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Abstract

In this paper we show how to apply the sufficient conditions to a
simple infinite-horizon linear-quadratic age-structured optimal control
problem. Our approach is based on the current-value Hamiltonian and
it leads us to study a linear system of PDEs. Using the standard theory
of Riccati equation we can simplify this problem decoupling the system
of PDEs. When the model is autonomous, this theory allows us to find
the optimal equilibrium by a Riccati ODE. This approach can be the
starting point to face linear-quadratic age-structured differential games.
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1 Introduction

Age is one of the most natural and important parameters in structuring dynam-
ics. Many internal variables at the individual level are intimately dependent
on age. For a long time, the interest in age structure was restricted to demog-
raphy, but nowadays it plays a fundamental role in other fields such as Ecology,
Epidemiology, Biology, and even Economics. Age-structured models have been
used to formalize and solve optimal control problems in different fields: e.g.
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drug initiation [1], dynamic advertising [8], vintage capital [6], immigration
policies [14], and population dynamics [2], [10] .

Necessary conditions have been introduced and applied to analyze different
kinds of models, see e.g. [5] and [15]. Mangasarian-type sufficient conditions
for age-structured optimal control problems are presented by Krastev in [11],
and Arrow-type sufficient conditions are described in [12]. Moreover, in [3]
sufficient conditions using the current-value Hamiltonian are designed to solve
a typical age-structured optimal control problem with a discount factor in the
objective functional.

The class of linear-quadratic (LQ) optimal control problems, i.e. the opti-
mal control of linear systems with a quadratic cost function, can model many
problems in applications, and many nonlinear control problems can be rea-
sonably approximated by LQ problems. Moreover, solutions of L problems
exhibit elegant properties due to their simple and nice structures. This topic
has been extensively studied in the literature, characterizing the optimal so-
lutions in different contexts: continuous, discrete, finite and infinite-horizon,
deterministic and stochastic, see e.g. [7] and [4].

In this paper, we tackle a linear-quadratic age-structured optimal control
problem, over an infinite-horizon with a discount factor in the objective func-
tional. Initially, we apply the sufficient conditions based on the current-value
Hamiltonian for an age-dependent optimal control problem as described in [3].
In order to find an optimal control we have to solve a linear system of PDEs.
Using the standard theory of Riccati equation we show that the obtained linear
system of PDEs can be decoupled. This approach is useful if we want to find
an equilibrium point for an autonomous model because the solution is reduced
to the analysis of a Riccati ODE.

The paper is organized as follows: In Section 2 we introduce the linear-
quadratic age-structured optimal control problem we are dealing with. In
Section 3 we characterize the optimal solution throughout the sufficient con-
ditions based on the current value Hamiltonian. Finally, Section 4 concludes
the paper with some suggestions about the further research on this field.

2 LQ age-structured optimal control problem

Let us consider the following quadratic objective functional to be maximized

J(u):/0+oo /Ow e Pt {#yQ (t,a)+¥u2(t,a) da dt. (1)

The LQ age-structured dynamics of the problem is quite simple: The state
variable y (t,a) evolves according to the following linear autonomous partial
differential equation

Oy (t,a) + Oy (1, a) = ala)y (t, a) + Bla)u(t, a). (2)
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The initial condition for all a € [0,w] is represented by the boundary condition

y(0,a) =~(a), (3)
while the boundary condition at zero age for all ¢t € (0, +00) is described by
y (£,0) = o(t). (4)

The motion equation is linear both in the state and in the control, hence, for
any control u(t,a) € C°([0, +00) X [0, w]; R) there exists a unique state function
y (t,a) defined in [0, +00) x [0,w] that satisfies (2), (3), and (4).

For the reader’s convenience we sketch the procedure that allows to find
the state function associated to a given control. The inflow characteristics
associated with the PDE (2) are the lines a = t+ay for any ag € R; hence, using
the information on the segment {0} x [0, w] and on the semi-axis (0, +00) x {0},
we can find a solution of (2) by the method of characteristics [13, Ch.4, p.165].
Let P = (t,a) be a point in the domain of the state function and let u(t,a) €
C°(]0, +00) x [0,w]; R) be a feasible control.

