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Abstract 

In the framework of porosity models for large-scale urban floods, this work presents a 

method to compute the spatial distribution of the porosity parameters of complex urban 

areas by analyzing the footprints of buildings and obstacles. Precisely, an algorithm is 

described that estimates the four parameters required by the differential, dual-porosity 

formulation we recently presented. In this formulation, beside the common isotropic 

porosity accounting for the reduced storage volume due to buildings, a cell-based 

conveyance porosity is introduced in the momentum equations in tensor form to model 

anisotropic resistances and alterations in the flow direction due to presence of preferential 

pathways such as streets. A cell-averaged description of the spatial connectivity in the 

urban medium and of the preferential flow directions is the main ingredient for robust and 

mesh-independent estimates. To achieve this goal, the algorithm here presented 

automatically extracts the spatially distributed porosity fields of urban layouts relying only 

on geometrical information, thus avoiding additional calibration effort. The proposed 

method is described with the aid of schematic applications and then tested by simulating 

the flooding of real, complex urban areas using structured Cartesian grids. A Fortran 

implementation of the algorithm is made available for free download and use. 

 

Keywords: Urban flood; porosity model; conveyance porosity; porous shallow water 

equations; spatially-distributed porosity field; anisotropic friction; structured grid.  
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1 Introduction 

Urban flooding is recognized as a global challenge, exacerbated by the growth of 

megacities in flood-prone areas, by anthropogenic modifications of landscapes, and by 

climate change as well (Arnell and Gosling, 2016; Jongman et al., 2012; Tanoue et al., 

2016; Viero et al., 2019).  

The adoption of structural measures and complementary strategies to reduce the effects 

of floods (Kundzewicz et al., 2018; Mel et al., 2020), the achievement of increased 

resilience (Ferrari et al., 2020a; McClymont et al., 2020) and effective adaptation 

(Jongman, 2018; Muis et al., 2015; Radhakrishnan et al., 2018), all rely on the knowledge 

of the processes involved. The need of assessing flood hazard accurately entails the need 

of suitable modelling tools for large scale urban floods (Sanders, 2017; Sanders and 

Schubert, 2019; Vacondio et al., 2016; Wing et al., 2018). 

In this view, subgrid porosity models for urban floods reproduce the effects of fine 

scale topography at a relatively coarse resolution, allowing physics-based, large-scale 

applications with limited need of computational resources. This kind of models has been 

the subject of ongoing research and of numerous applications (Braschi and Gallati, 1989; 

Bruwier et al., 2017; Chen et al., 2012a, 2012b; Costabile et al., 2020; Cozzolino et al., 

2018; Defina, 2000; Defina et al., 1994; Ferrari et al., 2020b, 2017; Guinot, 2012; Guinot 

et al., 2017; Özgen et al., 2016; Sanders et al., 2008; Varra et al., 2020; Yu and Lane, 2011, 

2006).  

Here we draw the reader’s attention to the dual-porosity model in differential form 

recently proposed by Viero (2019) and Ferrari et al. (2019), in which an isotropic porosity 

accounts for storage reduction due to the presence of buildings, and a directionally-

dependent conveyance porosity is introduced in the momentum equations in tensor form to 

account for anisotropic resistances exerted by buildings and obstacles, and for the presence 

of preferential pathways. Both the storage and the conveyance porosities are defined at the 

cell-level. The model retains the mesh-independence typical of porosity models in 

differential form, and the natural inclusion of anisotropic effects related to alignment of 

buildings and obstacles typical of integral porosity models (Guinot et al., 2017; Sanders et 

al., 2008). 

In previous contributions, the model by Ferrari et al. (2019) and Viero (2019) was only 

tested using uniform porosity parameters, averaged within the urban area, and assigned to 

all the computational cells therein. Actually, to our knowledge, porosity models in 

differential form were all used with uniform porosity so far (e.g., Cea and Vázquez-

Cendón, 2010; Guinot, 2012; Guinot and Soares-Frazão, 2006; Soares-Frazao et al., 2008), 

with the only exception of the exploratory study by Soares-Frazão et al. (2018).  
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The use of uniform porosity parameters allows verifying the model skills in terms of 

global resistance exerted by a patch of urbanized area on the surrounding flow, yet it offers 

no chance of describing the spatial variability of the flow field within the urban area. 

Moreover, it has to be admitted that for increasingly larger urban areas, uniform porosity 

parameters become as difficult to estimate as meaningless from a physical point of view. 

That is to say, the modelling of real urban layouts is still an open challenge for porosity 

models in differential form.  

Integral Porosity (IP) models (Guinot et al., 2017; Sanders et al., 2008) were introduced 

with the specific aim of accounting for the flow field variability within the urban fabric; 

yet, for how they are constructed, IP models suffer a marked sensitivity to the mesh design 

(Guinot, 2017a; Kim et al., 2015). Recently, Varra et al. (2020) argued that resorting to the 

differential approach does not prevent a model to supply meaningful information at the 

scale comparable to those of buildings (meters or tens of meters). Of course, porosity fields 

have to reflect the actual spatial variability of blocking features within the urban fabric. 

With this in mind, in this work we present a method to infer the porosity parameters 

needed by the dual porosity model of Ferrari et al. (2019) and Viero (2019) automatically, 

for real and complex urban areas, making use of geometrical information only. This should 

assure model robustness and limit the need for successive model calibration. 

Special care is devoted to the estimation of the conveyance porosity, for multiple 

reasons. Unlike in the Integral Porosity models, in which it is defined at the cell sides, 

conveyance porosity is here defined at the cell-level, i.e., it has to reflect the connectivity 

properties of the urban medium within the entire cell (Guinot, 2017a; Viero, 2019). This is 

both an opportunity and a challenge; the cell-based, spatially-averaged description of the 

spatial connectivity and of preferential flow directions is the main ingredient assuring 

robust and mesh-independent estimates; yet, conveyance porosity is actually directionally-

dependent, thus entailing the need of recognising effective principal components (i.e., 

minimum and maximum conveyances) along with the associated directions, by only 

analysing the spatial distribution of building footprints. Importantly, the geometrically-

based estimates must be effective in representing the real hydraulic behaviour of obstacles 

and preferential pathways within the cell. Thus, the method here presented computes the 

directionally-dependent conveyance porosity, its principal components and the associated 

directions, as well as storage porosity, from the building footprints of a given urban area 

on a cell-by-cell basis. A graphical method, based on the use of roseplots, is also proposed 

to preliminary check the effectiveness of the conveyance porosity estimates. 

The paper is organized as follows. The key aspects of the dual-porosity formulation in 

differential form (Ferrari et al., 2019; Viero, 2019), together with the main features of the 

2D accelerated shallow water model adopted in the work, are recalled in Sect. 2. The 
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method to automatically extract the porosity parameters from building footprints is 

described in Sect. 3 and made available in a permanent repository (see Appendix A). The 

method is then tested by simulating floods in real urban areas (Sect. 4). The discussion on 

the proposed procedure and some concluding remarks are finally outlined in Sect. 5. 

2 Material and Methods 

2.1 The dual porosity model in differential form 

In the framework of urban flood modelling based on the Shallow Water Equations 

(SWEs) with porosity, the formulation recently presented in Ferrari et al. (2019) and Viero 

(2019) describes the effects exerted by buildings and obstacles by adopting an isotropic 

storage porosity and an anisotropic conveyance porosity, both defined at the cell level. 

The isotropic porosity,  accounts for the storage reduction due to the presence of 

buildings; it is evaluated for each computational cell as the ratio between the area free of 

obstacles and the total area (Figure 1a), as in single porosity (SP) and integral porosity (IP) 

models (Guinot and Soares-Frazão, 2006; Sanders et al., 2008).  

