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Abstract. We study fully nonlinear partial differential equations of Monge–Ampère type
involving the derivatives with respect to a family X of vector fields. The main result is a
comparison principle among viscosity subsolutions, convex with respect to X, and viscos-
ity supersolutions (in a weaker sense than usual), which implies the uniqueness of solution
to the Dirichlet problem. Its assumptions include the equation of prescribed horizontal
Gauss curvature in Carnot groups. By the Perron method we also prove the existence of
a solution either under a growth condition of the nonlinearity with respect to the gradi-
ent of the solution, or assuming the existence of a subsolution attaining continuously the
boundary data, therefore generalizing some classical result for Euclidean Monge–Ampère
equations.
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1 Introduction

For a given family of C 1;1 vector fields X D ¹X1; : : : ; Xmº in Rn, m � n, the
X-gradient and symmetrized X-Hessian matrix of a function u are

DXu WD .X1u; : : : ; Xmu/; .D2Xu/ij WD .XiXjuCXjXiu/=2:

The main examples we have in mind are the vector fields that generate a homo-
geneous Carnot group [12, 16], and in that case DXu and D2

X
u are called, re-

spectively, the horizontal gradient and the horizontal Hessian. We consider fully
nonlinear partial differential equations of the form

� detD2XuCH.x; u;DXu/ D 0 in �; (1.1)
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where� � Rn is open and bounded andH is at least continuous and nonnegative.
In the case when the vector fields are the canonical basis of Rn, which we call the
Euclidean case, this is a classical equation of Monge–Ampère type. We recall that
in the Euclidean case the Monge–Ampère equations are elliptic on convex func-
tions. These equations arise in several problems, mostly of differential geometry,
and have a wide literature, especially on the regularity of solutions, see, e.g., the
books [3, 4, 31, 32, 38, 47] and the papers [19, 21, 22, 28, 39–41, 51, 52]. For the
recent applications to optimal transportation problems we refer to [1, 17, 53] and
the references therein.

Partial differential equations with an elliptic structure relative to vector fields
that do not span the whole space Rn are degenerate elliptic, often called subellip-
tic, see, e.g., the recent book of Bonfiglioli, Lanconelli and Uguzzoni [16] for a
comprehensive survey of the linear theory. A theory of fully nonlinear subelliptic
equations was started a few years ago by Bieske [13, 14] and Manfredi [11, 44]
using viscosity methods, and the Monge–Ampère equation

� detD2XuC f .x/ D 0 in � (1.2)

was listed among the main examples, with X1; : : : ; Xm generators of a given
Carnot group. Moreover, a number of authors studied in the last five years sev-
eral notions of convexity in Carnot groups [5, 26, 27, 30, 33, 34, 37, 42, 43, 49, 54],
and one of their motivations was the connection with Monge–Ampère equations
on such groups. However, little is known about them so far. We mention the com-
parison principle among smooth sub- and supersolutions of (1.2) in the Heisenberg
group proved by Gutierrez and Montanari [33] (among other results).

The dependence on the gradient DXu in H is motivated by various possible
applications. A first interesting example is the subelliptic analogue of the pre-
scribed Gauss curvature equation. Danielli, Garofalo and Nhieu [26] defined the
horizontal Gauss curvature of the graph of a smooth function u on a Carnot group
as

Kh.x/ WD det.D2Xu/.1C jDXuj
2/�

mC2
2 :

In fact, this is the classical Gaussian curvature of the graph of the restriction of u
to the horizontal plane passing through x. Moreover, Capogna, Pauls and Tyson
[20] showed the connection of Kh with the second fundamental form of the graph
of u. Then (1.1) becomes the prescribed horizontal Gauss curvature equation if

H.x; r; q/ D k.x/.1C jqj2/
mC2
2 (1.3)

for a given continuous k W � ! Œ0;C1Œ. A different hypoelliptic Monge–
Ampère-type equation was proposed in [50] for a financial problem. Finally, the
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extension of the theory of optimal transportation to the realm of sub-Riemannian
manifolds was started recently by Ambrosio and Rigot [2] and Figalli and Rifford
[29] and it might lead to equations of the form (1.1), or variants of it.

This paper is devoted to a study of the degenerate elliptic Monge–Ampère-type
equations (1.1) within the theory of viscosity solutions, see [6, 18, 23, 24]. In
particular, we establish the well-posedness of the Dirichlet problem under rather
general conditions. The first part of the paper deals with comparison results among
sub- and supersolutions, and the second part with the existence of solution by the
Perron method.

The new difficulties we encounter for the comparison principles are three.
1. The PDE (1.1) is degenerate elliptic only on convex functions with respect

to the vector fields X1; : : : ; Xm, briefly X-convex. We say that an u.s.c. function
u on � is X-convex if it satisfies �D2

X
u � 0 in � in viscosity sense, that is,

D2X'.x/ � 0 for all ' 2 C 2.�/; x 2 argmax.u � '/: (1.4)

This notion was introduced by Lu, Manfredi and Stroffolini [42] for the Heisen-
berg group under the name of v-convexity. It was extended recently to general
C 2 vector fields by the first author and Dragoni [7], who proved the equivalence
with the convexity along trajectories of the fields. In the case of Carnot groups, it
coincides with the geometric notion of horizontal convexity, a fact proved under
different assumptions by several authors [5, 37, 42, 43, 49, 54], see also [26] for
connections with other notions. Our comparison results will concern an X-convex
viscosity subsolution of (1.1) and a viscosity supersolution defined with strictly
X-convex test functions. This is inspired by the treatment of the Euclidean case
by Ishii and Lions [36] and is equivalent to comparing sub- and supersolutions of

max
®
��min.D

2
Xu/;� detD2XuCH.x; u;DXu/

¯
D 0 in �;

where �min denotes the minimal eigenvalue.
In the classical case, convex functions are locally Lipschitz continuous with

respect to the Euclidean norm, so there is an interior gradient bound for the subso-
lution. The corresponding property for X-convex functions is the local Lipschitz
continuity with respect to the Carnot–Carathéodory metric associated to the vector
fields: this was proved in [26, 37, 42, 43, 49] for the generators of a Carnot group
and in [7] for general fields.

2. The operator in (1.1) does not satisfy the standard structure conditions in
viscosity theory, unless the vector fields are constant. To overcome this problem,
for H > 0 we take the log of both terms in (1.1) and show that the new equation
verifies the Lipschitz-type condition with respect to x of Crandall, Ishii and Lions
[24] for uniformly X-convex subsolutions, i.e., functions such that, for a  > 0,
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�D2
X
uC I � 0 in � in viscosity sense. Our first main result states the compar-

ison among semicontinuous sub- and supersolutions of equations of the form

� log det.D2Xu/CK.x; u;Du;D
2u/ D 0 in �; (1.5)

provided that either K is strictly increasing in u or the subsolution is strict. Here
K is not restricted to logH.x; u;DXu/; it can be any degenerate elliptic opera-
tor involving the full gradient and Hessian Du, D2u and satisfying the structure
conditions of [24].

3. To cover the cases of H not strictly increasing in u, which is the most fre-
quent in applications, and satisfying onlyH � 0, we need to perturb an X-convex
subsolution to a uniformly X-convex strict subsolution. This was done in the
Euclidean case in [36] and we adapted the method to several nonlinear subelliptic
equations in [8]. We are able to perform this construction for equation (1.1) under
an additional condition on the vector fields, namely

Xj .x/ D
@

@xj
C

nX
iDmC1

�ij .x/
@

@xi
; j D 1; : : : ; m: (1.6)

In this case, we say the vector fields are of Carnot type, because this property is
satisfied by the generators of a Carnot group. However we do not need all the other
rich properties of such generators, not even the Hörmander bracket generating
condition.

We therefore get the following comparison principle, containing the Euclidean
result of Ishii and Lions [36] as a special case.

Theorem 1.1. AssumeH W ��R�Rm ! Œ0;C1Œ is continuous, nondecreasing
in the second entry, and for all R > 0 there is LR such thatˇ̌

H 1=m.x; r; q C q1/ �H
1=m.x; r; q/

ˇ̌
� LRjq1j (1.7)

for all x 2 �, jr j � R, jqj � R and jq1j � 1. Suppose the vector fields
X1; : : : ; Xm 2 C

2 satisfy (1.6). Let u W � ! R be a bounded, X-convex, u.s.c.
subsolution of (1.1) and v W � ! R be a bounded l.s.c. supersolution of (1.1).
Then

sup
�

.u � v/ � max
@�
.u � v/C: (1.8)

Note that the result applies to the prescribed horizontal Gauss curvature equa-
tion (1.1), (1.3). We also get a comparison principle for (1.2) that extends to the
viscosity context a result of Rauch and Taylor [48] in W 2;n, the first result for not
necessarily convex supersolutions.
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Theorem 1.1 implies that there is at most one X-convex continuous viscosity
solution of the equation (1.1) with prescribed boundary data

u D g on @�; g 2 C.@�/: (1.9)

The existence of solutions to the Dirichlet problem can be studied by the Perron
method, as adapted to viscosity solutions by Ishii [24]. It turns out to fit very well
with our modified notions of sub- and supersolution. A byproduct is the following
subelliptic version of a classical result by Caffarelli, Nirenberg and Spruck [19]
and Lions [41] in the Euclidean setting.

