formability of the rubber mounts; the rather large value of damping ratio corroborates 

this hypothesis. 

Fig. 4 shows that in the second mode of vibration (46.17 Hz) the suspended body is 

practically steady, whereas there is a large relative motion between the main frame 

and the motors, which vibrate in phase opposition. All the motors vibrate in the same 

way owing to the deformability of the arms and of the joints (between the arms and 

the main body). The third mode of vibration (63.02 Hz) is depicted in Fig. 5; it is 

dominated by torsion deformation of the arms. Above 100 Hz there is a cluster of 

modes, which are more complex than the above-mentioned modes. Typically, these 

modes show large displacements of the arms and negligible displacements of the sus-

pended body. 

This research focuses on aerial manipulation and the main aim is the isolation of 

the base of the robot (which is the suspended frame) from UAV vibrations. Therefore, 

the high frequency modes of vibration are not a main concern, and the rest of the pa-

per will deal with modeling and controlling the low frequency modes, with relevant 

displacements of the suspended body.  

 

Fig. 3. First mode of vibration (19.57 Hz). 
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Fig. 4. Second mode of vibration (46.17 Hz). 

 

Fig. 5. Third mode of vibration (63.02 Hz). 

5 Dynamic models 

Two planar MSD models (sections 5.1 and 5.2) are proposed in order to represent the 

UAV dynamic behaviour related to the first two modes of vibration, and to identify 

the related stiffnesses and dampings. A third planar model (section 5.3) has then been 

proposed to validate the method with respect to experimental data. 

The dynamic equation describing the dynamics of the MSD models is: 

 

 [𝑀]{𝑧̈} + [𝐾]{𝑧̇} + [𝐶]{𝑧} = {0} (1) 

 

in which [𝑀], [𝐾], and [𝐶] are the mass, stiffness, and damping matrices, respectively. 

The natural pulsations will be computed using the equation: 

 

 𝑑𝑒𝑡[[𝐾] − (𝑛)2[𝑀]] = 0 (2) 

5.1 1-Degree-Of-Freedom (1-DOF) model 

This model (Fig. 6) well represents the first mode of vibration (19.57 Hz) in which the 

main body and suspended body move in phase opposition. Md = 3.33 kg, Mm = 1.37 

kg, Mb = 2.33 kg are the drone, motors, and base masses, respectively, and 𝐾𝑧, 𝐶𝑧 the 

stiffness and damping. 

The mass, stiffness, and damping matrixes to be used in Eq. (1) are: 

 

 
[𝑀] = [

𝑀𝑑 + 𝑀𝑚 0
0 𝑀𝑏

],   [𝐾] = [
𝐾𝑧 −𝐾𝑧

−𝐾𝑧 𝐾𝑧
],   [𝐶] = [

𝐶𝑧 −𝐶𝑧

−𝐶𝑧 𝐶𝑧
] (3) 
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Fig. 6. 1-DOF model (first mode of vibration). 

Using Eq. (2), and discarding the solution 𝑛1= 0, it is possible to find:  

 

 
𝑛2 = √

𝐾𝑧

𝑚𝑒𝑞
,  with 𝑚𝑒𝑞 =

(𝑀𝑚+𝑀𝑑)𝑀𝑏

(𝑀𝑚+𝑀𝑑+𝑀𝑏)
 (4) 

 

Considering 𝑛2 = 19.57*2rad/s, it is possible to compute 𝐾𝑧= 23560 N/m. The 

damping ratio  = 0.02668 (from EMA) can also be expressed as: 

 

 
 =

𝐶𝑧

2√𝐾𝑧𝑚𝑒𝑞

 (5) 

 

Therefore, the value of 𝐶𝑧= 10.22 Ns/m can be computed from Eq (5). 

5.2 2-DOFs model 

This model well represents the second mode of vibration (46.17 Hz), in which the 

suspended body stands still, and the main body and motors move in phase opposition. 