 

Figure 1. Definition of the four porosity parameters (ΨL, ΨT, α) in the dual-porosity, 

anisotropic model by Ferrari et al. (2019) and Viero (2019): a) isotropic storage 

porosity,  (the thick black square is the computational cell with area Acell); b) 

anisotropic conveyance porosity defined by ΨL, ΨT, and α. Grey areas denote 

buildings. 

On the other hand, the reduced conveyance, the alteration in the flow direction, and the 

presence of preferential flow pathways related to the alignment of buildings and obstacles, 

are accounted for by introducing in the momentum equations a directionally-dependent 

conveyance porosity in tensor form (Ferrari et al., 2019; Viero, 2019; Viero and Valipour, 

2017). This conveyance porosity, which reflects the spatial distribution of obstacles and 
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preferential pathways within cell and not only at cell-edges, is the genuine novelty of the 

approach proposed by Ferrari et al. (2019) and Viero (2019). In previous SP models, in 

fact, preferential flow directions have been taken into account by introducing directional 

drag terms that essentially rely on model calibration (Velickovic et al., 2017), thus limiting 

the predictive power of the model. In the IP model (Sanders et al., 2008), and in the dual-

IP model as well (Guinot et al., 2017), conveyance porosity is locally defined at the cell 

sides, thus making these models unusually sensitive to the mesh design (Guinot, 2017a). 

In a one-dimensional (1D) framework, the conveyance porosity Ψ is analogous to the 

width ratio of a channel contraction (Defina and Viero, 2010), i.e., it is evaluated as the 

ratio between the width at the narrowest cross-section and the total width. In a two-

dimensional (2D) framework (Figure 1b), the conveyance porosity assumes different 

values for different flow directions. It is then evaluated along the principal directions of 

maximum, L, and minimum, T, conveyance, resulting in the longitudinal, ΨL, and 

transverse, ΨT, conveyance parameters, which are supposed to be mutually orthogonal. 

Finally, the rotation angle between the L-T frame and the x-y model frame is expressed by 

the parameter α (Figure 1b). 

This dual-porosity approach has been implemented in two different 2D hydrodynamic 

models. Ferrari et al. (2019) described the implementation of the subgrid scheme in 

PARFLOOD, a GPU-enhanced Finite Volume model on Cartesian and multi-resolution 

grids (Vacondio et al., 2017, 2014); Viero (2019) described its implementation in 2DEF, a 

Finite Element, mixed Eulerian-Lagrangian model on staggered unstructured meshes 

(D’Alpaos et al., 2007; Defina, 2000; Viero et al., 2014, 2013). In the PARFLOOD and 

2DEF models, the implementation of the dual-porosity model was slightly different: Viero 

(2019) used the conveyance porosity in tensor form to express both acceleration terms and 

friction losses; Ferrari et al. (2019) used the conveyance porosity for friction losses and 

kept the storage porosity for acceleration terms, to retain the general structure of classical 

Finite Volume schemes. To sum up, the implementation of the dual porosity scheme is 

more rigorous in Viero (2019), but the 2DEF model is neither suitable to deal with shock 

waves, nor with rapidly varying flows; on the other hand, although accounting for 

anisotropic effects only through friction losses, the porous version of PARFLOOD 

described in Ferrari et al. (2019) is shock-capturing and suitable for subcritical, 

supercritical, and rapidly-varying flows. Nevertheless, both the schemes were shown to 

provide reasonably good results in their respective field of applications. In the present 

work, the effectiveness of the porosity parameters estimated from building footprints with 

the method described in the following Sect. 3, is tested using the model by Ferrari et al. 

(2019), whose main features are briefly recalled in the following section. 



6 

2.2 The porous version of the PARFLOOD numerical model 

In the PARFLOOD model, according to Ferrari et al. (2019), the four parameters , ΨL, 

ΨT, and α, are introduced in the system of 2D-SWEs written in integral form (Toro, 2001): 

𝑑

𝑑𝑡
∫ 𝐔𝑑𝐴 + ∫ 𝐇 ∙ 𝐧 𝑑𝐶 = ∫ (𝐒0 + 𝐒𝑓 + 𝐒𝑝)𝑑𝐴

𝐴

 
𝐶𝐴

 (1) 

where A and C are the area and the boundary of the integration element, respectively, n is 

the outward unit vector normal to C. The vector of the conserved variables, U, and the 

tensor of fluxes in the x and y directions, H = (F,G), are defined as: 

𝐔 = [

𝜂
𝑢ℎ
𝑣ℎ

] 𝐅 = [

𝑢ℎ

𝑢2ℎ +
1

2
𝑔(𝜂2 − 2𝜂𝑧)

𝑢𝑣ℎ

] 𝐆 = [

𝑣ℎ
𝑢𝑣ℎ

𝑣2ℎ +
1

2
𝑔(𝜂2 − 2𝜂𝑧)

] (2) 

with h the water depth, η the water surface elevation, z the bottom elevation, g the 

gravitational acceleration, u and v the velocity components in the x and y directions, 

respectively. 

The bed slope source term, S0, and the porosity-related non-conservative product, Sp, 

are defined as: 

𝐒0 =

[
 
 
 
 

0

−𝑔𝜂
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−
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(𝑢

𝜕𝜙

𝜕𝑥
+ 𝑣
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𝜕𝑦
)
]
 
 
 
 
 
 

 (3) 

Finally, the friction source term, Sf, is obtained by first projecting the flow velocity on 

the L-T frame and then projecting friction components back to the x-y frame, thus 

accounting for anisotropic conveyance porosity as follows (Ferrari et al., 2019): 

𝐒𝑓 =

[
 
 
 
 
 

0

−𝑔ℎ
𝑛2𝑢𝑒𝐿√𝑢𝑒𝐿

2 + 𝑢𝑒𝑇
2

ℎ
4

3⁄
cos 𝛼 + 𝑔ℎ

𝑛2𝑢𝑒𝑇√𝑢𝑒𝐿
2 + 𝑢𝑒𝑇

2

ℎ
4

3⁄
sin 𝛼

−𝑔ℎ
𝑛2𝑢𝑒𝐿√𝑢𝑒𝐿

2 + 𝑢𝑒𝑇
2

ℎ
4

3⁄
sin 𝛼 − 𝑔ℎ

𝑛2𝑢𝑒𝑇√𝑢𝑒𝐿
2 + 𝑢𝑒𝑇

2

ℎ
4

3⁄
cos𝛼

]
 
 
 
 
 

 
(4) 

where n is the Manning coefficient, 𝑢𝑒𝐿 = 𝑢𝐿 𝜙 Ψ𝐿⁄  and 𝑢𝑒𝑇 = 𝑢𝑇 𝜙 Ψ𝑇 ⁄  are the effective 

velocity components along the L and T directions, respectively. 

As pointed out in Ferrari et al. (2019), the formulation guarantees the well-balancing 

between fluxes and source terms (Liang and Borthwick, 2009), and preserves the C-

property also in presence of wet-dry fronts, regardless the slope source term discretization 

(Liang and Marche, 2009). The numerical fluxes in Eq. (2) are computed at the cell 

interfaces adopting the HLLC approximate Riemann solver (Toro, 2001). A robust 

treatment of non-physical velocities, which may develop at wet-dry fronts, is ensured, with 

a zero-mass error, by adopting the flux correction of Kurganov and Petrova (2007). 
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The numerical scheme achieves both first and second order of accuracy. This last 

approximation in space is ensured by reconstructing the conserved variables at the cell 

edges by means of the linear Monotone Upwind Schemes for Scalar Conservation Laws 

(MUSCL) with minmod limiter (Toro, 1999). The conserved variables are updated at each 

time step according to the second order Runge-Kutta method, providing a second-order 

accuracy in time.  