Theorem 1.2. Under the assumptions of Theorem 1.1 suppose that g 2 C 2.�/ is
X-convex and� is X-convex, i.e., it is the sublevel set of a C 2 X-convex function.
Then the solvability of (1.1), (1.9) is equivalent to the existence of an X-convex
subsolution attaining continuously the boundary data.

The construction of a subsolution with the desired properties requires further
assumptions, as it is well known in the Euclidean case [31,41]. Our main existence
result is the following extension of a theorem of Lions [41].

Theorem 1.3. Besides the assumptions of Theorem 1.1 suppose

H 1=m.x;max
@�

g; p/ � Ljpj CM for all x 2 �; p 2 Rm: (1.10)

Assume also that� is uniformly X-convex, i.e., the sublevel set of a C 2 uniformly
X-convex function. Then there is a unique X-convex solution in C.�/ of the
Dirichlet problem (1.1), (1.9).

The growth condition (1.10) rules out the prescribed Gauss curvature equation
(1.3), where it is known that k must satisfy some compatibility conditions [31,41].
We have an existence result in this case for the Koranyi ball of the Heisenberg
group if k.x/ � kH.x/, where kH is the horizontal Gauss curvature of the graph
of the gauge w, i.e., w.x/ D jxj4H and jxjH is the homogeneous norm of the
Heisenberg group, see formula (4.6) for the explicit expression of kH.

Some special cases of the comparison results proved here were announced in
the note [10] and in the conference proceedings [9]. More precisely, [10] contains
the statement of Theorem 1.1 in the case of Carnot groups and H > 0, with a few
hints on the proof, and [9] gives a different proof of Theorem 2.18 below for H
strictly increasing in u (which excludes (1.2) and the prescribed horizontal Gauss
curvature equation) and in Carnot groups.
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The Dirichlet problem for subelliptic fully nonlinear equations was studied by
Bieske [13, 14], Bieske and Capogna [15], and Wang [55] for the Aronsson equa-
tions of the calculus of variations inL1, and by ourselves [8] and Cutri and Tchou
[25] for Pucci-type and other Bellman–Isaacs equations. Almost nothing is known
on the regularity of solutions of fully nonlinear subelliptic equations. This is a
challenging subject for future research.

The paper is organized as follows. Section 2 is devoted to the definitions, the
comparison principle for the equation (1.5) (and variants of it), and its applications
to (1.1) if H > 0 and either the subsolution is strict or H is strictly increasing in
r . In Section 3, we build strict subsolutions for vector fields of Carnot type and
complete the proof of Theorem 1.1. Section 4 deals with the existence issue for
the Dirichlet problem.

2 Comparison principles with strict subsolutions

2.1 Definitions

Let us consider equations of the form´
�G

�
�T .x/D2u�.x/C A.x;Du/

�
CK.x; u;Du;D2u/ D 0 in �;

G D det or G D log det;
(2.1)

where the set � � Rn is open and bounded. We denote with Sn the set of the
symmetric n�nmatrices, with� the usual partial order, with I the identity matrix,
and with trM the trace of a square matrix M . By M > 0 we denote any positive
definite matrix. USC.�/ and LSC.�/ denote the sets of functions�! R that are
upper semicontinuous and lower semicontinuous, respectively. The assumptions
on the data are the following:8̂<̂

:
K W � �R �Rn � Sn ! R is continuous,

K.x; r; p;X/ � K.x; s; p; Y / for all r � s; Y � X; x 2 �;
u 2 R; p 2 Rn; X; Y 2 Sn;

(2.2)

K
�
y; r;

x � y

"
; Y
�
�K

�
x; r;

x � y

"
;X
�
� !

�
jx � yj

�
1C
jx � yj

"

��
(2.3)

for some modulus ! and all " > 0, x; y 2 �, r 2 R, X; Y 2 Sn satisfying

�
3

"

 
I 0

0 I

!
�

 
X 0

0 �Y

!
�
3

"

 
I �I

�I I

!
: (2.4)
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Moreover, we assume that´
�.x/ is a Lipschitz continuous n �m matrix valued function on �
with m � n,

(2.5)

and that8̂<̂
:
A.x; p/ is a continuous m �m matrix valued function on � �Rn

such that
� C1jx � yj.1C jpj/I � A.x; p/ � A.y; p/ � C1jx � yj.1C jpj/I:

(2.6)

Definition 2.1. If ‰ W � � Rn � Sn ! Sm and M 2 Sm, we say that u is
a (viscosity) subsolution of the matrix inequality ‰.x;Du;D2u/ � M in �, if
u is USC in � and ‰.x;D�.x/;D2�.x// � M for all � 2 C 2.�/ and x 2
argmax.u � �/.

The definition of (viscosity) subsolution u of (2.1) is given in a standard way,
as in [24] (see also the comments in Remark 2.4 below).

Definition 2.2. A function u 2 USC.�/ is a (viscosity) subsolution of (2.1) with
G D det or G D log det if for all � 2 C 2.�/ such that u � � has a maximum
point at x0 we have

�G
�
�T .x0/D

2�.x0/ �.x0/C A.x0;D�.x0//
�

CK
�
x0; u.x0/;D�.x0/;D

2�.x0/
�
� 0: (2.7)

The definition of (viscosity) supersolution v of (2.1) is modified by restrict-
ing the test functions to the C 2 functions � with �TD2� � C A > 0 at points
x 2 arg min.v � �/. In the Euclidean case, this coincides with the definition
given in [36]. (See also [51] for viscosity solutions of other prescribed curvature
equations).

Definition 2.3. A function v 2 LSC.�/ is a (viscosity) supersolution of (2.1) with
G D det or G D log det if for all � 2 C 2.�/ such that v � � has a minimum
point at x0 and

�T .x0/D
2�.x0/ �.x0/C A.x0;D�.x0// > 0; (2.8)

we have

�G
�
�T .x0/D

2�.x0/ �.x0/C A.x0;D�.x0//
�

CK
�
x0; v.x0/;D�.x0/;D

2�.x0/
�
� 0: (2.9)
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The restriction of the test functions is motivated by the consistency with classi-
cal supersolutions. In fact, if v is smooth and v � � has a minimum at x0, then

�TD2� � C A.x0;D�/ � �
TD2v � C A.x0;Dv/

at x0; if the left-hand side is not positive semidefinite, no inequality is ensured
between the determinant of the two sides and therefore (2.9) may fail. For instance,
suppose that m is even, �T �.x0/ > 0, A is growing at most linearly in p, K is
independent of the derivatives, and take �.x/ D v.x/ � ˛ jx�x0j

2

2
, with ˛ > 0.

Then
det
�
�TD2� � C A.x0;D�/

�
� c1.�˛/

m
C c2

at x0 for suitable constants c1 > 0 and c2, the inequality (2.9) is violated for ˛
large enough and so a classical supersolution v would not be a viscosity superso-
lution.

Remark 2.4. In the next sections, we will compare a supersolution of (2.1) in the
sense of Definition 2.3 with a function u subsolution of (2.1) as in Definition 2.2
satisfying also the matrix inequality

�
�
�T .x/D2u�.x/C A.x;Du/

�
� 0 (2.10)

in the sense of Definition 2.1. This is equivalent to comparing sub- and supersolu-
tions in the standard sense of [24] of the equation

max
®
��min

�
�TD2u� C A.x;Du/

�
;

�G
�
�TD2u� C A.x;Du/

�
CK.x; u;Du;D2u/

¯
D 0;

where �min.Z/ denotes the minimal eigenvalue of Z 2 Sm. This is obvious for
subsolutions, whereas for a supersolution v of the last equation and a standard test
function �, either (2.9) holds, or

�min
�
�T .x0/D

2�.x0/ �.x0/C A.x0;D�.x0//
�
� 0

at x0 2 arg min.v � �/, which is equivalent to Definition 2.3.
In the case G D log det, we will further restrict subsolutions to functions satis-

fying the matrix inequality

�
�
�T .x/D2u�.x/C A.x;Du/

�
� �I

in the sense of Definition 2.1. Then the first term in (2.7) is well defined because
the argument of G is a positive definite matrix.
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The generality of the term A in (2.1) includes equations of the form

� log det.D2uC A.x//C f .x; u/ D 0;

arising in problems of Riemannian geometry (see [3,19] and the references therein)
and their counterparts involving non-commutative vector fields. However, in this
paper we are mostly interested in subelliptic equations

� detD2XuC F.x; u;DXu;D
2
Xu/ D 0 in �; (2.11)

where DXu D .X1u; : : : ; Xmu/ is the intrinsic (or horizontal) gradient with re-
spect to a given family of C 1;1 vector fields X1; : : : ; Xm, and

.D2Xu/ij D
�
Xi .Xju/CXj .Xiu/

�
=2

is the symmetrized intrinsic Hessian. If we take the n � m C 1;1 matrix-valued
function � , defined in � � Rn, whose columns �j are the coefficients of Xj ,
j D 1; : : : ; m, we see that, for any smooth u,

DXu D �
T .x/Du; D2Xu D �

T .x/D2u�.x/CQ.x;Du/; (2.12)

where Q.x; p/ is an m �m matrix whose elements are

Qij .x; p/ WD
1

2

�
D�j .x/� i .x/CD� i .x/�j .x/

�
� p: (2.13)

Therefore the PDE (2.11) can be written in the form (2.1) with

A D Q; G D det; K.x; r; p;X/ D F
�
x; r; �Tp; �TX � CQ

�
:

In this case, the functions satisfying the matrix inequality (2.10) are called X-
convex, consistently with the theory of convex functions in Carnot groups [37,42]
and in general Carnot–Carathéodory metric spaces [7].

