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Abstract: In yeast engineering, metabolic burden is often linked to the reprogramming of resources
from regular cellular activities to guarantee recombinant protein(s) production. Therefore, growth
parameters can be significantly influenced. Two recombinant strains, previously developed by
the multiple δ-integration of a glucoamylase in the industrial Saccharomyces cerevisiae 27P, did not
display any detectable metabolic burden. In this study, a Fourier Transform InfraRed Spectroscopy
(FTIR)-based assay was employed to investigate the effect of δ-integration on yeast strains’ tolerance
to the increasing ethanol levels typical of the starch-to-ethanol industry. FTIR fingerprint, indeed,
offers a holistic view of the metabolome and is a well-established method to assess the stress response
of microorganisms. Cell viability and metabolomic fingerprints have been considered as parameters
to detecting any physiological and/or metabolomic perturbations. Quite surprisingly, the three strains
did not show any difference in cell viability but metabolomic profiles were significantly altered and
different when the strains were incubated both with and without ethanol. A LC/MS untargeted
workflow was applied to assess the metabolites and pathways mostly involved in these strain-specific
ethanol responses, further confirming the FTIR fingerprinting of the parental and recombinant strains.
These results indicated that the multiple δ-integration prompted huge metabolomic changes in
response to short-term ethanol exposure, calling for deeper metabolomic and genomic insights to
understand how and, to what extent, genetic engineering could affect the yeast metabolome.

Keywords: industrial yeast engineering; bioethanol; metabolic burden; Consolidated Bioprocessing;
glucoamylase; multivariate analysis; FTIR; metabolomics; liquid chromatography-mass spectrometry;
ethanol stress response

1. Introduction

Bioethanol obtained from biomass is one of the most promising biofuels to reduce dependence on
oil and decrease carbon dioxide emissions [1]. The main cost in bioethanol and other bio-products
production is the substrate. Therefore, to reduce the costs, the processing of cheap materials such as
energy-crops, food processing residues, agricultural and forest waste is paramount [2–11].
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Besides cellulose, starchy residual biomass is the most available substrate for bioethanol
considering its great availability and limited price [11–13]. Regardless of these advantages,
starch-to-ethanol processing is very expensive because of the need for bulky amounts of commercial
enzymes. Therefore, more cost-effective methods are needed and the consolidated bioprocessing (CBP)
could be a breakthrough technology [14,15]. However, the CBP applied to starch requires recombinant
Saccharomyces cerevisiae strains producing sufficient quantities of raw starch hydrolyzing enzymes to
ensure complete hydrolysis at a high substrate loading. This has become the primary focus of several
research groups and great progress towards proof of concept in industrial strains has been made [14–18].
Nevertheless, engineering industrial strains for the production of amylases at titers suitable in large
scale applications still remains a major challenge [14,18]. The expression of heterologous genes can
induce a stressful condition, known as metabolic burden, which can affect the metabolic performances
of the recombinant strain [19,20]. In the development of engineered yeast strains, metabolic burden
is often linked to the synthesis of recombinant proteins, since both additional energetic costs and
competition for limited transcriptional and translational resources could occur in engineered cells. As
a result, growth parameters, such as biomass, yield and specific substrate consumption rate, could be
significantly impaired.

In a recent paper, two recombinant strains, S. cerevisiae F2 and F6, engineered for the multiple
δ-integration of the glucoamylase sGAI from Aspergillus awamori, did not exhibit any detectable
metabolic burden once compared in terms of ethanol production and yield to their parental 27P [21].
Based on this evidence, in this work, we investigated the effect of δ-integration on the yeast strain’s
ability to withstand the increasing ethanol stressing levels typical of the starch-to-ethanol industry.
Ethanol stress is indeed one of the main factors affecting the complete fermentation and higher glucose
to ethanol yield in the bioethanol industry [18,22]. In order to ensure the overall ethanol yield of the
process, any recombinant strains tailored for starch (or cellulose)-to-ethanol production must retain
several industrial traits (i.e., ethanol tolerance, ethanol yield, biomass yield) of their parental strain.
Therefore, in this paper, it seemed noteworthy to screen increasing concentrations of ethanol levels to
assess the ethanol tolerance of the two recombinant strains F2 and F6 and their metabolomic reactions to
short-term ethanol response. The yeast cell reacts to ethanol by quickly reprogramming many cellular
activities to promote survival during the stress condition and protect important cell components, which
stimulate the normal activity of the cell. The ethanol stress responses are multifactorial and comprise
various features such as signalling, gene level control and accumulation of the needed protectants [23].
Although profuse efforts have been spent at genetic, transcriptional and metabolomic levels, the
precise mechanism of ethanol tolerance is not completely revealed [23,24] and a more holistic and
in-depth understanding of ethanol tolerance in S. cerevisiae is crucial to support novel yeast metabolic
engineering methodologies and improve ethanol production. Metabolomics has been gradually applied
in investigating the cellular stress responses to ethanol [25–27]. As such, metabolites in pathways of
interest can be unbiasedly characterized to enlighten the effects of perturbation by metabolic profiling,
which has been considered to provide useful information for yeast cells’ stress responses.