The set of partial differential equations can be solved on two different structured grids, 

both Cartesian (Vacondio et al., 2014) and multi-resolution Block Uniform Quadtree 

(BUQ, Vacondio et al., 2017). Given that the dual-porosity approach is not over-sensitive 

to the mesh design, it can be safely implemented on structured grids, which cannot be 

adapted to meet the strict requirements of proper mesh design needed by, e.g., IP models 

(Guinot, 2017a). 

With reference to the implementation technique, the explicit finite volume scheme is 

written in CUDA/C++ architecture that exploits parallel computation offered by 

NVIDIATM Graphic Processing Units (GPUs), thus significantly reducing the 

computational time. 

3 A procedure to infer porosity parameters from building footprints 

3.1 Basic principles 

In simulating urban floods with porosity models, the adoption of coarse grids entails an 

unavoidable loss of detail in the representation of the flow field within a urban area, with 

respect to the use of fine grids that resolve buildings explicitly. This loss of detail becomes 

substantial when models are used with uniform porosity distributions within an entire urban 

district, which is the common practice for porosity models in differential form (e.g., Cea 

and Vázquez-Cendón, 2010; Guinot, 2012; Guinot and Soares-Frazão, 2006; Soares-

Frazao et al., 2008). 

To find a reasonable trade-off between computational effort and spatial resolution of 

the flow field description, first, the grid resolution has to be adequate to the length-scale of 

the problem (i.e., comparable to the width of streets and buildings), and second, the porosity 

parameters must reflect the spatial distribution of obstacles and preferential pathways 

within the urban fabric. While the first requirement is relatively easy to meet, the second 

one is actually an open challenge. 

This last issue is here addressed in the framework of the dual-porosity model in 

differential form described in Sect. 2.1. The four porosity parameters required by the model 

are supposed to vary inside the built-up area, so as to account for the spatial distribution of 
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obstacles and preferential flow paths within the urban area. Accordingly, porosity 

parameters are estimated on a genuine cell-by-cell basis. This is expected to improve the 

description of the effects exerted by buildings on the flow field, both close to and inside 

the urban area, at a spatial scale comparable to that of the (relatively) coarse grid. The same 

basic idea has been theoretically supported by Varra et al. (2020), and has been tested by 

Soares-Frazão et al. (2018) in the framework of SP porosity models (plus drag terms in 

tensor form), highlighting the benefits of accounting for distributed porosity based on the 

actual layout of buildings and streets. 

The present method for estimating porosity distributions in real urbanized areas is 

designed to fulfil some basic principles: i) the spatial distribution of the porosity parameters 

should only rely on geometrical information, so as to reduce the successive need of model 

calibration (Arrault et al., 2016), ii) the estimation of porosity parameters should be inferred 

automatically, so as to allow straightforward large-scale model applications, and iii) the 

procedure should be intuitive and controlled by few parameters of clear physical meaning, 

so as to promote easy and trustful use by practitioners. 

3.2 Spatially-distributed porosity fields from urban geometry 

Given a relatively coarse computational grid covering a built-up area, the porosity 

parameters are evaluated by applying the procedure described in the following to each 

computational cell. 

 

Figure 2. For a single computational cell with side length L (thick black square), the 

sketch depicts the general procedure used to evaluate the conveyance porosity for 

three given mean flow directions (identified by the thick double-headed arrow), 

namely αk = 0° (a), αk = 20° (b), and αk = 90° (c). Grey areas denote buildings. 

In extracting the porosity parameters from geometrical information, the computation of 

the storage porosity, ϕ, is straightforward (Figure 1a), whereas estimating conveyance 

porosity effectively is far more complicated, as it requires the joint estimation of the 

principal components and of the associated angles. Indeed, the conveyance porosity is 
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directionally-dependent, and the angles that define the principal directions are not known 

a-priori. 

In general, for a hypothetical mean flow direction at an angle αk to the x axis (double-

headed arrow in Figure 2), the conveyance porosity Ψ(αk) should be estimated as the width 

ratio of the narrowest cross-section, in analogy to the definition of Figure 1b. Then, 

considering that the function Ψ(αk) is periodic with period π, i.e., Ψ(αk) = Ψ(αk + π), the 

function Ψ(αk) should be characterized for (discrete values of) αk in the range [0; π[. Finally, 

once known the behaviour of Ψ(αk), a proper criterion should allow identifying the principal 

components of the conveyance porosity, ΨL and ΨT, along with the angle α that identifies 

the direction of maximum conveyance ΨL (Figure 1b). 

The proposed approach is a step forward with respect to Bruwier et al. (2017), who 

determined the conveyance porosities by evaluating the minimum areas across a coarse cell 

only in the x and y directions. 

The procedure for the computation of the conveyance porosity principal components is 

implemented in two different versions, denoted as segment-based and strip-based methods, 

as described in the following. The code, implemented in Fortran language, is made 

available as supplementary material (see Appendix A). 

 

Figure 3. Segment-based (a) and strip-based (b) methods for computing the 

conveyance porosity for a mean flow direction αk. The thick black square is a 

computational cell with side length L; the grey areas denote buildings. L1 and L2 

denote the occupied parts of the i-th segment or strip (highlighted in dark green). 

3.2.1 Anisotropic conveyance porosity: segment-based method 

The first version of the algorithm that computes the porosity parameters is denoted as 

segment-based method (Figure 3a). It has to be applied to each cell of the computational 

grid, and consists in the following steps: 

1. identify the buildings and obstacles whose footprint intersects the cell; 
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2. compute the storage porosity, ϕ, which is the complement to unity of the fraction of 

cell area occupied by buildings (Figure 1a), using any polygons intersection routine; 

3. span the sampling directions, αk, in the interval [0; π[ as in Figure 2. Given a number 

of directions to be considered, Nα, the angular spacing (in degrees) is α = 180°/ Nα. 

The k-th sampling direction is αk = (k – 1)·α, with k  [1, Nα]. A recommended value 

for α is 1°; 

4. segment sampling. The cell is temporarily rotated by αk and sampled by considering 

Nsg equispaced segments (denoted with index i), with spacing dsg = L /Nsg (Figure 3a); 

5. evaluate the free length for each of the Nsg segments. For each segment i, once detected 

the Nj parts that overlap the building footprints (L1 and L2 in Figure 3a), the total free 

length is computed as 
1

Nfree j
i jj

L L L


  ; 

6. evaluate the conveyance porosity in the αk direction as the ratio of minimum free 

length to segment length,   /min
free
ik

i

L L  . This is a simple estimate of the width 

ratio of the narrowest cross-section for the given mean flow direction; 

7. find the angle α for which the (reciprocally orthogonal) principal components of the 

conveyance porosity ΨL and ΨT are closest to the maximum and minimum values 

among the Nα values of the function Ψ(αk), respectively. The goal is achieved by 

finding αk such that the product  /21
k k

P         is maximum, and setting 

α = αk. Indeed, PΨ attains a maximum when Ψ is large along αk, and small in the 

orthogonal direction, αk + π/2 (see Figure 4f for an example); 

8. determine ΨL and ΨT. Considering that the minimum and maximum values of Ψ(αk) 

are not always orthogonal to each other, a trade-off is needed. The L direction should 

coincide with that of maximum conveyance, α, to preserve the flux alignment in 

preferential pathways (e.g., streets), and ΨT should be taken as the minimum value of 

conveyance to represent blocking features correctly. Accordingly, the conveyance 

parameters are assumed as ΨL = Ψ(α) and ΨT = min[Ψ(αk)]. 