Definition 2.5. u 2 USC.�/ is convex in� with respect to the fieldsX1; : : : ; Xm,
briefly X-convex (resp., uniformly X-convex), if it is a subsolution of

�D2Xu D ��
T .x/D2u�.x/ �Q.x;Du/ � 0 in � (2.14)

(resp., � �I for some  > 0).

Remark 2.6. Note that for a uniformly X-convex subsolution of (2.11) the test
functions can be restricted toC 2 strictly X-convex functions (i.e., satisfying (2.8)),
as for supersolutions.
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2.2 The basic comparison principle

The first result is a comparison principle between a supersolution and a strict sub-
solution such that ��TD2u� � A.x;Du/ � �I of the equation

� log det
�
�T .x/D2u�.x/C A.x;Du/

�
CK.x; u;Du;D2u/ D 0 in �:

(2.15)
Note that K is not strictly increasing with respect to the entry u.

Theorem 2.7. Assume that conditions (2.2) through (2.6) hold. Let u 2 USC.�/
be a bounded subsolution, for some ; 1 > 0, of

��T .x/D2u�.x/ � A.x;Du/ � �I in �; (2.16)

and

� log det
�
�T .x/D2u�.x/C A.x;Du/

�
CK.x; u;Du;D2u/ � �1 in �:

(2.17)
Let v 2 LSC.�/ be a bounded supersolution of (2.15). Then

sup
�

.u � v/ � max
@�
.u � v/C: (2.18)

To prove the comparison principle we need the following two lemmata.

Lemma 2.8. If  > 0, for all A 2 SN , A � I ,

log det.A/ D min
®
N log a �N C tr.AM/ W

a > 0; M 2 SN ; 0 �M � 1

I; detM D a�N

¯
: (2.19)

Proof. It is well known that

.detA/1=N D min
®
tr.AB/ W B 2 SN ; B � 0; detB D N�N

¯
; (2.20)

and the minimum is attained at Bm D
.detA/1=N

N
A�1. On the other hand

logŒ.detA/1=N � D min
°

log aC
.detA/1=N � a

a
W a > 0

±
;

and the minimum is attained at am D .detA/1=N . We combine the two formulas
to get a minimum representation for logŒ.detA/1=N � and we can restrict the search
for the minimum to matrices of the form B D a

N
M with M�1 � I . Then

1

N
log det.A/ D min

°
log a � 1C

tr.A a
N
M/

a
W

a > 0; M 2 SN ; 0 �M � 1

I; aN detM D 1

±
;

which gives (2.19).
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Lemma 2.9. Consider the operator

F.x; p;X/ WD � log det
�
�T .x/X �.x/C A.x; p/

�
with x 2 �, p 2 Rn, X 2 Sn, � and A satisfying (2.5), (2.6). Then for all  > 0
there is a constant C > 0 such that

F
�
y;
x � y

"
; Y
�
� F

�
x;
x � y

"
;X
�
� C

�
jx � yj C

jx � yj2

"

�
(2.21)

for all X; Y 2 Sn satisfying (2.4) and8̂<̂
:
�T .x/X �.x/C A

�
x;
x � y

"

�
� I;

�T .y/Y �.y/C A
�
y;
x � y

"

�
� I:

(2.22)

Proof. By Lemma (2.8) and (2.22) we can write F.x; p;X/ as the maximum of

m �m log a � tr
�
�T .x/X �.x/M

�
� tr.A.x; p/M/

as a, M vary over a > 0, M 2 Sm, 0 �M � 1

I , detM D a�m. Then there is a

choice of a and M such that the left-hand side of (2.21) is bounded above by the
sum of

tr
�
�T .x/X �.x/M

�
� tr

�
�T .y/Y �.y/M

�
; (2.23)

and
tr.A.x; p/M/ � tr.A.y; p/M/; p D

x � y

"
: (2.24)

By diagonalization we see that jM j �
p
m= , where j�j denotes the Euclidean

norm. Moreover there is R 2 Sm such that M D RRT , jRj �
pp

m= . We call
†.x/ the n� n matrix whose first lines are R�T .x/ and the lastm� n lines are 0.
Then (2.23) can be rewritten as

tr
�
†T .x/†.x/X

�
� tr

�
†T .y/†.y/Y

�
:

A standard calculation in the theory of viscosity solutions (see, e.g., [24, Example
3.6]) shows that this quantity is bounded above by 3L2jx � yj2=" for matrices
satisfying (2.4), where L is a Lipschitz constant of †.�/. Therefore we can take
L D L�

p
m= where L� is a Lipschitz constant for �.�/. As for (2.24),ˇ̌

tr.A.x; p/ � A.y; p//M
ˇ̌
� jA.x; p/ � A.y; p/jjM j

�
C1
p
m


jx � yj.1C jpj/:
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In conclusion, we get

F
�
y;
x � y

"
; Y
�
� F

�
x;
x � y

"
;X
�

�
C1
p
m


jx � yj C

3L2�mC C1
p
m



jx � yj2

"
:

We can prove now the comparison theorem.

Proof of Theorem 2.7. For " > 0 the functionˆ".x; y/ D u.x/�v.y/� 1
2"
jx�yj2

has a maximum point .x"; y"/. A standard argument gives

jx" � y"j
2

"
! 0; as "! 0C: (2.25)

If there is a sequence "k ! 0 such that x"k ! Ox 2 @�, then y"k ! Ox, and by the
upper semicontinuity of u.x/ � v.y/, we get

max
�

.u � v/ � ˆ".x"; y"/! max
@�
.u � v/; as "! 0:

The case of y"j ! Oy 2 @� for some "j ! 0 is analogous. Therefore we are left
with the case .x"; y"/ 2 � �� for all small ". We use the theorem on sums, as in
[23] and get X; Y 2 Sn (depending on ") such that, for p" WD jx" � y"j=",

.u.x"/; p"; X/ 2 J
2;C
u.x"/; .v.y"/; p"; Y / 2 J

2;�
v.y"/;

and

�
3

"

 
I 0

0 I

!
�

 
X 0

0 �Y

!
�
3

"

 
I �I

�I I

!
: (2.26)

Then (2.16) implies

G.x"; X/ WD �
T .x"/X �.x"/C A.x"; p"/ � I:

We seek a similar inequality forG.y"; Y / WD �T .y"/Y �.y"/CA.y"; p"/. To this
end we multiply on the left the second inequality in (2.26) by the m � 2n matrix
whose first n columns are �T .x"/ and the last n are �T .y"/, and then on the right
by the transpose of such matrix. Since the operation preserves the inequality, we
get

�T .x"/X�.x"/ � �
T .y"/Y�.y"/ �

3

"
.�.x"/ � �.y"//

T .�.x"/ � �.y"//

�
3

"
C� jx" � y"j

2I; (2.27)
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where C� is a suitable constant related to the Lipschitz constant of � . Then, by
(2.27) and assumptions (2.6),

G.y"; Y / � G.x"; X/ �
3

"
C� jx" � y"j

2I C A.y"; p"/ � A.x"; p"/

�

�
 �

3

"
C� jx" � y"j

2
� C1jx" � y"j � C1

jx" � y"j
2

"

�
I �



2
I

for " small enough, by (2.25). Now we use the facts that u satisfies (2.17) and that
v is a supersolution to get´
� log det

�
�T .x"/X �.x"/C A.x"; p"/

�
CK.x"; u.x"/; p"; X/ � �1 < 0;

� log det
�
�T .y"/Y �.y"/C A.y"; p"/

�
CK.y"; v.y"/; p"; Y / � 0:

(2.28)
If u.x"/ � v.y"/ for some ", we conclude that

max
�

.u � v/ � u.x"/ � v.y"/ � 0:

Otherwise, by the monotonicity of K with respect to the second entry r , we get

� log det
�
�T .y"/Y �.y"/C A.y"; p"/

�
CK.y"; u.x"/; p"; Y / � 0:

Now we subtract this inequality from the first of (2.28), we use Lemma 2.9 and
the structure condition on K to obtain

C jx" � y"j
�
1C
jx" � y"j

"

�
C !

�
jx" � y"j

�
1C
jx" � y"j

"

��
� �1 < 0

which gives a contradiction as "! 0C, by (2.25).

Remark 2.10. If K D K.x; p;X/ is independent of r , the previous proof shows
that

sup
�

.u � v/ � max
@�
.u � v/:

Remark 2.11. Theorem 2.7 remains true if we relax the strict subsolution con-
dition (2.17) to the following: for any open �1 such that �1 � � there exists
1 > 0 such that

� log det
�
�T .x/D2u�.x/C A.x;Du/

�
CK.x; u;Du;D2u/ � �1 in �1

holds. The proof is the same, because if no sequence x"k or y"j converges to a
boundary point then .x"; y"/ 2 �1 � �1 for some �1 � � and for all " small
enough.
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Theorem 2.12. The conclusion of Theorem 2.7 remains true if u is a subsolution
of (2.15) instead of a strict subsolution (2.17), provided that, for some C > 0,

K.x; r; p;X/ �K.x; s; p;X/ � C.r � s/; �M � s � r �M;

M WD max¹kuk1; kvk1º; x 2 �; p 2 Rn; X 2 Sn:

Under this condition there is at most one viscosity solution u of (2.15) such that
��T .x/D2u�.x/�A.x;Du/ � �I with prescribed continuous boundary data.