In the present study, a Fourier Transform InfraRed Spectroscopy (FTIR)-based assay was employed
to investigate the response to ethanol stress of both a parental and two recombinant S. cerevisiae
strains. Cell viability and metabolomic fingerprints have been considered as parameters to assess
any physiological and/or metabolomic perturbations in response to the increasing concentrations
of ethanol. Quite unexpectedly, the three strains did not show any difference in cell viability but
exhibited significantly different metabolomic fingerprints. This result indicated that the multiple
δ-integration prompted huge metabolomic changes in response to short-term ethanol exposure, calling
for deeper metabolomic insights to understand how, and to what extent, genetic engineering could
affect the yeast metabolomic reaction to ethanol stress. A more specific metabolomic approach, based
on LC/MS analysis, was then applied to investigate the nature of the differences detected by FTIR assay
at metabolites level. Significantly perturbed metabolic pathways, identified by metabolomic pathway
analysis, further supported the hypothesis that diverse δ-integrations, although not resulting in higher
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sensitivity to ethanol, completely rearranged the metabolome of the recombinant strains by inducing
different over- or down-regulations of metabolite production.

2. Results and Discussion

2.1. FTIR Fingerprints Under Ethanol Stress

The two recombinant strains F2 and F6 were engineered to ferment raw starch into ethanol through
the multiple delta-integration of the sGAI gene of A. awamori under the constitutive transcriptional
control of PGK1 [21]. The evidence that both the parental S. cerevisiae 27P and recombinant
strains displayed similar ethanol yield and growth rate from glucose indicated that the multiple
delta-integration and expression of the sGAI gene did not result in any evident metabolic burden when
strains were grown in glucose under oxygen limiting conditions [21]. In this study, a more detailed
analysis has been carried out to investigate the short-term ethanol response of both parental and
engineered strains. A FTIR-based assay, already employed as a powerful technique for ecotoxicological
assessments [28–30], was carried out to estimate the type and extent of perturbations induced by
ethanol stress on both parental and recombinant yeast strains. Ethanol levels were specifically chosen
based on the alcohol concentrations typical of the bioethanol industry [18,22]. The FTIR spectra of
yeast cells were recorded at increasing ethanol concentrations (0%, 7.5%, 15%, 20%, 21%, 22%, 23%,
24%, 25% v/v), parallel with mortality data (Table 1). Significant Wavelengths Analysis (SWA) detected
all relevant differences between spectra from different experimental conditions, producing a plot in
which all the statistically significant difference wavelengths (p < 0.01) are reported as dots (Figure 1).

Table 1. Mortality (%) induced by increasing ethanol concentrations on 27P, F2 and F6 strains.

Mortality (%)

Ethanol% (v/v) P27 F2 F6

0 0 0 0
7.5 0 0 0
15 0 0 0
20 0 0 0
21 13 22 18
22 33 36 34
23 49 54 50
24 78 82 72
25 100 100 100

In terms of cell mortality, delta-integration did not affect the response of both recombinant strains
vs. that of the parental. The exposure to increasing concentrations of ethanol did not induce mortality
up to 20% alcohol while, at higher concentrations, cell mortality increased proportionally with the
increase in concentration (Table 1), suggesting that the detoxification mechanisms were active up to
20% ethanol, whereas at higher dosages the resulting mortality was concentration-dependent.