3.2.2 Anisotropic conveyance porosity: strip-based method 

The second version of the algorithm is denoted as strip-based method (Figure 3b). Only 

points 4 and 5 differ from the segment-based method described above: 

4. strip slicing. The cell is temporarily rotated by αk and sliced in Nst strips (denoted with 

index i). Each strip has width dst = L /Nst (Figure 3b, in which Nst = 3 and dst = L/3); 

5. evaluate the free length for each of the Nst strips. For each i-th strip, once found the Nj 

projections on the strip axis of each (part of) building that overlaps the strip (L1 and L2 
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in Figure 3b), the total length of the strip axis, free of any building projection, is 

evaluated as 
1

Nfree j
i jj

L L L


  . 

3.2.3 Graphical representation of the conveyance porosity 

To judge the strengths and weaknesses of the above methods, the first step consists in 

visualizing the algorithm results in terms of directionally dependent conveyance porosity, 

Ψ(αk). To reach the goal, in the figures hereinafter and in the supplementary data (see 

Appendix A), the (coarse) grid is superposed to the building footprints and, for each cell, 

the roseplot of Ψ(αk) is plotted. Considering that Ψ(αk) ranges in the interval [0, 1], for each 

of the Nα sampling directions, the coordinates of the roseplot line vertexes (xRP, yRP) are 

obtained as 

   

   

0.4 cos

0.4 sin

RP C k k

RP C k k

x x L

y y L

  

  

    

    
 (5) 

where (xC, yC) is the cell center, and 0.4 is a coefficient that determines the size of the 

roseplot with respect to the grid size, L. For each cell, two diametral segments are plotted 

that denote the L (blue) and T (red) directions of maximum and minimum conveyance, as 

determined according to points 7 and 8 in Sect. 3.2.1. 

3.3 Considerations on the segment-based and strip-based methods 

This section aims at discussing the pros and cons of the two methods previously 

described.  

The segment-based method is the plainest way to face the problem of conveyance 

porosity evaluation, but it is subject to some limitations. A very small segment spacing, dsg, 

is required to sample the cell in order to capture the possible presence of linear blocking 

features as thin walls (Hodges, 2015). This entails a large number of segments to be 

analyzed, which requires a significant computational effort (even if it is performed only 

once before running the simulation). Most importantly, the free length of each segment, 

free
iL , is estimated regardless of what happens upstream and downstream of the segment 

itself, seldom leading to inconsistencies. This is shown with some examples. 

In Figure 4, a slender building (or a linear blocking feature) is sampled through 

segments (a) and strips (d), for the hypothetical flow direction αk = 90°. The roseplots of 

Ψ(αk) are obtained by analyzing all directions in the range [0, π[. Panels (c) and (f) show 

the trend of Ψ(αk) (green lines), which is then translated by π/2 (grey lines), to obtain its 

complement to one (grey dashed line) and, in turn, the product PΨ(αk) (black dotted line). 
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The longitudinal (L) direction (blue lines in b,c,e,f) is the one that maximizes the product 

PΨ, and the transverse (T) direction (red lines in b,c,e,f) is assumed as orthogonal to L; this 

is the criterion chosen to determine the (most reliable) principal components for 

conveyance Ψ according to point 7 in Sect. 3.2.1. 

In Figure 4, while the segment-based method (a) is unable to recognize the whole width 

of the obstacle (the green segments as far shorter than the total building width), the strip-

based method succeeds since the dark green portion of the strip in (d) is as wide as the 

obstacle. The segment-derived roseplot in (b) shows similar values of Ψ(αk) in the north-

south and in the east-west directions; as a consequence, the criterion based on the product 

PΨ is unable to recognize orthogonal principal directions of maximum and minimum 

conveyance properly (c). The strip-based roseplot (e) shows a significantly lower 

conveyance in the north-south direction and more realistic results also for the entire range 

of directions; this allows detecting the principal directions correctly. 

 

Figure 4. Example of segment-based (upper row) and strip-based (lower row) methods 

applied to a computational cell (thick black square) with a single slender building 

(grey area). Conveyance porosity for a mean flow direction αk = 90° (a, d) and for the 

whole range of flow directions, αk  [0; π[ (b, e). Criterion for detecting the principal 

directions according to point 7 in Sect. 3.2.1 (c, f). The principal directions of 

maximum (blue) and minimum (red) conveyance are shown in panels (b,c,e,f). 

The comparison of panels (c) and (f) in Figure 4 suggests that the criterion to determine 

the principal components, described at point 7 in Sect. 3.2.1, works well when Ψ(αk) shows 

(nearly) orthogonal maxima and minima, otherwise it fails in determining the direction of 
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minimum conveyance (but not the value of minimum conveyance, ΨT, which is chosen 

regardless of the actual value of Ψ in the T direction, according to point 8 in Sect. 3.2.1). 

In Figure 5, the segment- and strip-based methods are applied to the checkerboard 

building arrangement of the Toce experiment (Testa et al., 2007). To obtain accurate results 

in the same urban layout using a coarse grid, Ferrari et al. (2019) highlighted the need of 

using lower values of conveyance porosity than the free length computed for a single row 

of buildings. Indeed, the staggered arrangement of buildings imposes severe, successive 

deviations to the flow, thus increasing the resistances with respect to the case of aligned 

buildings. For this reason, the conveyance porosity computed accounting for a single row 

of buildings is far greater than the effective one. 

 

Figure 5. Example of segment-based (upper row) and strip-based (lower row) methods 

applied to a computational cell (thick black square) with the checkerboard 

arrangement of buildings (grey area) of the Toce experiment. Conveyance porosity 

for a mean flow direction αk = – 8° (a, c) and for the whole range of flow directions, 

αk  [0; π[ (b, d). The principal directions of maximum (blue) and minimum (red) 

conveyance are shown in panels (b) and (d). 

Although the segment-based method is expected to work properly when the grid size is 

comparable to (or smaller than) the size of buildings, when using coarser grids as in Figure 

5a, the segment-based sampling is unable to capture the tortuosity of floodwater pathways 

within the cell, thus overestimating the real conveyance. The strip-based method is 

expected to perform similarly well to the segment-based method for finer grids, and 

significantly better in case of coarser grids (as in the case of Figure 5c). In the considered 
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direction, the strip-based estimate of conveyance porosity accounts for the staggered 

arrangement of buildings, i.e., for the tortuosity of pathways within the cell. The obtained 

value corresponds to the theoretical one, Ψ(–8°) = 0.2 (buildings are 0.15 m wide and 

L = 1.7 m in this case). 

To sum up, the strip-based method improves the estimation of the conveyance porosity 

by considering all the blocking features that overlap a strip orthogonal to the assumed flow 

direction. By increasing the strip width, information is added that concerns the presence of 

obstacles both upstream and downstream. Accordingly, a tortuous path is given a lower 

conveyance porosity than a straight path. 

It is interesting to note that the strip-based method reduces to the segment-based 

method in the limit dst  0, with dst the strip width, thus implying that the segment-based 

method is actually a special case of the more general strip-based method. 

In view of giving some operating instructions on the application of the strip-based 

method, the strip width has to be chosen as large as possible (i.e., dst = L) in order to 

recognize the real direction of preferential pathways (e.g., streets) correctly, and also to 

reflect the tortuosity of floodwater pathways within each single cell. On the other hand, 

when very coarse grids are used to model dense urban layouts with irregularly arranged 

obstacles, the adoption of excessively wide strips may result in a significant 

underestimation of the conveyance porosity. Simply speaking, one can obtain ΨL = ΨT = 0, 

meaning that the flow is inhibited in all directions, also when obstacle interspaces are well 

interconnected. Accordingly, to reflect the connectivity of the urban medium yet avoiding 

misrepresentations, the strip width should be taken larger than the typical length scale of 

the urban layout, although being careful of not exceeding it too much. 