Proof. It is a standard variant of the preceding one.

Remark 2.13. Note that, if we consider Monge–Ampère equations without log,
the structure condition (2.21) can be not true. Take for example

OF .x; p;X/ WD � det
�
�T .x/X �.x/C A.x; p/

�
with A � 0 and

� D

0B@ 1 0

0 1

2y �2x

1CA ;
the matrix associated to the Heisenberg group. If X and Y satisfy the matrix
inequality (2.4), then (2.27) holds. If we take Y diagonal, it is easy to see that

det.M.y"; Y /C �I/ D detM.y"; Y /C �2 C � trM.y"; Y /;

where M.y"; Y / WD �T .y"/Y �.y"/. Then from (2.27), taking � D 3C�
jx"�y"j

2

"
,

detM.y"; Y / � detM.x"; X/ � detM.y"; Y / � det.M.y"; Y /C �I/

� ��2 � � trM.y"; Y /:

The term � trM.y"; Y / does not necessarily tend to zero as " ! 0. Taking, for
example, v.y/ Lipschitz continuous, since the functionˆ".x; y/ D u.x/�v.y/�
1
2"
jx � yj2, introduced in the proof of Theorem 2.7, has a maximum point in

.x"; y"/, we deduceˆ".x"; y"/ � ˆ".x"; x"/, i.e. jv.x"/� v.y"/j � 1
2"
jx"�y"j

2.
From the Lipschitz continuity of v with constant L, we obtain jx" � y"j � 2"L.
In this case, since trM.y"; Y / � C

"
for C > 0, the best one can say is that

� trM.y"; Y / � K
jx" � y"j

2

"2
� 4KL2

for a suitable K > 0.
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2.3 Monge–Ampère equations with bounded right-hand side

In this section, we apply the basic comparison principle to equations of the form

� detD2XuC F.x; u;DXu;D
2
Xu/ D 0 in �; (2.29)

introduced in Section 2.1, where DXu and D2
X
u are, respectively, the intrinsic

gradient and the symmetrized Hessian with respect to the vector fields X1; : : : ;
Xm 2 C

1;1.

Lemma 2.14. Let 0 < F.x; u; p;X/ � C1, for any x 2 �, u 2 R, p 2 Rm and
X 2 Sm. Let w 2 USC.�/ be a uniformly X-convex bounded function satisfying

� detD2Xw C F.x;w;DXw;D
2
Xw/ � �˛ < 0 in �:

Then there is ˛1 > 0 such that

� log det.D2Xw/C logF.x;w;DXw;D
2
Xw/ � �˛1 < 0 in �: (2.30)

Proof. By the properties of log, we have

log
�
F.x;w;DXw;D

2
Xw/C ˛

�
D logF.x;w;DXw;D

2
Xw/C log

�
1C

˛

F.x;w;DXw;D
2
X
w/

�
� logF.x;w;DXw;D

2
Xw/C log

�
1C

˛

C1

�
;

which gives (2.30) with ˛1 D log.1C ˛
C1
/.

Corollary 2.15. Suppose that 0 < F.x; u; p;X/ � C1, K D logF satisfies (2.2)
and (2.3), and that the X1; : : : ; Xm are C 1;1 in�. Then the comparison principle
holds between a uniformly X-convex strict subsolution u and a supersolution v of
equation (2.29).

Proof. We apply Theorem 2.7 withK D logF andA D Q given by (2.13), noting
that the strict subsolution of (2.29) is a strict subsolution of (2.15) by Lemma
2.14.

From Theorem 2.12 we immediately get:

Corollary 2.16. The comparison principle is true if � is a C 1;1 n � m matrix
valued function, F > 0, K D logF satisfies (2.2) and (2.3), and u is a uniformly
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X-convex subsolution of (2.29), not necessarily strict, provided that, for some
C > 0,

F.x; r; p;X/ � F.x; s; p;X/ � C.r � s/;

�M � s � r �M; M WD max¹kuk1; kvk1º;

for all x 2 �, p 2 Rm, X 2 Sm.

Note that here the upper bound for F is not required.

2.4 Equations with unbounded gradient terms

In this section, we prove a comparison result for the equation

� log det.D2Xu/CK1.x; u;DXu/ D 0 (2.31)

with Hamiltonian K1 unbounded but independent of the second derivatives. In
this case, we can exploit the boundedness of DXu for any X-convex function u
to decrease the assumptions on the Hamiltonian K.x; r; p/ D K1.x; r; �

T .x/p/.
The gradient estimate in viscosity sense of the next proposition was proved very
recently by the first author and Dragoni for general vector fields [7]. In the special
case of Carnot groups, various authors showed, under different assumptions, the
Lipschitz continuity of X-convex functions with respect to the intrinsic metric
of the group and bounds on their horizontal gradient in the sense of distributions
[26, 37, 42, 43, 49]. From those results one can obtain a short proof of the gradient
bound in viscosity sense, which we give for the convenience of readers mostly
interested in the Carnot group setting (see Section 3.1 for the definitions).

Proposition 2.17 ([7]). Let the vector fields X1; : : : ; Xm be of class C 2 and u be
X-convex and bounded in �. Then, for every open �1 with �1 � �, there exists
a constant C such that

j�T .x/Duj � C in �1

in viscosity sense.

Proof in the case of Carnot groups. It is known that X-convexity implies local
Lipschitz continuity with respect to the Carnot–Carathéodory distance by a re-
sult of Magnani [43] and Rickly [49], see also [37]. In particular, u is continuous
in �. We mollify u by convolution with kernels adapted to the group structure, as
in [16, 26]. The approximating u" converge to u uniformly on compact subsets of
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�, and they are smooth and X-convex. Moreover, from the proof of [26, Theorem
9.1] we get, for R small enough,

sup
BC .x0;R/

� mX
jD1

.Xju"/
2
�1=2

�
2

R
sup

BC .x0;3R/

juj;

where the balls BC are taken with respect to the gauge pseudo-distance and Xju
denotes the derivative of u along the trajectory of the vector field Xj . Since u"
is C1, we have Xju".x/ D �j .x/Du".x/. Therefore there is a constant C
depending only on sup� juj and the pseudo-distance of �1 from @� such that

j�T .x/Du"j � C in �1:

By letting "! 0, we obtain that u is a viscosity subsolution of the same inequality.

Theorem 2.18. Assume K1 W ��R�Rm ! R is continuous and nondecreasing
with respect to r , and X1; : : : ; Xm are of class C 2. Suppose u 2 USC.�/ is
bounded, uniformly X-convex and a subsolution of (2.31), whereas v 2 LSC.�/
is a bounded supersolution of (2.31). Finally, assume that either K1 is strictly
increasing in r , K1.x; r; q/ � K1.x; s; q/ � C.r � s/ for some C > 0 and all
r; s 2 Œ�M;M�, M D max¹kuk1; kvk1º, or u is a strict subsolution of (2.31)
in each �1 with �1 � �. Then

sup
�

.u � v/ � max
@�
.u � v/C:

Proof. We only show how we can avoid the structure condition (2.3) on the
Hamiltonian in the proof of Theorem 2.7. Since p" D .x" � y"/=" is in the
superdifferential of u at x" 2 �1, Proposition 2.17 gives

j�T .x"/p"j � C:

Moreover

ˇ̌
�T .x"/p" � �

T .y"/p"
ˇ̌
� L�

jx" � y"j
2

"
! 0 as "! 0;

where L� is a Lipschitz constant of � , and therefore, for " small,

j�T .y"/p"j � C C 1:
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Let !1 be the modulus of continuity ofK1 on�� Œ�M;M��B.0; C C 1/. Thenˇ̌
K.x"; u.x"/; p"/ �K.y"; u.x"/; p"/

ˇ̌
D
ˇ̌
K1
�
x"; u.x"/; �

T .x"/p"
�
�K1

�
y"; u.x"/; �

T .y"/p"
�ˇ̌

� !1

�
jx" � y"j C L�

jx" � y"j
2

"

�
! 0 as "! 0:

The rest of the proof is the same as that of Theorem 2.7, taking into account
Remark 2.11 and Theorem 2.12.

A different proof of this theorem under the strict monotonicity assumption on
K1 is given in our paper [9].

3 The comparison principle for vector fields of Carnot type

3.1 Carnot groups

We begin with recalling some well-known definitions. We adopt the terminology
and notations of the recent book [16]. Consider a group operation ı on Rn D
Rn1 � � � � �Rnr with identity 0, such that

.x; y/ 7! y�1 ı x is smooth,

and the dilation ı� W Rn ! Rn,

ı�.x/ D ı�.x
.1/; : : : ; x.r// WD .�x.1/; �2x.2/; : : : ; �rx.r//; x.i/ 2 Rni :

If ı� is an automorphism of the group .Rn; ı/ for all � > 0, .Rn; ı; ı�/ is a homo-
geneous Lie group on Rn. We say that m D n1 smooth vector fields X1; : : : ; Xm
on Rn generate .Rn; ı; ı�/, and that this is a (homogeneous) Carnot group, if

� X1; : : : ; Xm are invariant with respect to the left translations on Rn, �˛.x/ WD
˛ ı x for all ˛ 2 Rn,

� Xi .0/ D @=@xi , i D 1; : : : ; m,

� the rank of the Lie algebra generated by X1; : : : ; Xm is n at every point
x 2 Rn.