Viceversa, the comparison between FTIR fingerprints revealed that δ-integration produced an
unbalance in the metabolome of recombinant strains already in resting conditions (0% ethanol), as
depicted by the significantly different patterns of Figure 1. In general, the response of the recombinant
F6 was always different from that of the parental (orange dots), regardless of cell mortality (Table 1).
Conversely, the FTIR fingerprint of S. cerevisiae F2 did not diverge from that of the parental for up to
20% ethanol, showing a different response only from 23% ethanol, a concentration inducing almost 50%
mortality. As such, the metabolomic fingerprinting approach gives a holistic view of the metabolome
and is well-established as a method to qualify metabolomic changes in microbial cells [31–33] and to
characterize the stress response of microorganisms [34,35]. Furthermore, it is suitable for complex
experimental designs to explore multiple different conditions, allowing the selection of the most
significant ones for more in-depth metabolomic or other -omic approaches.



Metabolites 2020, 10, 140 4 of 14

  

 

The two recombinant strains F2 and F6 were engineered to ferment raw starch into ethanol through the 
multiple delta-integration of the sGAI gene of A. awamori under the constitutive transcriptional control of 
PGK1 [21]. The evidence that both the parental S. cerevisiae 27P and recombinant strains displayed similar 
ethanol yield and growth rate from glucose indicated that the multiple delta-integration and expression of 
the sGAI gene did not result in any evident metabolic burden when strains were grown in glucose under 
oxygen limiting conditions [21]. In this study, a more detailed analysis has been carried out to investigate the 
short-term ethanol response of both parental and engineered strains. A FTIR-based assay, already employed 
as a powerful technique for ecotoxicological assessments [28–30], was carried out to estimate the type and 
extent of perturbations induced by ethanol stress on both parental and recombinant yeast strains. Ethanol 
levels were specifically chosen based on the alcohol concentrations typical of the bioethanol industry [18,22]. 
The FTIR spectra of yeast cells were recorded at increasing ethanol concentrations (0%, 7.5%, 15%, 20%, 21%, 
22%, 23%, 24%, 25% v/v), parallel with mortality data (Table 1). Significant Wavelengths Analysis (SWA) 
detected all relevant differences between spectra from different experimental conditions, producing a plot in 
which all the statistically significant difference wavelengths (p < 0.01) are reported as dots (Figure 1). 

 
Figure 1. FTIR fingerprints of the parental S. cerevisiae 27P vs. recombinant strains (F2 and F6) at
increasing ethanol concentrations (0%, 7.5%, 15%, 20%, 21%, 22%, 23%, 24%, 25 % v/v). Legend. Specific
spectral areas involved in the ethanol response were considered, namely: fatty acids (W1), amides
(W2), mixed region (W3) and carbohydrates (W4).

2.2. Metabolomic Changes Induced by δ-Integration

The differences detected by FTIR were deeper investigated through LC/MS analysis. LC/MS was
carried out only on cell extracts from controls (0% ethanol) and from 20% to 24% ethanol (v/v)-treated
cells, triggering increasing mortality values of up to nearly 80% (Table 1). Metabolomic analysis based
on LC/MS identified a total of 143 metabolites with known structures (Supplementary Table S1). This is
the first report describing the metabolites produced by resting S. cerevisiae cells as a short-term ethanol
response, whereas the metabolomic insights reported to date on ethanol stress in S. cerevisiae were
applied only on cells growing in the presence of ethanol [23,25–27].