Finally, focusing on the computational efforts required by the two methods, the strip-

based method is generally faster as the number of strips, Nst, is typically much smaller than 

the number of segments, Nsg, implying that the number of line/polygon intersections to be 

computed is largely lower for the strip-based method. Nonetheless, it is worth noting that 

the porosity parameters are evaluated for each cell of the (coarse) grid only once, in a pre-

processing step. The computation of the spatially distributed porosity parameters, for the 

finest meshes of the test cases shown in Sect. 4, is performed in a few minutes, and does 

not affect the simulation runtime. The resulting parameters are kept constant during the 

simulation, thus assuming that both storage and conveyance porosities are not depth-

dependent (Bruwier et al., 2017; Guinot et al., 2018; Li and Hodges, 2019; Özgen et al., 

2016, 2015; Rong et al., 2020). 

4 Results 
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The segment- and strip-based methods presented in Sect. 3 are tested by simulating the 

flooding in a laboratory experiment (the Toce case study, Testa et al., 2007) and in two real 

urban districts. The laboratory experiment with staggered obstacles is chosen because 

previous applications of the porosity model (with a uniform porosity distribution) required 

particular values of porosity parameters, a need that makes not obvious the successful 

application of the present algorithm. Then, since the main novelty of this work is to 

compute the porosity parameters in real urban layouts, two districts in Northern Italy are 

chosen as benchmarks, which are representative of complex urban fabrics with irregular 

shaped buildings and streets, courtyards, gardens walls, etc. 

In all the tests, the spatial distribution of the four porosity parameters is extracted 

geometrically using the two above methods, and the PARFLOOD model is used to solve 

the porous 2D-SWEs with anisotropic friction (see Sect. 2.2). The model results are 

compared against reference, refined solutions, obtained by solving the classical 2D-SWEs 

(again with the PARFLOOD model) on fine grids in which buildings and obstacles are 

explicitly resolved (“building hole” method, Schubert and Sanders, 2012). All the 

simulations were run on a NVIDIA® Tesla® P100 GPU. 

The model sensitivity to the bottom roughness  and to the inflow boundary conditions 

was already addressed in Ferrari et al. (2019). Hence, in this work only the sensitivity of 

the porosity model to the mesh size and to the parameters controlling the computation of 

conveyance is tested. It is well known that the size of the (coarse) grid cells affects the 

accuracy of the numerical solution in terms of flow depth and velocity (Sanders and 

Schubert, 2019); more importantly, in this case the porosity fields are expected to change 

dramatically with the resolution of the (coarse) grid. This is because the number and the 

position of buildings and obstacles within a cell strongly depend on its size and location. 

The goal is to demonstrate that the change of grid resolution and the contextual change in 

the porosity fields lead to similar results, and that these results tend towards the reference 

solution for increasing grid resolutions. 

As a final note, the footprints of buildings and walls are superposed to all the figures 

referring to porous results for facilitating the comparison, even if they are not explicitly 

resolved in the computation. 

4.1 The Toce experimental case study 

Before proceeding with the application to real urban layouts and to the sensitivity 

analysis, the two methods are firstly compared considering the Toce River experiment (EU 

IMPACT project, Testa et al., 2007). The benchmark is a physical model in scale 1:100, 

which reproduces the flooding in the Toce valley (Northern Italy). A checkerboard building 
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layout with 18 square concrete building blocks of 15 cm side length is used to simulate the 

presence of a urban environment. Such a building arrangement has already been discussed 

in Sect. 3.3 and in Figure 5.  

The porosity formulation recalled in Sect. 2.2 was already tested against this 

experimental benchmark using a uniform distribution of porosity parameters (Ferrari et al., 

2019), but the successful application of the model required a particular value of conveyance 

porosity, obtained by collapsing two consecutive rows of buildings. Hence, it is not obvious 

that the algorithm for porosity computation is able to extract effective porosity distributions 

for the same schematic (but not trivial) building layout. 

In the simulations, the initially dry domain is flooded by a 60 s long high inflow 

discharge entering the river (Testa et al., 2007), and a free outflow condition is specified at 

the end of the valley reach. The domain is characterized by a Manning roughness 

coefficient equal to n = 0.0162 m-1/3s (Testa et al., 2007). In the reference solution, buildings 

are explicitly resolved on a Cartesian grid with square cells of size Δx = 1 cm; the segment- 

and strip-based methods are used for the porous configuration with Δx = 5 cm. Conveyance 

porosity is computed considering either a segment spacing dsg = 5 mm or a strip with 

dst = L =5 cm. 

 

Figure 6. Toce River test. Water depths at t=14 s. In background the bathymetry. The 

location of the gauge points is also reported. 
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Figure 7. Toce River test. Water velocity at t=14 s. In background the bathymetry. 
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Figure 8. Toce River test. Water depths time series at gauge locations: comparison 

between the measured values and the results obtained with resolved buildings (red 

lines), the strip-based (blue lines) and the segment-based (pink lines) porosity 

parameters. 
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The water depths and velocities provided by the different methods are compared in 

Figure 6 (water depth) and Figure 7 (velocity) at time t = 14 s. The comparison shows that 

both the segment- and strip-based methods allow reproducing the hydraulic jump that forms 

just upstream the obstacles and main flow features correctly. In particular, the velocity 

maps shown in Figure 7 highlight that the adoption of spatial distributed porosity fields 

allows describing the flow field variability within the urban area, and not only its effect on 

the external flow field (as in uniform porosity applications, Ferrari et al., 2019). 

Figure 8 compares the water level time series recorded at gauge locations (Alcrudo et 

al., 2002; Testa et al., 2007) with those simulated by explicitly resolving the buildings and 

with the porosity parameters obtained with the strip- and segment-based methods. All the 

approaches provide similar results and show a generally good agreement with the measured 

values. Importantly, the use of spatially distributed porosity fields improves the model 

results, at the internal points P5 and P6, with respect to the uniform porosity parameters 

assumed in Ferrari et al. (2019).  

The segment- and strip-based methods provide very similar results in this case; this is 

expected (see Sect. 3.3) considering that the resolution of the coarse grid (5 cm) is smaller 

than the geometrical length scale of the problem (buildings size is 15 × 15 cm). 

As discussed in Sect. 3.3, and in agreement with the schematic examples of Figure 4 

and Figure 5, the strip-based method tends to provide lower values for ΨT than the segment-

based method, resulting in slightly more dissipative scenarios; this is confirmed by the 

slightly larger water depths obtained with the strip-based method. 

4.2 The Spinea district case study 

The first real urban layout here analyzed is a district in the town of Spinea, in Northern 

Italy (Figure 9). This middle-density area presents different-shaped buildings, which are 

separated one another by small walls, surrounded by gardens and courtyards, which act as 

temporally storage areas during flooding (Viero, 2019). 
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Figure 9. Spinea test. Bathymetry with the urban layout (dimensions in m). 

In the simulations, the domain is characterized by a bottom slope of 0.09% (southward) 

and a Manning roughness coefficient n = 0.029 m1/3s. The domain is initially dry; in the 

central 50 m of the northern edge, an inflow boundary condition is prescribed in the form 

of a 2-hours Gamma-distributed flood wave (Figure 10), with a peak value of about 

600 m3/s. Free outflow is assumed at the southern edge. 

 

Figure 10. Spinea test. Inflow boundary condition. 

The computational domain is discretized using a Cartesian grid with square cells of size 

Δx = 0.5 m for the refined solution, and Δx = 2, 5, 10, 20 and 50 m for the porous 

simulations. The porous tests adopt the porosity fields resulting from both the segment- and 

strip-based methods (for this latter case, different strip widths are considered). The main 

features of the simulations are reported in Table 1. 