We refer, e.g., to [12,16] for the connections of this definition with the classical
one in the context of abstract Lie groups and for the properties of the generators.
We will use only the following property, and refer to [16, p. 59, Remark 1.4.6] for
more precise information.
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Proposition 3.1. If X1; : : : ; Xm are generators of a Carnot group, then

Xj .x/ D
@

@xj
C

nX
iDmC1

�ij .x/
@

@xi

with �ij .x/ D �ij .x1; : : : ; xi�1/ homogeneous polynomials of a degree � n �m.

The previous proposition implies that �.x/ D
�
I
�.x/

�
where I is the m � m

identity matrix and �.x/ is an .n �m/ �m matrix.
If X1; : : : ; Xm are the generators of a Carnot group G , the definition (2.5) of

X-convexity coincides with the definition of convexity in G in viscosity sense
(v-convexity) of Lu, Manfredi and Stroffolini [42]. A more geometric notion
of convexity in G , called horizontal convexity (or weak H-convexity), was intro-
duced and studied in the same seminal paper [42] and, independently, by Danielli,
Garofalo and Nhieu [26]. The equivalence of the two notions was studied by sev-
eral authors, first in the Heisenberg groups [5, 42], and then in general Carnot
groups [37, 43, 54].

3.2 Construction of strict subsolutions

In this section, we construct a uniformly X-convex strict subsolution of the sub-
elliptic Monge–Ampère equation

� detD2XuCH.x; u;DXu/ D 0 in �; (3.1)

from an X-convex subsolution u (here the X derivatives are defined by (2.12) and
(2.13)). We therefore get a comparison principle for usual viscosity subsolutions,
without the strictness assumption.

The first assumption is on the vector fields and it is motivated by the properties
of generators of Carnot groups recalled in the preceding section:8̂<̂

:
�.x/ is an n �m matrix such that �.x/ D

�
I
�.x/

�
where I is the m �m identity matrix and

�.x/ is a C 1;1 .n �m/ �m matrix.

(3.2)

When the matrix � satisfies (3.2), we will say that the vector fields are of Carnot
type, following the terminology of [45]. However, different from [45], we do not
assume the Hörmander condition on the rank of the Lie algebra generated by the
fields.
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The second assumption is on H . In the Euclidean case, it coincides with the
one made by Ishii and Lions for their comparison principle in that context [36].8̂̂̂̂

<̂
ˆ̂̂:
H W � �R �Rm ! Œ0;C1/ is continuous and
nondecreasing in r ; for any R > 0 there exists LR such thatˇ̌
H 1=m.x; r; q C q1/ �H

1=m.x; r; q/
ˇ̌
� LRjq1j

for all x 2 �; jr j � R; jqj � R; jq1j � 1:

(3.3)

Theorem 3.2. Assume (3.2) and (3.3) and let u be an X-convex subsolution of
equation (3.1). Then for any open set �1 with �1 � � there exist ˛; "0 > 0

and a sequence u" 2 USC.�/ of uniformly X-convex functions such that u" � u,
u" ! u uniformly in � as "! 0, and, for all " � "0,

� detD2Xu" CH.x; u";DXu"/ � �˛ in �1: (3.4)

Proof. We consider

u".x/ WD u.x/C "
�
e
�
2

Pm
iD1jxi j

2

� �
�
;

and we want to show that it is a strict subsolution for � and � sufficiently large,
independent of " > 0. First we choose

� WD max
x2�

e
�
2

Pm
iD1jxi j

2

for all x 2 �, and this implies u".x/ � u.x/. We set

� WD "�e
�
2

Pm
iD1jxi j

2

; "0 WD min
x2�

exp.��
2

Pm
iD1 x

2
i /

�.
Pm
iD1 x

2
i /
1=2

;

and compute

Du" D DuC �.x1; : : : ; xm; 0; : : : ; 0/;

D2u" D D
2u

C �

  
Im 0

0 0

!
C �.x1; : : : ; xm; 0; : : : ; 0/˝ .x1; : : : ; xm; 0; : : : ; 0/

!
;

where .q ˝ q/ij D qiqj . Note that j�.x1; : : : ; xm/j � 1 for " � "0. Then

�TDu" D �
TDuC �.x1; : : : ; xm/



Fully nonlinear degenerate equations of Monge–Ampère type 1311

and

�T .x/D2u" �.x/CQ.x;Du"/ D �
T .x/D2u�.x/CQ.x;Du/

C �.Im C �.x1; : : : ; xm/˝ .x1; : : : ; xm//C �Q.x; .x1; : : : ; xm; 0; : : : ; 0//:

From the structure of the coefficients of the matrices Q and � , (2.13) and (3.2),
we have that

D� i D

 
0

D� i

!
; D� i �j D

 
0

D� i �j

!
;

� i being the i -th column of the matrix � . ThenQij .x; .x1; : : : ; xm; 0; : : : ; 0// � 0
for any i; j D 1; : : : ; m. Hence, since u is X-convex,

��T .x/D2u" �.x/ �Q.x;Du"/C �Im � 0;

i.e., u" is uniformly X-convex.
Now we want to find a sufficiently large � such that u" satisfies (3.4). Let us

consider the auxiliary equation

G.x; u;Du;D2u/ WD � det1=m
�
�TD2u� CQ.x;Du/

�
CH 1=m.x; u; �TDu/

D 0: (3.5)

To prove that u" is a strict subsolution of (3.5) for large �, we compute

G.x; u";Du";D
2u"/ D � det1=m

�
�TD2u� CQ.x;Du/

C �.Im C �.x1; : : : ; xm/˝ .x1; : : : ; xm//
�

CH 1=m
�
x; u"; �

TDuC �.x1; : : : ; xm/
�
: (3.6)

From Minkowski’s inequality [35] we deduce

det1=m.AC B/ � det1=m.A/C det1=m.B/; (3.7)

for all matrices of order m, A > 0, B � 0, and

G.x; u";Du";D
2u"/ � � det1=m

�
�TD2u� CQ.x;Du/

�
� � det1=m.Im C �.x1; : : : ; xm/˝ .x1; : : : ; xm//

CH 1=m
�
x; u"; �

TDuC �.x1; : : : ; xm/
�
:

By Proposition 2.17, j�T .x/Duj � C in �1, so we use the Lipschitz continuity
of H 1=m with L D LC and its monotonicity in u (see (3.3)), with the fact that u



1312 M. Bardi and P. Mannucci

is a subsolution of (3.1), to obtain

G.x; u";Du";D
2u"/ � �

�
Lj.x1; : : : ; xm/j

� det1=m.Im C �.x1; : : : ; xm/˝ .x1; : : : ; xm//
�
:

We want to find a suitably large � independent of " such that

Lmj.x1; : : : ; xm/j
m < det.Im C �.x1; : : : ; xm/˝ .x1; : : : ; xm// (3.8)

for any x 2 �1. We use the following equality [46]:

det.I C q ˝ q/ D 1C jqj2; (3.9)

where q is an m � 1 column vector. Then (3.8) becomes

1C �j.x1; : : : ; xm/j
2
� Lmj.x1; : : : ; xm/j

m > 0: (3.10)

If j.x1; : : : ; xm/j < 1
L

, then (3.10) is true for any � > 0. If j.x1; : : : ; xm/j � 1
L

,
we take

� > max
x

�
Lmj.x1; : : : ; xm/j

m
� 1

�
L2;

and (3.10) holds also in this case. With this choice of �, for some ˛ > 0 we have
G.x; u";Du";D

2u"/ < �˛ for any x 2 �1. Then (3.4) holds and the proof is
complete.

Remark 3.3. We can obtain the same result also in the case

�.x/ D

 
K

�.x/

!
;

where K is a nonsingular constant m � m matrix. In this case, we use a general-
ization of (3.9):

det
�
KT .I C �vvT /K

�
D det.KTK/.1C �jvj2/; if jKT vj ¤ 0: (3.11)

Remark 3.4. Another case where it is possible to construct a uniformly X-convex
strict subsolution is when

�T .x/�.x/CQ.x; x/ � �I for all x 2 �, for some � > 0: (3.12)

This condition is equivalent to saying that jxj2 is uniformly X-convex in �. In
this case, we consider, for a given viscosity subsolution u,

u".x/ WD u.x/C "
�
e�jxj

2=2
� �

�
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and we show that it is a strict subsolution for �� �� 1, independent of " > 0,
following the procedure used in the proof of Theorem 3.2. To do this we apply the
inequality [40]

det.AC �q ˝ q/ � �N
�
1C

�

N�
jqj2

�
; (3.13)

where A 2 SN such that A � �I , � > 0, � � 0, q 2 RN .