If ¢ < a then the characteristic line passing through point P has equation:
0 = (s—1t)+a. When s = 0, this characteristic line assumes the following
form: 0 = —t 4+ a > 0. Hence, if we define the function z(s) = y(s, s — t + a),
then its derivative w.r.t. s is

(s) =y(s,s—t+a)+yas,s—t+a) (5)

=a(s—t+a)x(s)+p(s—t+a)u(s,s —t+a),

and the initial condition becomes z(0) = y(0,a — t) = v(a — t) because of
boundary condition (3) given on the segment {0} x [0,w]. The solution of the
motion equation for ¢ < a can be obtained by the substitution x(t) = y(¢,a),
therefore

t

y(t,a)=elo O‘(’””“)d”{/ﬁ(r—t +a)u(r,r —t+a)e” Jo a(H“)dvdH—fy(a—t)} :
0

(6)

On the other hand, if ¢ > a, then the differential equation for the function
z(s) = y(s,s —t+a) remains (5), but the initial condition becomes x(t —a) :=
y(t—a,0) = 6(t—a), because we are using the boundary condition (4) given on
the semi-axis (0, 4+00) x {0}. After some algebraic manipulations, the solution
of the motion equation for ¢ > a becomes

y(t,a) = elo a0dr {/a B(ryu(r +t — a,r)e Jo e ar 4 5t — a)} . (7
0

So that, for any feasible control the explicit solution of the motion equation
can be represented using the variation of constants formula, more precisely
(6) for t < a, and (7) for t > a respectively. We notice that: if y(a) €
C°([0,w],R) and 6(t) € C°((0,+00),R) then the solution of (2), (3), and (4)
is a differentiable function except in the points of the line a = t where the
function is discontinuous when (0) # limy o+ 0(%).
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3 Sufficient conditions

In order to characterize an optimal solution of the age-structured optimal
control problem (1), (2), (3), and (4), we want to use the sufficient conditions
described in [3].

Theorem 3.1. Let us assume that we can find a solution (y*(t,a), ¢*(t,a))
for the following linear system of PDEs

Oy (t,a) + Oy (t,a) = ala)y (t,a) — q(t,a)F*(a) /¢ (a)

0q (t a) + 0aq (tv(Z) ( )y( aa) ( ( ))Q( 7a) (8)
y(0,a) =v(a),  y(t0)=46()

q( w) =0, |q(t,a)] <M Vte|0,+0),Va € [0,w]

Ife(a) <0 and ((a) <0 for all a € [0,w], then the function

. ¢ (t,a)B(a)
u*(t,a) = ———————= 9
(ta) = - L52) Q
is an optimal control of the problem with motion equation (2), boundary con-
ditions (3), (4), and objective functional (1).

Proof We want to apply Theorem 3.2 proved in [3]. Using the same notation,
let us introduce the current value Hamiltonian

sy, @y, (a(a)y + Bla)u) .

Hi(a,u,y,q) = 5 5

We notice that the function

tlovyd =L

is well-defined and it is a maximum for the current value Hamiltonian w.r.t.
the variable u because ((a) < 0 for all a € [0,w]. With abuse of notation,
writing ¢* instead of ¢*(¢, a), function

H(a,u¥[a,y,q"],y,q") = 5 YT

is concave w.r.t. the variable y because € (a) < 0 for all a € [0,w]. B

We observe that (8) is a linear system of PDEs. We can decouple this system
using the standard technique associated to the Riccati equation.
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Theorem 3.2. Let us assume that we can find a solution (y*(t,a), ¢*(t,a))
for the system of PDFEs

Oy (t,a) + Oy (t,a) = (afa) — ¢(t,a)5*(a)/C(a)) y (t,a)
t

Oup (t, a) + Ougp (t,a) = ¢* (t,a) 57(a)/C(a) — (2a(a) = p) ¢ (1, a) — £(a)
y(0,a) =~(a),  y(t0)=20()
o(t,w) =0, lp(t,a)y (t,a)| < MVt €[0,400),Va € [0,w] 0
10
Ife(a) <0 and {(a) <0 for all a € [0,w], then the function
e a1 -

¢(a)
is an optimal control for the problem with motion equation (2), with boundary
conditions (3), (4), and with objective functional (1).