The model results, at the arrival of the flood peak (≈ 0.6 h), are shown in Figure 11 

(water depths) and Figure 12 (velocity fields), for the reference simulation and for the 

porous applications with Δx = 5 m and 20 m. Looking at the maps as a whole, it emerges 
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that the adoption of spatially distributed porosity parameters allows capturing the most 

relevant features of flooding both outside and inside the urbanized area. In terms of water 

depths (Figure 11), the porosity schemes capture the rise of the water depths north of the 

built-up area (orange-red zone) and the downstream drop (purple-blue zone south-east), 

with a slight loss of accuracy associated to grid coarsening (passing from ID:4 to ID:10 or, 

equivalently, from ID:5 to ID:13). In terms of velocity fields (Figure 12), the porosity 

schemes well capture the high velocity zone at the northern edge (orange-red), the middle 

one at west (green), and the low one at south-east (purple-blue). Differences with the 

reference solution can be found, essentially in terms of velocity, in external areas at the 

beginning or end of streets, due to the presence of singularities that only a resolved scheme 

on a fine mesh can capture properly. 

The comparison of large-scale maps shows that the porosity fields provided by the 

segment- and by the strip-based methods, as for example test ID:4 or ID:10 (segments) 

against test ID:5 or ID:13 (strips), produce negligible differences in the simulated flow 

fields for grid resolutions of 5 and 20 m. 

 

Figure 11. Spinea test. Water depth at the flood peak for the simulations with resolved 

buildings (ID:1), with porosity parameters evaluated using the segment-based method 

with Δx = 5 m (ID:4) and Δx = 20 m (ID:10), and the strip-based one with Δx = 5 m 

(ID:5) and Δx = 20 m (ID:13). 
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Figure 12. Spinea test. Velocity field at the flood peak for the simulations with 

resolved buildings (ID:1), with porosity parameters evaluated using the segment-

based method with Δx = 5 m (ID:4) and Δx = 20 m (ID:10), and the strip-based one 

with Δx = 5 m (ID:5) and Δx = 20 m (ID:13). 

Obviously, the results depend on the grid resolution: the simulations with Δx = 5 m 

(ID:4, ID:5) agree with the reference solution (ID:1) better than the ones with Δx = 20 m 

(ID:10, ID:13). The choice of a proper grid resolution is thus related to the flow field 

definition needed by the modeler, and not to specific requirements of the porosity approach. 

Besides the large-scale analysis of the flow field around the built-up area, interesting 

information can be gained by looking at the inner velocity fields (Figure 13). As mentioned 

at the beginning of Sect. 3.1, the use of porosity models entails an unavoidable loss of 

details in the flow field within the urban area, essentially due to the adoption of coarse 

meshes in which buildings are not resolved explicitly. Nonetheless, the zoom view of 

Figure 13 shows that the use of spatially distributed porosity fields, evaluated with the 

methods of Sect. 3.2, allows reproducing the flow concentration along the main streets. 

Expectedly, the velocity values obtained in the reference solution (ID:1, with Δx = 0.5 m) 

cannot be captured accurately with grids that are at least one order of magnitude coarser 

(Δx ≥ 5 m). 

The comparison of ID:10 and ID:13 maps in Figure 13 shows that, for coarser grids, 

the strip-based method describes the blocking effects exerted by buildings and garden walls 

better than the segment-based method; indeed, in the western part of the built-up area, flow 

velocity is lower in ID:13 (purple colors) than in ID:10 (blue colors). 
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Figure 13. Spinea test. Zoom view of the velocity fields shown in Figure 12. 

For the same time instant, Figure 14 compares the total depth indicator, which accounts 

for simultaneous water depth and velocity, representing the water depth at rest, D, whose 

static force is equivalent to the total force of the flow (Aureli et al., 2008; Ferrari et al., 

2019) according to:  

𝐷 = ℎ√1 + 2𝐹 (6) 

where h represents the water depth and F the Froude number. The partition showed in the 

low-left panel of Figure 14 allows for the definition of the following classes: low 

(0 D < 0.5 m), medium (0.5  D < 1 m), high (1  D < 1.5 m) and very high (D  1.5 m). 

Focusing on the effects exerted by the built-up area on the neighbouring ones, Figure 

14 highlights that the porosity results well match with the reference one. Moreover, the 

porous scenarios capture the upper zone with high hazard level inside the urban patch, 

whereas they slightly overestimate the medium rank in the middle of the urban area. 
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Figure 14. Spinea test. Total depth at the flood peak for the simulations with resolved 

buildings (ID:1), with porosity parameters evaluated using the segment-based method 

with Δx = 5 m (ID:4) and Δx = 20 m (ID:10), and the strip-based one with Δx = 5 m 

(ID: 5) and Δx = 20 m (ID:13). The h-|v| plane relating the maximum total depth and 

the hazard degree is reported in the low left panel. 

A more systematic analysis of the model performance, for all the simulations run, is 

carried out by quantifying the L2 error norm for the maximum water depth and the 

maximum velocity, according to: 
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   (7) 

where N denotes the number of computational cells, f is the variable of interest (maximum 

water depth, hmax, or velocity magnitude, umax), “por” and “res” subscripts identify the 

porous and reference solutions, respectively. 

The analysis of error norms, reported in Table 1, gives further insights. The capability 

of both the segment- and strip-based methods in extracting reliable porosity parameters is 

confirmed by the relatively small values assumed by the error norms. Importantly, smaller 

error norms are obtained by increasing the grid resolution, indicating that the coarse 

solutions tend to the reference solution. The error norms increase significantly when 

passing from Δx ≤ 20 m to Δx = 50 m, confirming the importance of choosing the grid size 

carefully on the base of the length-scale of the problem; in this case Δx = 50 m denotes a 

cell size two order of magnitude larger than the reference one, and five times larger than 

the typical street width, which is about 10 m in this test (Figure 9). For a given grid 

resolution, the errors associated to the different methods (segments or strips) are similar to 
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each other for finer grids, whereas the strip-based method performs slightly better in the 

case of coarser grids (i.e., in line with the reasoning reported in Sect. 3.3). 

Table 1. Spinea test. Simulation ID, modelling approach for the built-up area, method 

use for evaluating the porosity parameters, cell size Δx, cell number, run time trun, 

norm of the maximum water depth L2(hmax) and of the maximum velocity L2(umax). 

ID Building 

modelling 

Method Δx  

(m) 
# cells 

(103) 

trun  

(min) 

L2(hmax) 

(m) 

L2(umax) 

(m∙s-1) 

1 Resolved - 0.5 7045.4 119.47 - - 

2 Porosity Segment 2 441.35 2.53 0.087 0.115 

3 Porosity Strip (2 m) 2 441.35 2.42 0.087 0.115 

4 Porosity Segment 5 70.94 0.24 0.087 0.127 

5 Porosity Strip (5 m) 5 70.94 0.25 0.090 0.126 

6 Porosity Segment 10 17.87 0.06 0.090 0.151 

7 Porosity Strip (1 m) 10 17.87 0.07 0.090 0.142 

8 Porosity Strip (2 m) 10 17.87 0.07 0.088 0.142 

9 Porosity Strip (10 m) 10 17.87 0.06 0.086 0.142 

10 Porosity Segment 20 4.54 0.03 0.096 0.179 

11 Porosity Strip (2 m) 20 4.54 0.03 0.095 0.180 

12 Porosity Strip (10 m) 20 4.54 0.03 0.095 0.174 

13 Porosity Strip (20 m) 20 4.54 0.03 0.092 0.174 

14 Porosity Segment 50 0.76 0.01 0.118 0.240 

15 Porosity Strip (10 m) 50 0.76 0.01 0.110 0.218 

16 Porosity Strip (50 m) 50 0.76 0.01 0.101 0.218 

 

Finally, it is relevant to notice the high reduction of the runtimes that can be achieved 

in the porous simulations. As an example, the cases ID:2 and ID:3, which adopt the finest 

mesh here used for the porous simulations (Δx = 2 m), run about 48 times faster than the 

simulation with resolved buildings (ID:1, 119.5/2.5). This gap enlarges up to two order of 

magnitude when using coarser meshes (e.g., 119.5/0.03).  