3.3 The comparison principle with non-strict subsolutions

We are now ready to prove the main comparison principle for the equation

� det.D2Xu/CH.x; u;DXu/ D 0 in �: (3.14)

Theorem 3.5. Assume H satisfies (3.3) and the vector fields X1; : : : ; Xm 2 C 2

are of Carnot type or satisfy (3.12). Let u 2 USC.�/ be a bounded X-convex
subsolution of (3.14) and v 2 LSC.�/ be a bounded supersolution of (3.14).
Then

sup
�

.u � v/ � max
@�
.u � v/C:

Proof. We fix � > 0 and set s WD max@�.u � v/C. By the upper semicontinuity
of u � v there is ı > 0 such that

.u � v/.x/ � s C � for all x such that dist.x; @�/ � ı:

Now we set
�ı WD

®
x 2 � W dist.x; @�/ > ı

¯
and we must prove that sup�ı .u � v/ � s C �. To this goal we consider the
uniformly X-convex strict subsolutions u" constructed in Theorem 3.2. We claim
that each u" is also a strict subsolution of

� log det.D2Xu"/C log
�
H.x; u";DXu"/C

˛

2

�
� 0 in �ı ;

where ˛ > 0 is the constant provided by Theorem 3.2. Since v is a supersolution of
the same equation, we can then use Theorem 2.18 in�ı withK1 D log.HC˛=2/
to get

sup
�ı

.u" � v/ � max
@�ı

.u" � v/
C
� s C � for all " � "0;

where the last inequality follows from u" � u. Since u" ! u, we let " ! 0 and
obtain that u� v � sC � in all �, which gives the conclusion by the arbitrariness
of �.
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To prove the claim we recall that for each " there is C such that jDXu"j � C

in �ı , by Proposition 2.17. Then

H.x; u";DXu"/ � max
x2�;jpj�C

H.x; supu; p/ DW C1:

From this we get the conclusion as in Lemma 2.14, because

log.H.x; u";DXu"/C ˛/

D log
�
H.x; u";DXu"/C

˛

2

�
C log

�
1C

˛

2H.x; u";DXu"/C ˛

�
� log

�
H.x; u";DXu"/C

˛

2

�
C log

�
1C

˛

2C1 C ˛

�
:

Remark 3.6. IfH is independent of u, then the conclusion of Theorem 3.5 can be
strengthened to sup�.u � v/ � max@�.u � v/ by Remark 2.10.

Example 3.7. The assumptions of Theorem 3.5 cover equations of the form

� det.D2Xu/C k.x; u/.1C jDXuj
2/˛ D 0 in �;

for any ˛ � 0, k 2 C.� � R/, k � 0 and nondecreasing in the second entry.
If the vector fields are the canonical basis of the Euclidean space Rn and ˛ D
.nC 2/=2 this is the classical equation satisfied by a function u whose graph has
Gauss curvature k. In Carnot groups and for ˛ D .m C 2/=2, k D k.x/, it
is the equation of prescribed horizontal Gauss curvature as defined by Danielli,
Garofalo and Nhieu [26]. As a corollary of Theorem 3.5 we obtain the uniqueness
of a viscosity solution u 2 C.�/ of this PDE with prescribed boundary data.

Example 3.8. In problems of optimal transportation (see [17,53] for the Euclidean
case and [2, 29]), H has the form H.x; q/ D f .x/=h.q/ with f; h � 0 andR
� f .x/ dx D

R
Rm h.q/ dq < C1. The assumption (3.3) of Theorem 3.5 is

satisfied if f 2 C.�/, h 2 C.Rm/, h > 0, and h�1=m is locally Lipschitz. This is
true, for instance, if h.q/ D 1=.c C jqj/˛ with ˛ > m and c > 0.

In [48], Rauch and Taylor proved the following comparison principle for the
classical Monge–Ampère equation:

If � is strictly convex, u 2 C.�/ is convex, v 2 W 2;n.�/, and
detD2u � detD2v in �, then max�.u � v/ � max@�.u � v/.

The last result of this section, which is a special case of Theorem 3.5 with
Remark 3.6, gives a version of such statement in the context of viscosity solutions
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and non-commutative vector fields. It extends also a proposition of Gutierrez and
Montanari [33] for u; v 2 C 2.�/, n D 3, m D 2, and X1; X2 generators of the
Heisenberg group.

Corollary 3.9. Assume the vector fields X1; : : : ; Xm 2 C 2 are of Carnot type or
satisfy (3.12), u 2 USC.�/ bounded and X-convex, v 2 LSC.�/ bounded, and

� det.D2Xu/C f .x/ � 0; � det.D2Xv/C f .x/ � 0 in �

in viscosity sense for some f 2 C.�/, f � 0. Then sup�.u�v/ � max@�.u�v/.

4 Solvability of the Dirichlet problem

In this section, we apply the results of Section 3 to solve the Dirichlet problem for
the PDE (3.14): ´

� detD2
X
uCH.x; u;DXu/ D 0 in �;

u D g on @�;
(4.1)

with g 2 C.@�/.

4.1 Some explicit solutions in the Heisenberg group

In R3 with coordinates x D .x1; x2; t / the generators of the Heisenberg group are
the vector fields

X1 D
@

@x1
C 2x2

@

@t
; X2 D

@

@x2
� 2x1

@

@t
: (4.2)

The norm

jxjH WD w.x/
1=4; w.x1; x2; t / WD .x

2
1 C x

2
2/
2
C t2 (4.3)

is positively 1-homogeneous with respect to the dilations

ı�.x1; x2; t / D .�x1; �x2; �
2t /:

The Koranyi ball of radius R > 0 centered at the origin is

BH.R/ WD
®
x D .x1; x2; t / 2 R3 W jxjH < R

¯
:
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Proposition 4.1. Let� D BH.R/ andX1; X2 be the generators of the Heisenberg
group (4.2). Then w.x/ D jxj4H is the unique X-convex viscosity solution of the
Dirichlet problems´

� detD2
X
uC 144.x21 C x

2
2/
2 D 0 in �;

u D R4 on @�;
(4.4)

and ´
� detD2

X
uC kH.x/.1C jDXuj

2/2 D 0 in �;
u D R4 on @�;

(4.5)

where

kH.x/ WD
� 12.x21 C x

2
2/

1C 16.x21 C x
2
2/jxj

4
H

�2
: (4.6)

In particular, w is the unique X-convex function on BH.R/ with horizontal Gauss
curvature kH and boundary value R4.

Proof. The uniqueness follows from Theorem 3.5. A straightforward calculation
gives

D2Xw.x/ D 12.x
2
1 C x

2
2/I; (4.7)

so w is X-convex and a classical solution of (4.4). Moreover

DXw D 4.x
2
1 C x

2
2/

 
x1

x2

!
C 4t

 
x2

�x1

!
; (4.8)

so
jDXwj

2
D 16.x21 C x

2
2/
�
.x21 C x

2
2/
2
C t2

�
(4.9)

and w is a classical solution of (4.5).

The next result is the analogue in the Heisenberg group of the fact that the
Euclidean norm jxj in Rn is the unique convex function solving detD2u D 0 in
the punctured Euclidean ball B.R/ n ¹0º and taking the values R on @B.R/ and 0
at 0.

Proposition 4.2. Let X1; X2 be the generators of the Heisenberg group (4.2).
Then the homogeneous norm j�jH is the unique X-convex viscosity solution of
the Dirichlet problem 8̂<̂

:
� detD2

X
u D 0 in BH.R/ n ¹0º;

u D R on @BH.R/;

u.0/ D 0:

(4.10)
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Proof. The uniqueness follows from Theorem 3.5. Next we compute, for x ¤ 0,

D2X jxjH D
1

4jxj3H

h
D2Xw �

3

4w
DXw ˝DXw

i
: (4.11)

If .x1; x2/ D 0, then D2
X
jxjH D 0. If .x1; x2/ ¤ 0, to show that the matrix

in brackets Œ � � � � is positive semidefinite, we take a unit vector � and set  WD
x21 C x

2
2 . First observe that

�TD2Xw� D 12 j�j
2
D 12 

by (4.7). Next we compute, using (4.9),

3

4w
�T .DXw ˝DXw/� D

3

4w
j� �DXwj

2

�
3

4w
jDXwj

2
D

3

4w
16 w D 12 :

Then D2
X
jxjH � 0 in R3 n ¹0º in the classical sense and j�jH is X-convex.

To prove that detD2
X
jxjH D 0, it is enough to show, by (4.11), thath

D2Xw �
3

4w
DXw ˝DXw

i
DXw D 0; (4.12)

because DXw ¤ 0 for .x1; x2/ ¤ 0. By (4.7) and (4.8) the first term is

D2XwDXw D 48 
2

 
x1

x2

!
C 48t 

 
x2

�x1

!
:

For the second term we use .DXw ˝DXw/DXw D jDXwj
2DXw, (4.8), and

finally (4.9) to compute

3

4w
.DXw ˝DXw/DXw D

3

4w
16 wDXw D 48 

2

 
x1

x2

!
C 48t 

 
x2

�x1

!
;

which gives (4.12).

Remark 4.3. The calculations of this section hold as well in R2jC1 with the gen-
erators of the j -th Heisenberg group and the corresponding homogeneous norm.
The fact that such norm solves detD2

X
u D 0 off the origin was proved in [26] for

general stratified groups of Heisenberg type.
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4.2 Perron method

Here we describe the construction of solutions in the general case. We denote by
S and Z, respectively, the sets of sub- and supersolutions of (4.1):

S WD
®
w 2 USC.�/ W w bounded X-convex subsolution of (3.14);

w � g on @�
¯
;

Z WD
®
W 2 LSC.�/ W W bounded supersolution of (3.14); W � g on @�

¯
:

The Perron method proposes

u.x/ WD sup
w2S

w.x/; x 2 �; if S ¤ ;

as a candidate solution of (4.1). Note that, if W 2 Z and the comparison principle
holds, then u.x/ � W.x/ < C1 for all x. Under no further assumptions u is a
generalized, possibly discontinuous solution of the Dirichlet problem (4.1) in the
following sense.