Proof With abuse of notation, we write y*, ¢*, ¢* instead of y*(¢,a), ¢*(t,a),
©*(t,a). Let us assume that (y*, ¢*) is a solution of (10), in order to prove
the thesis, we have to show that (y*, ¢*), with ¢*=¢*y*, is a solution of (8).
We notice that the first equation in the system (10) is equivalent to the first
equation in the system (8). From the definition of ¢*, the following expression
on the derivatives holds

Nq" + 0uq” = (0™ + 0up™) y* + 0" (Ory" + 0uy™) -
Using (10), we obtain that 0,q* + 0,¢* is equal to

((¢)” B*(a)/¢(a) = (2a(a) = p) " — £(a)) y"+¢" ((ala) — "B*(a) /¢ (a)) ')

rearranging the terms, we get

hq" + 0uq" = (p — a(a)) " — e(a)y”,
and the latter is the second equation in the system (8). B

Let us observe that the two PDEs in the system (10) are decoupled, hence
we can solve the second PDE for the function ¢(¢,a), and then substitute
its solution in the first PDE to compute y(t,a). This approach turns out to
be useful to find a stationary solution for the optimal control. If we want
to consider an equilibrium point for an optimal control, then all the data of
the problem have to be autonomous, hence in the following, we assume that
§(t) = 0* for all t € [0, 400).

Corollary 3.3. Let us assume that we can find a solution (Y*(a), ®*(a)) for
the system of decoupled ODFEs

Y’( ) = (a(a) — @(a)5*(a)/((a)) Y (a)

¥ (a) = P(a)*8*(a)/C(a) — (20(a) — p) B(a) — <(a) 2)
Y (0) = 8(¢) = o

Bw)=0, |B(a)Y(a)]<M Vael0,u]

~—
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Ife(a) <0 and ((a) <0 for all a € [0,w], and if 6(t) = 6* for allt € [0, +00),
then the function

®*(a)Y™(a)B(a)
¢(a)

is an optimal control for the problem with motion equation (2), with boundary

conditions y(0,a) = Y*(a), y(t,0) = 6* for all t € [0,400), and with objective

functional (1).

u*(t,a) = — (13)

Proof If we are looking for an equilibrium point we have to find a solution
such that y(t,a) = Y(a) and ¢(t,a) = @(a). A direct application of Theorem
3.2 allows us to conclude. W

We close this section with a simple example in which a closed form solution can
be obtained. Let us assume that we want maximize the objective functional

+00 w
J(u) = /0 /0 e’ [—%yQ (t,a) — %uQ(t, a)| da dt. (14)
subject to
aty (tv a) + aay (t7 CL) =Y (tv a) /2 - u(t7 a)
y(0,a) =1
y(t,0) =1

This problem is an instance of (1)—(4) where a(a) = 1/2,5(a) = —1,¢(a) =
—1, ¢(a) = —1,p = 1. Applying Corollary 3.3, system (12) becomes

g’((a)) = (d;((a))— 1/12) Y(a)

'(a) = —P(a)* +

Y (0) =1 (15)
d(w) =0, |®(a)] < M Va € [0,w]

Solving (15), we obtain ®(a) = tanh(a —w), and Y (a) = cosh(a —w)/ cosh(w).
We emphasize that even if the coefficients do not depend on the age, the
problem and its optimal path are age dependent.

4 Conclusions

In this paper we have shown how to apply the sufficient conditions introduced
in [3] to a linear-quadratic age-structured differential games. Using the stan-
dard theory of Riccati equation we obtain that the solution of the problem is
reduced to the solution of a decoupled system pf PDEs. When the model is
autonomous, we can use the results presented in this paper to find the optimal
equilibrium.
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The theory described in this paper is the starting point to analyze linear-

quadratic, age-structured differential games. Some results about this issue
can be found in [9], however, to the best of our knowledge, a comprehensive
approach to linear quadratic, age-structured differential games is still missing.
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