Partial Least Squares-Discriminant Analysis (PLS-DA) was applied on control samples to explore
the metabolic shift induced by δ-integration in recombinant yeasts (Figure 2A), as suggested by the
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FTIR patterns of the not-treated cells of Figure 1. PLS-DA [36] is a PLS regression method [37] which
correlates a series of response variables, y to a series of predictor variables, X, where y is a set of
binary variables of describing the categories of X [38]. PLS-DA is highly efficient in the estimation
of the independent original X-values (called latent variables, LV), which correlate optimally with the
detected changes in the dependent variable, y [38]. The tight clustering of replicates confirmed the high
reproducibility of the method. S. cerevisiae 27P, F2 and F6 were clearly distinguishable in the score plot
generating by combining PC1 (71.8% of the total variance) and PC2 (7.3% of total variance), confirming
that the sGAI δ-integration induced an alteration in the metabolomes in both recombinants compared
to that of the parental strain. To explore the more influent variables in the PLS-DA model, Variable
Importance in Projection (VIP) scores were calculated. VIP scores are a weighted sum of squares of the
PLS weights for each variable and assess the input of each predictor variable to the model [37]. It is
frequently used as a parameter for variable selection [38,39]. Since the average of squared VIP score is
equal to 1, the ‘greater than one’ rule is used as a criterion for variable selection [39]. According to the
VIP scores from PLS-DA analysis (Supplementary Table S2), Hierarchical Clustering Analysis (HCA)
was performed to highlight the variation trend of differential metabolites between strains (Figure 2B).
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regulated in both recombinants. Conversely, the other 21 metabolites in the lower cluster, including mainly 
amino acids, were more overexpressed in F6 samples than in the other two strains. The multiple δ-
integration of the glucoamylase sGAI induced a differential shaping of cell metabolites in the two 
recombinant strains, exerting a stronger effect in S. cerevisiae F6. One possibility to explain these differential 
alterations in cell metabolomes in resting conditions is to consider that the δ-integration occurred differently 
in the two strains. This hypothesis is supported by the different starch-hydrolyzing abilities of the two 

Figure 2. PLS-DA scores plot showing differences between the not ethanol-treated cells of the parental
S. cerevisiae 27P and the recombinant F2 and F6 strains (A) and resulting heat map of the top 25
significantly changed metabolites selected by VIP scores (B). Legend. PLS-DA scores plot of PC1
vs. PC2: the explained variances are shown in brackets (A). The colored boxes indicate the relative
concentrations of the corresponding metabolite in each group under study. The color scale is log2
transformed value and indicates relatively high (red) and low (blue) metabolite levels (B).

Differential altered metabolites clustered separately. Specifically, three metabolites in the upper
cluster (2-phenylbutil-2enal, nicotinic acid and D-isoleucine) were up-regulated in the parental strain
and down-regulated in both recombinants. Conversely, the other 21 metabolites in the lower cluster,
including mainly amino acids, were more overexpressed in F6 samples than in the other two strains.
The multiple δ-integration of the glucoamylase sGAI induced a differential shaping of cell metabolites in
the two recombinant strains, exerting a stronger effect in S. cerevisiae F6. One possibility to explain these
differential alterations in cell metabolomes in resting conditions is to consider that the δ-integration
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occurred differently in the two strains. This hypothesis is supported by the different starch-hydrolyzing
abilities of the two recombinants, with S. cerevisiae F2 displaying higher values [21]. Although the
δ-integration did not induce any metabolic burden in the two recombinants [21], the significant
alterations detected in the metabolome of S. cerevisiae F6 would suggest that it can directly affect some
parental genes and/or promoter sequences in way that has yet to be understood. Conversely, the higher
similarity between parental and recombinant F2 metabolomes could be attributable to an alteration
induced indirectly and/or in part compensated by the reshuffling of the cell metabolome. Deeper
genomic and transcriptomic insights are in progress to elucidate these fascinating hypotheses.

2.3. Changes in Intracellular Metabolites in the Short-Term Response to Ethanol of the Recombinant F2 and F6
S. Cerevisiae Strains

The short-term responses of δ-integrated strains to increasing ethanol concentrations was
investigated by comparing the parental strain with each recombinant, separately. Two-way ANOVA
was used for comparative analysis between different groups to find the differential metabolites based
on p value (p < 0.05). In the first comparison, between the parental and the recombinant F2 (Figure 3A,
Supplementary Table S3), the number of differentially altered metabolites significantly affected by i.
phenotype, ii. ethanol concentration and iii. their interaction, which was 60, 91 and 84 respectively,
with 41 metabolites simultaneously influenced by all these factors. Conversely, in the comparison
between the parental and the recombinant F6, 101, 30 and 11 differentially altered metabolites were
affected respectively by i. phenotype, ii. ethanol concentration and iii. their interaction, respectively,
with six metabolites simultaneously influenced by all these factors (Figure 3B, Supplementary Table S4).