Theorem 4.4. If S ¤ ;, Z ¤ ;, and the comparison principle holds for (4.1),
then the u.s.c. envelope u� is a X-convex subsolution and the l.s.c. envelope u� is
a supersolution of (3.14).

Proof. By a standard argument, if a function v is the sup of a set of subsolutions,
then its u.s.c. envelope v�.x/ WD inf¹V.x/ W V 2 USC.�/; v � V º is a subsolu-
tion, see [6, 24]. In particular, u�.x/ is X-convex. The proof that u� is a super-
solution of (3.14) is achieved by contradiction: one assumes that u� fails to be a
supersolution at some point y 2 � and constructs a subsolution that is larger than
u near y, therefore contradicting the maximality of u. For the Monge–Ampère
equations we must show that the we can construct an X-convex subsolution larger
than u.

If u� fails to be a supersolution at some point, say y D 0, by Definition 2.3
there is a C 2 test function ' such that '.0/ D u�.0/, '.x/ � u�.x/ for jxj small,

� det.D2X'.0//CH.0; u�.0/;DX'.0// < 0;

and
D2X'.0/ > 0: (4.13)

The usual “bump” construction [6, 24] considers v.x/ WD '.x/C " �  jxj2 and

U.x/ WD

´
max¹u.x/; v.x/º if jxj < r;
u.x/ otherwise.
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Then one checks that for small "; ; r , the function U � is a subsolution of the
PDE (3.14) and sup.U � � u/ > 0. Thanks to (4.13), by further restricting ; r if
necessary, we also have that �D2

X
U � � 0 in viscosity sense, so U � is X-convex

and we achieve the contradiction by the usual argument [6, 24].

To give examples of equations that satisfy the last theorem, as well as the next
results on the existence of continuous solutions, we will use the assumption that
for some L;M;R > 0,

H 1=m.x;R; p/ � Ljpj CM for all x 2 �; p 2 Rm: (4.14)

Since H is nondecreasing in the second entry, the same inequality holds for
H 1=m.x; r; p/ and all r � R. In the next results, we will take R D min@� g or
max@� g, and L;M will depend on it. This is a slightly weaker version of the
growth condition used by Lions [41] in the Euclidean case, see Examples 4.16 and
4.19 below.

Example 4.5. Assume H satisfies (3.3), (4.14) with R D min@� g, and the vector
fields X1; : : : ; Xm 2 C 2 are of Carnot type. Then u.x/ is a generalized solution
of problem (4.1) in the sense described by Theorem 4.4. In fact, by Theorem 3.5
we know that the comparison principle for (4.1) holds. Therefore, it is enough to
prove that both sets S and Z are nonempty. First of all we note thatW � max@� g
is an element of Z. As far as the set S is concerned, we consider

w.x/ D e
�
2

Pm
iD1jxi j

2

�max
x2�

e
�
2

Pm
iD1jxi j

2

Cmin
@�

g;

so that w � min@� g. As in the proof of Theorem 3.2, we have that D2
X
w � �I .

Moreover, for
� WD �e

�
2

Pm
iD1jxi j

2

;

by (3.9) we get

� det1=m.D2Xw/CH
1=m.x; w;DXw/

D �� det1=m.Im C �.x1; : : : ; xm/˝ .x1; : : : ; xm//

CH 1=m.x; w; �.x1; : : : ; xm//

� �
�
�1 � �j.x1; : : : ; xm/j

2=m
C Lj.x1; : : : ; xm/j

�
CM

which becomes negative for � large enough.
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Example 4.6. Assume H satisfies (3.3), (4.14) with R D min@� g, and the vector
fields are of class C 2 and such that jxj2 is X-convex in �, that is, the inequal-
ity (3.12) holds. Then u.x/ is a generalized solution of problem (4.1) as in the
preceding example. The proof is the same except that now we use

w.x/ D e�
jxj2

2 �max
x2�

e�
jxj2

2 Cmin
@�

g:

As in the classical potential theory, the continuity at the boundary of the Perron
solution requires the existence of barriers.

Definition 4.7. We say that w is a lower (respectively, upper) barrier for problem
(4.1) at a point x 2 @� if w 2 S (respectively, w 2 Z) and

lim
y!x

w.y/ D g.x/:

Corollary 4.8. Suppose that the comparison principle holds for (4.1) and that for
all x 2 @� there exist a lower and an upper barrier. Then u 2 C.�/ is the
solution of (4.1), that is, the unique X-convex viscosity solution of (3.14) attaining
continuously the boundary data g.

Proof. The existence of a lower and an upper barrier at x 2 @� implies the con-
tinuity of u at x and u.x/ D u�.x/ D u�.x/ D g.x/. Then the comparison
principle gives u� D u� in � and therefore u is a continuous viscosity solution of
(3.14).

Remark 4.9 (Interior regularity of the solution). Since the solution u of the Dirich-
let problem is X-convex, it is locally Lipschitz continuous with respect to the
Carnot–Carathéodory distance d associated to the vector fields X (see, e.g., [7,12]
for the definition). If, in addition, the identity map .Rn; d /! .Rn; j�j/ is a home-
omorphism (e.g., the vector fields X are smooth and satisfy the Hörmander con-
dition), then the distributional derivatives Xju exist a.e. and are locally bounded.
All this is known in Carnot groups by [5, 26, 42, 43, 49] and was proved in [7] for
general vector fields.

In Carnot groups of step 2, horizontally convex functions are also twice differ-
entiable a.e. [27, 34, 43]. Therefore in this case the Perron solution u solves the
PDE (3.14) also pointwise almost everywhere.
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4.3 Construction of barriers

To find explicit examples where the Perron method works and the Dirichlet prob-
lem is solvable, we make some assumptions on the bounded open set �. We say
it is smooth if´

there exists ˆ 2 C 2 such that
� D

®
x 2 Rn W ˆ.x/ > 0

¯
, Dˆ.x/ ¤ 0 for all x 2 @�.

(4.15)

The main additional assumption is that the domain be uniformly convex with re-
spect to the vector fields Xj . It is the natural extension for subelliptic Monge–
Ampère equations of the standard uniform convexity in the Euclidean case [19,31,
40, 41, 52].

Definition 4.10. A domain � smooth in the sense of (4.15) is called convex with
respect to the fields X1; : : : ; Xm (briefly X-convex) if D2

X
ˆ.x/ � 0, and uni-

formly X-convex if

D2Xˆ.x/ � �I for some  > 0, for any x 2 �: (4.16)

Example 4.11. Any Euclidean ball centered in x0 is uniformly X-convex if and
only if jx � x0j2 is X-convex in Rn. It is well known that this is true in all Carnot
groups of step 2, in particular the Heisenberg groups. For x0 D 0 the X-convexity
of jxj2 is equivalent to the inequality (3.12) in Rn that we already used in the
comparison principles.

The Koranyi ball BH.R/ in R3 is X-convex but not uniformly X-convex with
respect to the generators of the Heisenberg group (4.2).

The next result is an analogue in the context of Carnot-type vector fields of
a classical result of Caffarelli, Nirenberg and Spruck [19] and Lions [41] in the
Euclidean case, saying that the solvability of the Dirichlet problem is equivalent
to the existence of a convex subsolution attaining continuously the boundary data
(see also [51] for other curvature equations).

Corollary 4.12. Assume H satisfies (3.3) and the vector fields X1; : : : ; Xm 2 C 2

are either of Carnot type or they satisfy (3.12). Suppose also that either (i) g � 0,
or (ii) � and g 2 C 2.�/ are X-convex, or (iii) � is uniformly X-convex and
g 2 C 2.�/. If for all x 2 @� there exists a lower barrier, then u 2 C.�/ is the
unique solution of (4.1).

Proof. We are going to apply Corollary 4.8. The comparison principle comes from
Theorem 3.5. An upper barrier at all points of the boundary is W � 0 in case (i).
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In the other cases, we take W.x/ WD �ˆ.x/ � g.x/, � > 0. Then in case (ii)
D2

X
W.x/ � 0 for any � and in case (iii) D2

X
W.x/ � ��I �D2

X
g.x/ � 0 for

� large enough. Therefore any test function ' such that W � ' attains a minimum
at x has D2

X
'.x/ � 0. Then W is a supersolution of (3.14) by Definition 2.3.

Remark 4.13. In the papers [19] and [41], the vector fields are the canonical basis
of Rn and the authors assume the existence of a convex function w attaining con-
tinuously the boundary data at all points and such that either w is a subsolution of
class C 2 or w solves the PDE in the sense of Alexandrov. On the other hand the
existence of a C1 solution to the Dirichlet problem is proved.

Next we give some explicit conditions on the data ensuring the existence of a
lower barrier and therefore the solvability of the Dirichlet problem.

Proposition 4.14. Suppose that� is uniformly X-convex and g 2 C 2.�/. Assume
H satisfies (4.14) with R D max@� g and it is nondecreasing with respect to the
second entry r . Then there exists w 2 S \ C.�/ such that w D g on @�.