4.3 The Palmanova town case study 

The third model application deals with the modelling of a flood wave in a radial city as 

that of Palmanova (Northern Italy), in which buildings and streets converge to a central 

hexagon square (Figure 15). The goal is validating the effectiveness of the spatial 

distribution of porosity parameters, provided by the algorithms of Sect. 3.2, also in a real 

urban area characterized by a non-conventional building alignment. 
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Figure 15. Aerial view of the Palmanova town in Northern Italy, a particular example 

of radial city planning.  

The domain, which is shown in Figure 16, is given a southward bottom slope of 0.08%. 

In the simulations, a Manning roughness coefficient n = 0.029 m1/3s is assumed. As in the 

previous test, the initially dry domain is flooded by the 2 h long, Gamma-distributed flood 

wave shown in Figure 10; the upstream inflow boundary condition is prescribed in the 

central 50 m of the northern edge of the domain. Free outflow is assumed at the southern 

edge. 

A Cartesian grid with square cells of size Δx = 0.4 m is used to discretize the domain 

for the reference solution with resolved buildings, and Δx = 2, 5, 10 and 20 m for the porous 

simulations. Again, the porous tests adopt the porosity fields resulting from both the 

segment- and strip-based methods and, for this latter case, different strip widths are 

considered. The main features of the simulations are reported in Table 2. 
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Figure 16. Palmanova test. Bathymetry with footprints of buildings and garden walls 

(dimensions in m). 

 

Figure 17. Palmanova test. Water depth at the flood peak for the simulations with 

resolved buildings (ID:1), with porosity parameters evaluated using the segment-

based method with Δx = 5 m (ID:4) and Δx = 20 m (ID:8), and the strip-based one 

with Δx = 5 m (ID:5) and Δx = 20 m (ID:10). 

Analogously to the previous test, the model results at the arrival of the flood peak 

(≈ 0.6 h) are shown in Figure 17 (water depths) and Figure 18 (velocity fields), for the 

reference simulation and for the porous applications with Δx = 5 m and 20 m. Compared 

with the reference solution (ID:1), the anisotropic porous solutions on the Δx = 5 m grid 

(ID:4 and ID:5) well capture the deeper water depths at the entrance of the urban area 

(yellow-orange values), the flooding characteristics in the north part of the built-up zone 

(green values), and the low depth zone at south (purple values). Moreover, also for this 

urban layout, the segment- and strip-based methods show minimal differences with 

Δx = 5 m and 20 m. For both the methods, the use of a coarser mesh size (Δx = 20 m in 

ID:8 and ID:10) entails an excessive increment of the water depth inside the urban area 

(norther part) and, for this reason, it seems less adequate to model this scenario accurately. 

A look at the velocity fields in Figure 18 confirms that the results with Δx = 5 m (ID:4 

and ID:5) match the reference solution (ID:1) well; the high flow velocity zone in the north 

part of the domain (orange-red values) and the medium one in the upstream semicircle 

(green zone) is captured quite accurately. The Δx = 20 m grid confirms a loss of accuracy. 
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Figure 18. Palmanova test. Velocity field at the flood peak for the simulations with 

resolved buildings (ID:1), with porosity parameters evaluated using the segment-

based method with Δx = 5 m (ID:4) and Δx = 20 m (ID:8), and the strip-based one 

with Δx = 5 m (ID:5) and Δx = 20 m (ID:10). 

Importantly, the detailed view in Figure 19 reveals that the porous modelling allows 

for partially reproducing the flow field variability within the built-up area (ID: 4 and ID:5). 

Although only the high-resolution reference solution (ID:1) succeeds in modelling the flow 

field among small pathways, also the coarse grid allows identifying some preferential flow 

directions, with pathways characterized by larger flow velocities.  
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Figure 19. Palmanova test. Zoom view of the velocity fields shown in Figure 18. 

 

Figure 20. Palmanova test. Total depth at the flood peak for the simulations with 

resolved buildings (ID:1), with porosity parameters evaluated using the segment-

based method with Δx = 5 m (ID:4) and Δx = 20 m (ID:8), and the strip-based one 

with Δx = 5 m (ID:5) and Δx = 20 m (ID:10). The h-|v| plane relating the maximum 

total depth and the hazard degree is reported in the low left panel. 
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For the same time instant, Figure 20 compares the total depth indicator of Eq. (6) 

obtained from the different scenarios. The use of Δx = 5 m grid resolution allows capturing 

the overall hazard rank regardless of the method used to extract the porosity fields, 

implying that such a grid size is suitable given the typical length scale of the problem. With 

the Δx = 20 m grid, the segment-based method leads to an overestimation of the high hazard 

level in the north, whereas the strip-based method still provides accurate results, confirming 

that the strip-based method performs better on coarse grids. 

With the aim of analyzing the model results quantitatively, the L2 error norms are 

evaluated according to Eq. (7) for both the maximum water depth and velocity magnitude 

(Table 2). The analysis leads to the same conclusions as in the Spinea test; model errors do 

not vary with the chosen algorithm (segment- or strip-based) significantly for lower mesh 

sizes, whereas the strip-based method is better suited for coarser grids. Moreover, when the 

mesh size is relatively large (e.g., Δx = 20 m), the errors increase significantly, essentially 

for the loss of details in describing the flow field within the built-up area. 

Table 2. Palmanova test. Simulation ID, modelling approach for the built-up area, 

method for evaluating the porosity parameters, cell size Δx, cell number, run time trun, 

norm of the maximum water depth L2(hmax) and of the maximum velocity L2(umax).  

ID Building 

modelling 

Method Δx  

(m) 
# cells 

(103) 

trun (min) L2(hmax) 

 (m) 

L2(umax)  

(m∙s-1) 

1 Resolved - 0.4 12007.0 250.56 - - 

2 Porosity Segment 2 481.40 2.78 0.070 0.156 

3 Porosity Strip (2 m) 2 481.40 2.84 0.063 0.144 

4 Porosity Segment 5 77.36 0.26 0.077 0.202 

5 Porosity Strip (5 m) 5 77.36 0.26 0.066 0.176 

6 Porosity Segment 10 19.48 0.07 0.084 0.250 

7 Porosity Strip (10 m) 10 19.48 0.07 0.074 0.214 

8 Porosity Segment 20 4.94 0.03 0.104 0.283 

9 Porosity Strip (10 m) 20 4.94 0.03 0.088 0.267 

10 Porosity Strip (20 m) 20 4.94 0.03 0.086 0.271 

 

Finally, the analysis of the runtimes reported in Table 2 further confirms the great 

advantage of the porous approach with respect to the explicit solution of buildings. For 

example, looking at cases ID:2 and ID:3 that still adopt a relatively fine grid (Δx = 2 m), 

the computational burden is reduced up to 90 times if compared with the resolved 

simulation (250.56/2.78). 
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5 Discussion and Conclusions 

The present work dealt with a method to extract the spatial distribution of porosity 

parameters from building and obstacle footprints, to be used in the dual porosity model 

proposed by Viero (2019) and by Ferrari et al. (2019). A Fortran implementation of the 

algorithm is available, in a permanent repository, for free download and use (detailed 

information in Appendix A). 

The key feature of the proposed method is the computation of the direction dependent 

conveyance porosity, which is performed by analysing the connectivity and the presence 

of preferential pathways within the cell, and not only at cell edges as in Integral Porosity 

models (Guinot et al., 2017; Sanders et al., 2008). 