Fig. 7 shows only two motors, but the model does not change if eight motors move in 

phase. 𝐾𝑧 and 𝐶𝑧 are the stiffness and damping computed in section 5.1. The arms 

deformation is concentrated at their attachment with the UAV frame, therefore the 

equations 

 𝐾𝑒𝑞 = 𝐾/𝑅2, 𝐶𝑒𝑞 = 𝐶/𝑅2 (6) 

 

with R = 0.386 m (arm length) and z2 = R allow to switch from arm rotational stiff-

ness and damping (𝐾, 𝐶, Fig. 7 (sx)) to equivalent arm linear stiffness and damping 

(𝐾𝑒𝑞 , 𝐶𝑒𝑞 , Fig. 7 (dx)). 

The mass, stiffness, and damping matrixes to be used in Eq. (1) are: 

 

 
[𝑀] = [

 𝑀𝑑 
0

0 𝑀𝑚
],   [𝐾] = [

𝐾𝑧 + 𝐾𝑒𝑞 −𝐾𝑒𝑞

−𝐾𝑒𝑞 𝐾𝑒𝑞
] ,   [𝐶] = [

𝐶𝑧 + 𝐶𝑒𝑞 −𝐶𝑒𝑞

−𝐶𝑒𝑞 𝐶𝑒𝑞
] (7) 

 

Using the experimental value of the natural frequency (46.17 Hz) in Eq. (2), it is 

possible to compute 𝐾𝑒𝑞 = 79492 N/m. Substituting the value of 𝐾𝑒𝑞  back in Eq. (2), 

it is possible to find the second natural frequency (11.12 Hz) and the eigenvectors and 

modal matrix [𝑈] (its columns are the eigenvectors), which diagonalizes the mass, 

stiffness, and damping matrices: 
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Fig. 7. 2-DOFs model (second mode of vibration). 

 [𝑀𝐷] = [𝑈]𝑡[𝑀][𝑈],   [𝐾𝐷] = [𝑈]𝑡[𝐾][𝑈],   [𝐶𝐷] = [𝑈]𝑡[𝐶][𝑈]   (8) 

 

Using the element 𝑀𝐷(2,2) of matrix [𝑀𝐷], the element 𝐾𝐷(2,2) of matrix [𝐾𝐷], 
and the experimental damping ratio  = 0.01303 for the second mode, it is possible to 

find the element 𝐶𝐷(2,2) of matrix [𝐶𝐷] 
 

 𝐶𝐷(2,2) = 2√𝐾𝐷(2,2)𝑀𝐷(2,2) (9) 

 

and substituting this value in Eq. (8) ([𝐶𝐷] = [𝑈]𝑡[𝐶][𝑈]), it is possible to find 𝐶𝑒𝑞  = 

6.365 Ns/m. 

5.3 3-DOFs model 

Using the values of 𝐾𝑧, 𝐶𝑧, 𝐾𝑒𝑞, 𝐶𝑒𝑞  identified in sections 5.1 and 5.2, it is possible to 

assemble a 3-DOFs model of the UAV with suspended body (Fig. 8). 

The mass, stiffness, and damping matrixes to be used in Eq. (1) are: 

 

[𝑀] = [

 𝑀𝑑 0 0
0  𝑀𝑏 0
0 0  𝑀𝑚

],   [𝐾] = [

𝐾𝑧 + 𝐾𝑒𝑞 −𝐾𝑧 −𝐾𝑒𝑞

−𝐾𝑧 𝐾𝑧 0
−𝐾𝑒𝑞 0 𝐾𝑒𝑞

],   [𝐶] = [

𝐶𝑧 + 𝐶𝑒𝑞 −𝐶𝑧 −𝐶𝑒𝑞

−𝐶𝑧 𝐶𝑧 0
−𝐶𝑒𝑞 0 𝐶𝑒𝑞

]  (10) 

 

Using Eq. (2), the eigenfrequencies of this system are computed, which have an er-

ror less than 1.5% with respect to the experimental ones, and this validates the model. 

 

 

Fig. 8. 3-DOFs model. 
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6 Conclusions 

EMA has shown that the rubber mounts are able to isolate the base of the manipulator 

(suspended body) from UAV vibrations above 50 Hz. A 3-DOFs MSD dynamic mod-

el of the UAV has been proposed, whose dynamic parameters have been identified by 

analyzing selected experimental modes of vibration. The identified model will be 

useful for the design of the manipulator to be mounted on the UAV. 
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