The major patterns associated with each factor have been identified through ANOVA-Simultaneous
Component Analysis (ASCA). ASCA revealed that, in both cases, 100% of the observed variations
could be explained by the main effect of the phenotype (Supplementary Figure S1), while the 88.9% and
54.36% variance in F2 and F6 could be explained, respectively, by the main effect of ethanol exposure
(Figure 3C,D). Ethanol concentration score plots based on PC1 of the corresponding sub-models
showed that the scores gradually increased along the concentration gradient considered (Figure 3C).
This indicates that ethanol induced a dose-dependent activation of the metabolomic activity of the
F2 recombinant with respect to that of the parental. A different trend was observed for metabolomic
changes between parental and recombinant F6 (Figure 3D): the scores firstly gradually decrease up to
22% v/v ethanol and then rapidly increase at higher ethanol levels, indicating that opposite alterations
occur as ethanol concentration increases. The large variance contribution of the interaction effect
confirms that metabolic changes induced by the exposition at increasing ethanol levels were different
between the parental and each recombinant strain (91.76% and 47.08% variance) (Supplementary
Figure S1).

Finally, the major trends associated with each experimental factor and their interactions has been
identified through Leverage/SPE analysis. Variables with a low SPE and higher leverage had a significant
contribution to the model and were picked out as influentially affected compounds (Supplementary
Tables S5 and S6). Specifically, the number of differentially altered metabolites responsible for the
observed variation in response to ethanol were ten (Adenosine, D-Isoleucine, Acetamidopropanal,
L-Phenylalanine, Betaine, D-Glutamine, Beta-pseudouridine, Piceatannol, L-Arginine, D-Methionine) in
the comparison with S. cerevisiae F2 (Figure 3E, Supplementary Table S5) and four (L-4-hydroxyglutamic
semialdehyde, Nicotinic acid, L-Lysine, Acetamidopropanal) in the comparison with the F6 strain
(Figure 3F, Supplementary Table S6). Most of these metabolites were aminoacids or intermediates
in aminoacids’ metabolism, such as L-4-Hydroxyglutamate semialdehyde and acetamidopropanal,
suggesting that δ-integration impacted the aminoacid metabolism of recombinant strains when
exposed to ethanol. This different aminoacids’ level may have occurred as a result of increased protein
degradation [40], already reported as a general stress response under oxidative stress, or following the
membrane function disruption affecting the delivery of aminoacids into the cell [41].
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Figure 3. Two-way ANOVA (A, B) and ANOVA-Simultaneous Component Analysis (ASCA) (C-F)
on metabolites produced by yeast cells (F2 vs. 27P and F6 vs. 27P) exposed to increasing ethanol
concentrations (0%, 20%, 21%, 22%, 23%, 24 %, v/v). Legend. Venn diagram of metabolites affected
by ethanol concentration, strain and their interaction (A,B). Major pattern of metabolites associated
with ethanol concentration (C,D). ANOVA-Simultaneous Component Analysis (ASCA) selection of
important metabolites associated with ethanol concentration by Leverage/SPE analysis (E,F). Ten and
four metabolites were identified as responsible for the observed variation in the comparison between
parental and recombinants F2 (E) and F6 (F), respectively.

2.4. Metabolic Pathway Involved in the Response to Ethanol Stress of Engineered Strains F2 and F6.

HCA was employed to highlight the variation trend of differential metabolites in the comparisons
between 27P and each recombinant at increasing concentrations of ethanol (20–24% v/v). The
metabolites for HCA were selected based on t-test results (p < 0.05) (Supplementary Table S7,8).
Both recombinants exhibited a strain-specific pattern in response to ethanol stress (Figure 4A,C) with
metabolites clustered into two distinct groups. Most of them, including the aminoacids (i.e., lysine and
arginine) or metabolites involved in the biosynthesis of aminoacids or glycerophospholipids, were
up-regulated with respect to the parental strain, suggesting that δ-integration induced some different
metabolic circuits in response to ethanol stress. Conversely, 12 metabolites in the recombinant F2
and 2 metabolites in the recombinant F6 resulted down-regulated compared to the parental, with
N-acetylputrescine, involved in the arginine and proline metabolism, common to both responses.