The effectiveness of the implemented method was assessed first by visual inspection, 

superposing the roseplots of conveyance porosity to the building footprints, to check the 

algorithm ability in detecting obstructions and preferential pathways correctly. Then, the 

porosity fields provided by the algorithm were used to simulate the flooding of 

experimental and real urban layouts with the porous version of the PARFLOOD model; the 

results were found to compare well with the reference solutions obtained using refined grids 

with explicitly resolved buildings. 

The proposed method proved able to account for the presence of blocking features, 

which are known to affect the flow field substantially (Hodges, 2015; Li and Hodges, 

2019), as well as for the role of large streets as preferential pathways and global flow pattern 

separators (Chen et al., 2018). The model application to experimental and real case studies 

suggests that the effects of restrictions are fairly reproduced, despite they are modelled 

through a modification of friction resistance only (Li and Hodges, 2020). 

Notwithstanding the considerable variability of porosity fields with the grid resolution, 

the results in terms of flow field characteristics (water depths and velocities) were limited 

to the expected loss of accuracy associated with grid coarsening, confirming the substantial 

independence of the porosity approach to the computational grid. 

It’s worth stressing that the proposed method was conceived in the framework of large-

scale, subgrid modelling of major flooding events in urbanized areas. Specific attention 

was paid to reproduce the effects exerted by the main obstacles that characterize complex 

urban layouts; urban micro-features, which can significantly influence the simulated 

inundation extent and depth (Mignot et al., 2013; Wang et al., 2018; Yu and Lane, 2011), 

were not considered for now. 

As a final note, Viero (2019) warned that assuming the existence of two, reciprocally 

orthogonal, principal directions for the conveyance porosity is likely too simplistic to 

capture the complexity of real urban settlements under general conditions. The application 

of the methods presented above shows that the cell conveyance is well represented by the 
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tensor formulation with two reciprocally orthogonal principal directions, in particular when 

it is mainly determined by the presence of a single dominant obstacle. On the contrary, in 

the presence of multiple (either aligned or staggered) obstacles within a cell, the 

conveyance function Ψ(α) presents multiple maxima and minima (for example, see the 

three local maxima in the green roseplot of Figure 5d), which reveal the presence of 

multiple preferential pathways along different directions. In such cases, the tensor 

formulation proposed by Viero (2019) and Ferrari et al. (2019) cannot reproduce the 

peculiar behaviours of Ψ(α) properly. In assessing the case of aligned buildings, Velickovic 

et al. (2017) proposed to use drag terms along with suitable amplification coefficients 

depending on the flow direction, a solution then questioned by Guinot (2017b). Alternative 

formulations of the porosity model should be explored to this purpose. 
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Appendix A. Algorithm for porosity computation 

A Fortran implementation of the algorithm for computing the spatial distribution of the 

four porosity parameters is made available for free download and use in a permanent 

repository (http://dx.doi.org/10.17632/47ypvbx9vm.1). The repository also contains the 

input (and some output) files for the three case studies analyzed in the paper, as applicative 

examples. 

The code reads geometric data of the polygon footprints in vector form from a .BLN 

file (Surfer ASCII), and the characteristics (cell size, location, and extent) of the numerical 

grid in the form of an .ASC (ESRI ASCII) file header. The output files are put in a specific 

subfolder, whose name includes the .ASC filename, the method used (segments or strips), 

and the value of segment spacing or strip width. As output files, the code can produce: 

 four .xyz files (ASCII) with the coordinates of the cell center and the specific porosity 

parameter (one file per each parameter); 

 four .ASC file (ESRI ASCII) with the spatial distribution of the specific porosity 

parameter (one file per each parameter, same information as in the above .xyz files); 

http://dx.doi.org/10.17632/47ypvbx9vm.1
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 one .DXF file (AutoCAD ASCII) with building footprints, grid cells, conveyance 

roseplots, segments identifying the L and T principal directions; 

 one .BLN file (Surfer ASCII) with building footprints, grid cells, conveyance 

roseplots, segments identifying the L and T principal directions; 

 one .CNT file (ASCII, similar to the BLN format) with building footprints, grid cells, 

conveyance roseplots, segments identifying the L and T principal directions. 

A configuration file in text format, to be placed in the same folder of the executable, 

allows choosing the output files to be produced; if the code cannot find this file, it will 

produce all the output files. 

The code contains some optimizations that allow for a fast porosity computation. First, 

the polygons identifying the building footprints are ordered according to the x coordinate. 

Then, for each grid cell, the code identifies the (potentially) overlapping polygons, and 

processes only these ones in order to compute the storage and the conveyance porosity. 

The algorithm performs the operations described in Sect. 3.2. Some additional details 

concerning the point n. 5 of the algorithm are given herein. With reference to the segment-

based method (Sect. 3.2.1), the code performs the following operations: 

5a) search all the intersection points between the sampling segment and the sides of the 

obstacle footprints. If no intersections are found, check if the whole segment is 

contained within any polygon (this occurs if the segment center falls within at least 

one polygon): if so, the free length is zero; otherwise, the algorithm continues as 

follows; 

5b) order the intersection points based on the distance from the first endpoint of the 

sampling segment; 

5c) check if each part of the sampling segment, between two consecutive intersection 

points, is contained within a polygon (i.e., the segment part overlaps a building 

footprint), to determined possible polygon overlapping; 

5d) the free length of the segment is obtained by subtracting the length of all the 

overlapping parts, taking care of accounting for multiple overlapping only once (this 

may occur in the case of duplicated polygons). 

Similarly, with reference to the strip-based method (Sect. 3.2.2), the code performs the 

following operations: 

5a) search all the intersections between the strip edges and the sides of the obstacle 

footprints. If no intersections are found, check if the whole strip is contained within 

any polygon (this occurs if the strip center falls within at least one polygon): if so, 

the free length is zero; otherwise, the algorithm continues as follows; 
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5b) compute the projection of the intersections on the strip axis (starting and ending 

points for each projection). The projections are marked as “overlapping parts” of the 

strip axes; 

5c) order the projections based on the distance from the first endpoint of the sampling 

segment to the starting point of the projection; 

5d) check if each part of the strip axis, which is free of intersection projections, is 

contained within a polygon. If so, also these parts of strip axis are marked as 

“overlapping parts”; 

5e) the free length of the strip axis is obtained by subtracting the length of all the 

“overlapping parts”, taking care of accounting for multiple overlapping only once 

(this may occur in the case of duplicated polygons or, more frequently, when 

different polygons intersect a single strip, and only the projections on the strip axis 

overlap). 
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Abstract 

In the framework of porosity models for large-scale urban floods, this work presents a 

method to compute the spatial distribution of the porosity parameters of complex urban 

areas by analyzing the footprints of buildings and obstacles. Precisely, an algorithm is 

described that estimates the four parameters required by the differential, dual-porosity 

formulation recently presented by Viero (2019) [J. Hydrol. 568, 247-259] and by Ferrari et 

al. (2019) [Adv. Water Resour. 125, 98-113]; in this formulation, beside the common 

isotropic porosity accounting for the reduced storage volume due to buildings, a cell-based 

conveyance porosity is introduced in the momentum equations in tensor form to model 

anisotropic resistances and alterations in the flow direction due to presence of preferential 

pathways such as streets. A cell-averaged description of the spatial connectivity in the 

urban medium and of the preferential flow directions is the main ingredient for robust and 

mesh-independent estimates. To achieve this goal, the algorithm here presented 

automatically extracts the spatially distributed porosity fields of urban layouts relying only 

on geometrical information, thus avoiding additional calibration effort. The proposed 

method is described with the aid of schematic applications and then tested by simulating 

the flooding of real, complex urban areas using structured Cartesian grids. A Fortran 

implementation of the algorithm is made available for free download and use. 
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