Proof. We consider

w.x/ D �.e��ˆ.x/ � 1/C g.x/; �; � > 0; (4.17)

where ˆ is defined in (4.15). Clearly w.x/ D g.x/ for any x 2 @� and w.x/ <
g.x/ for any x 2 �. Moreover

Dw.x/ D ��� e��ˆDˆCDg;

D2w.x/ D �� e��ˆ.�D2ˆC �Dˆ˝Dˆ/CD2g;

D2Xw D �� e
��ˆ

�
�D2XˆC ��

TDˆ˝ �TDˆ
�
CD2Xg:

From the regularity of the function g (there is c such that �cI � D2
X
g) and the

uniform X-convexity of � with constant  we have

D2Xw � .�� e
��ˆ � c/I C �2� e��ˆ�TDˆ˝ �TDˆ:

First we choose � such that �� e��ˆ.x/ � c � 1
2
�� e��ˆ.x/ , i.e.

� �
2c

�
max
�

e�ˆ: (4.18)

With this �, D2
X
w � 0 and w is X-convex. Moreover, from inequality (3.13),

det.D2Xw/ � .�� e
��ˆ/m det

�
2
I C ��TDˆ˝ �TDˆ

�
� .�� e��ˆ/m

�
2

�m�
1C

2�

m
j�TDˆj2

�
: (4.19)
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From the monotonicity of H , the growth assumption (4.14) with R D max@� g,
and the boundedness of Dg we get, for some K > 0,

H.x;w;DXw/ � H.x;R;DXw/ � .M C LjDXw CDXgj/
m

� K CK.�� e��ˆ.x//m j�TDˆjm: (4.20)

To prove that w is a subsolution we have to show that the right-hand side of (4.19)
is larger than the right-hand side of (4.20) for � and � large enough. This is
equivalent to

1C
2�

m
j�TDˆj2 �

2mK

.�� e��ˆ/m
C

� 2


�m
Kj�TDˆjm:

First we choose � so large that

2�

m
j�TDˆj2 �

� 2


�m
Kj�TDˆjm

and then we choose � such that 2mK=.�� e��ˆ/m � 1, i.e.,

� �
2K1=m

�
max
�

e�ˆ:

From (4.18) we can conclude the proof by choosing

� �
2

�
max.c;K1=m/max

�

e�ˆ:

Theorem 4.15. Suppose that� is uniformly X-convex, g 2 C.@�/, and the vector
fields X1; : : : ; Xm 2 C 2 are either of Carnot type or they satisfy (3.12). Assume
H satisfies (3.3) and (4.14) with R D max@� g. Then u 2 C.�/ is the unique
solution of (4.1).

Proof. We take a sequence gn 2 C 2.�/ that converges uniformly to g. By Corol-
lary 4.12 and Proposition 4.14 there is a solution un 2 C.�/ of the Dirichlet
problem with boundary condition gn. By the estimate of Theorem 3.5

sup
�

jun � umj � max
@�
jgn � gmj for all n;m:

Since gn is a Cauchy sequence, also un is such and therefore it converges uni-
formly to u 2 C.�/. By the stability of viscosity solutions, u solves (4.1) and by
the comparison principle Theorem 3.5 it coincides with u.
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Next we list several equations to which the last theorem on the well-posedness
of the Dirichlet problem applies.

Example 4.16. Assume that the Hamiltonian H in (4.1) satisfies (3.3) and, for
some R 2 R,

lim sup
jpj!C1

H.x;R; p/

jpjm
< C1 uniformly in x 2 �.

Then the growth assumption (4.14) holds for some L;M and Theorem 4.15 ap-
plies for all data g 2 C.@�/ such that max@� g � R. In the Euclidean case
(m D n and the vector fields are the canonical basis of Rn), we therefore recover
one of the main results of Lions’ paper [41].

Example 4.17. The previous example includes the basic subelliptic Monge–
Ampère equation [26, 33, 44]

� det.D2Xu/C f .x/ D 0; f 2 C.�/; f � 0;

as well as the caseH.x; r; p/ D .1C�jpj2/m=2, with � > 0, that in the Euclidean
case was studied in [40].

Example 4.18. Equations of the form

� det.D2Xu/C f .x; u/ D 0; f 2 C.� �R/ nondecreasing in u; f � 0;

satisfy the assumptions of Theorem 4.15. The dependence of f on u appears in
various problems of differential geometry, see [3, 21] and the references therein.
An example that appears in several papers [3, 22, 28] is

f .x; u/ D �.x/e�.x/u; �; � 2 C.�/; �; � � 0:

Example 4.19. Another special case of Example 4.16 is

� det.D2Xu/C k.x; u/.1C jDXuj
2/˛ D 0; k � 0; 0 � ˛ �

m

2
;

with k 2 C.� � R/ nondecreasing in u, whose structure is reminiscent of the
equation of prescribed Gauss curvature (where, however, ˛ D m

2
C 1). We recall

that the exponent m
2

is optimal without additional compatibility conditions on k.
In the Euclidean case, it is well known that a necessary condition for the existence
of a classical subsolution attaining the boundary data isZ

�

k.x/ dx �

Z
Rn
.1C jpj2/�˛ dp;

and the right-hand side is finite if and only if ˛ > n=2.
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Example 4.20. A simple example of nonexistence of the viscosity solution to the
Dirichlet problem when the growth assumption (4.14) fails is the ODE

�u00 CH.x; u; u0/ D 0 in � � 1; 1Œ with H.x; u; p/ �
�

2
.1C p2/

and boundary conditions u.�1/ D u.1/ D 0. Indeed there are no viscosity sub-
solutions, i.e., S D ;. To prove this we solve �u00Ck.1C .u0/2/ D 0 with k < �

2

and find uk.x/ D 1
k

log cosk
coskx . If w 2 S , the comparison principle gives w � uk ,

but uk.x/! �1 as k ! �
2
�, for all jxj < 1.

Remark 4.21. In the theory of linear PDEs, it is important to distinguish the char-
acteristic and non-characteristic points of the boundary. For fully nonlinear, de-
generate elliptic PDEs

F.x; u;Du;D2u/ D 0 in �;

we gave in [8] the following definition: a point z 2 @� is called characteristic for
the operator F if

F.z; 0;�n.z/; X C �n.z/˝ n.z// D F.z; 0;�n.z/; X/ (4.21)

for all X and all � > 0. For the subelliptic Monge–Ampère equations (3.14) the
operator F is

F.x; r; p;X/ WD � det
�
�TX� CQ.x; p/

�
CH.x; r; �Tp/;

withQ given by (2.13). The characteristic points z are determined by the equation

det
�
�T .z/X�.z/CQ.z; p/C ��T .z/n.z/˝ �T .z/n.z/

�
D det

�
�T .z/X�.z/CQ.z; p/

�
: (4.22)

We recall that if A, B are square matrices, A > 0 and B � 0, then

det.AC B/ D det.A/ if and only if B � 0:

Then (4.22) for � > 0 yields j�T .z/n.z/j D 0. In the proof of Theorem 4.15,
we did not need to treat these points differently from the non-characteristic ones
because of the uniform X-convexity of the domain. For more general domains we
expect that the lower barrier must be constructed in different ways at characteristic
and non-characteristic points, as for the linear and the Hamilton–Jacobi–Bellman
subelliptic PDEs, see [8, 16] and the references therein.
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We end the section with two results in the Koranyi ball of the Heisenberg group.
Note that BH.R/ is a X-convex set but it is not uniformly X-convex, because
the condition (4.16) fails at the characteristic points of the boundary, namely, the
intersections with the t axis.

Corollary 4.22. LetX1; X2 be the generators of the Heisenberg group (4.2). Then,
for any f 2 C.BH.R/ � R/ nondecreasing in the second entry and such that
f .x;R4/ � 144.x21 C x

2
2/
2, u 2 C.BH.R// is the unique X-convex viscosity

solution of the Dirichlet problem´
� detD2

X
uC f .x; u/ D 0 in BH.R/;

u D R4 on @BH.R/:
(4.23)

Proof. By Proposition 4.1, w.x/ D jxj4H is a subsolution of (4.23) that attains
continuously the boundary data. The conclusion follows from Corollary 4.12.

The last result is about the prescribed horizontal Gauss curvature equation. Al-
though it does not satisfy the growth condition (4.14), a lower barrier is given by
w.x/ D jxj4H if the prescribed curvature is lower than the horizontal curvature kH

of the graph of w.

Corollary 4.23. Let X1; X2 be the generators of the Heisenberg group (4.2). As-
sume k 2 C.BH.R/ � R/ is nondecreasing in the second entry and satisfies
k.x;R4/ � kH.x/, where kH is given by (4.6). Then u 2 C.BH.R// is the
unique X-convex viscosity solution of the Dirichlet problem´

� detD2
X
uC k.x; u/.1C jDXuj

2/2 D 0 in BH.R/;

u D R4 on @BH.R/:
(4.24)

In particular, u is the unique X-convex function on BH.R/ with horizontal Gauss
curvature k and boundary value R4.

Proof. By Proposition 4.1, w.x/ D jxj4H is a subsolution of (4.24) that attains
continuously the boundary data. The conclusion follows from Corollary 4.12.
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