Global test and relative betweenness centrality algorithms were then conducted for pathway
enrichment analysis and pathway topology analysis, respectively. According to the results of
significance of the perturbed metabolic pathway and the centrality of metabolites in the metabolic
pathway, the perturbation of several metabolic pathways was found to be significant. Specifically,
arginine and proline metabolism, nicotinate and nicotinamide metabolism and arginine biosynthesis
resulted in alterations in the F2 recombinant, with an impact of 0.37, 0.32 and 0.29, respectively
(Figure 4B, Supplementary Table S9). On the contrary, the main impacted pathways in the F6
recombinant were beta-alanine metabolism, arginine biosynthesis and glycine, serine and threonine
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metabolism and glutathione metabolism, with an impact of 0.50, 0.35, 0.20 and 0.14, respectively
(Figure 4D, Supplementary Table S10).
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x-axis: pathway impact represents the impact of these significantly changed metabolites on the overall
pathway, based on their position/number within the pathway.

Both recombinant strains up-regulated arginine, citrulline and ornithine (Figure 4A,C), thus
impacting on the pathway of arginine biosynthesis. This is in agreement with previous studies
reporting that, in S. cerevisiae, arginine [42] and other aminoacids (i.e., glutamate, proline and
tryptophan) play a protective role against ethanol stress by maintaining the integrity of the cell wall and
plasma membrane [36,42]. Moreover, the alteration in the arginine biosynthesis can trigger the TCA
cycle, thus providing more energy to contrast ethanol stress [43]. The engineered strain F2 also altered
nicotinate and nicotinamide and arginine and proline metabolisms, deeply involved as antioxidants in
the cell redox status of S. cerevisiae [42,44–46]. This observation would imply that cells need to activate
the arginine biosynthesis pathway to reduce stress.

In the case of S. cerevisiae F6, the effect of δ-integration produced a completely different perturbation
in the metabolic pathways (Figure 4D). The disturbance of the beta-alanine metabolism was found
to be the most important, with a significant increase in spermidine, beta-alanine and L-aspartate
(Supplementary Figure S2). Beta-alanine metabolism is a metabolic route involving several compounds
bound to oxidative stress reaction, such as spermidine, spermine or aminopropanal. Many studies
demonstrated the positive influence of spermidine and spermine on yeast fermentation and growth
ability in the presence of ethanol [44,47]. The modulation of spermine content is also linked to
enhanced tolerance to lignocellulose-derived inhibitors [48]. All other pathways detected for F6
recombinant are directly involved in glutathione metabolism. Glutathione is one of the most essential
redox-scavenging compounds in yeast cells. The ratio of the two different forms, reduced (GSH)
and oxidized (GSSG, glutathione disulfide) and the GSSG:GSH rate predicts the physiological and
oxidative state of the cell, with healthy cells having lower GSSG:GSH values [49–51]. The biosynthesis
of great amounts of glutathione correlates with the yeast oxidative stress resistance. In fact, glutathione
participates in several functions in cells, especially searching for free radicals (ROS) present in the
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cytosol [52]. In addition, a higher viability is often linked to high glutathione levels in yeast cells [53].
Moreover, glutathione controls membrane dynamics and counteracts ROS effects linked to the fluidized
membrane, such as peroxidation and de-esterification of its lipidic fraction [54,55]. Together with the
thioredoxin system, glutathione is also involved in an inducible adaptive response mechanism, able to
permit oxidative stress resistance [52].

Finally, all pathways induced by δ-integration in the two recombinants are interconnected through
the NAD/NADH metabolism: aminoacids biosynthesis or accumulation in response to stress as well as
glutathione oxidation/reduction are all mediated by continuous switching between the oxidized and
reduced NAD form [34,44,56].

3. Materials and Methods

3.1. Cultures and Growth Conditions

The yeast strains used in this work are: S. cerevisiae 27P, an industrial yeast, and two recombinant
strains, namely F2 and F6, developed through the delta-integration of the sGAI gene of A. awamori into
the 27P chromosomes [21]. Cultures were inoculated at an optical density at 600 nm (OD600) of 0.2
in 500 mL bottles with 50 mL of fresh YPD medium (yeast extract 1%, peptone 1% and dextrose 2%
Difco Laboratories, USA) and grown at 25 ◦C under shaking at 150 rpm. Cell growth was monitored
by determining OD600 and stopped after 18 h. Each culture was prepared for an FTIR-based bioassay,
as detailed in the following paragraph.

3.2. FTIR-Based Bioassay

An FTIR-based assay for stress response analysis was carried out according to the procedure
proposed by Corte and colleagues [34]. Each suspension was centrifuged (5 min at 5300 x g), washed
twice with distilled sterile water and re-suspended in High Performance Liquid Chromatography
(HPLC) grade water to obtain an optical density of OD600 = 50. Each cell suspension was distributed
in 15 mL polypropylene tubes, one for each tested concentration of the chemicals. In each tube,
5 mL cell suspension and 5 mL double-concentrate ethanol solution were pipetted to obtain the final
concentrations of 7.5%, 15%, 20%, 21%, 22%, 23%, 24% and 25% (v/v) and a uniform cell density at
OD600 = 25. Control (0% ethanol concentration) was obtained by re-suspending cells in distilled sterile
water. All tests were carried out in triplicate. Polypropylene tubes were incubated for 1h at 25◦C in a
shaking incubator set at 50 rpm. After the incubation, 1.5 mL of each cell suspension were centrifuged
(5 min at 5300 × g), washed three times with distilled sterile water and resuspended in HPLC grade
water to reach the final concentration of 2.5 x 108 cells mL-1. For each condition, 105 µL volume was
sampled for three independent FTIR readings (35 µL each, according to the technique suggested by
Essendoubi and colleagues [57]) while 100 µL were serially diluted for viability assessment. Viable cell
count was carried out on YPDA supplemented with chloramphenicol (0.5 g L-1) plates. Cell mortality
(M) was calculated as M = (1 - Cv/Ct) x 100, where Cv is the number of viable cells in the tested sample
and Ct the number of viable cells in the control suspension.

3.3. Spectra Pre-Processing

FTIR measurements were performed in transmission mode. All spectra were recorded in the
range between 4000 and 400 cm-1. Spectral resolution was set at 4 cm-1, sampling 256 scans per sample
to obtain high quality spectra (signal to noise ratio values greater than 4000 within the 2100–1900 cm-1

interval). The software OPUS version 6.5 (BRUKER Optics GmbH, Ettlingen, Germany) was used to
assess the quality test, subtract the interference of atmospheric CO2 and water vapour, correct baseline
(rubberband method with 64 points) and to apply vector normalization to the whole spectra.
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3.4. Untargeted Metabolomics Profile Determination of Cells under Ethanol Stress by LC/MS Analysis

The metabolomic analysis of 27P, F2 and F6 samples challenged with seven increasing ethanol
concentrations was performed using a LC/MS untargeted workflow. Each thesis has been tested in five
replicates (n = 5), with a total of 105 samples processed. Cell suspensions, calibrated at 108 cells, was
centrifuged (5 min at 5300 × g) and the resulting pellet was mixed with glass beads and lysed using
FastPrep®-24 Tissue and Cell Homogenizer (MP Biomedicals, Irvine, CA, USA), at a speed setting of
6.0 for 120 s. The degree of cell breakage was checked microscopically. A total of 1 mL of methanol
was added to each lysate, vortexed, and centrifuged at 3000 rpm for 5 minutes. Supernatants were
transferred to the HPLC vials and 0.5µL was injected into the LC/MS system. LC/MS analyses were
performed using an Agilent 1260 Infinity UHPLC system coupled to an Agilent 6530 Q-TOF with
Agilent JetStream source (Agilent Technologies, USA). The LC consists of a quaternary pump and
an autosampler with a thermostated column compartment. The whole LC/MS system was governed
by Agilent MassHunter software (version B.09.00). The Ion Pairing Chromatography (IPC) method
was used to achieve a wide separation of polar metabolite classes with ACMETM Amide C18 column
(150 × 2.1 mm, 3 µm, Phase Analytical Technology LLC, State College, PA, USA) thermostated at 50 ◦C.
The separation of metabolites was achieved using a flow of 0.35mL min-1 of a binary gradient of 0.2%
Heptafluorobutyric acid (HFBA) in water (solvent A) and 0.1% Formic Acid in Methanol (solvent B).
The initial condition was 2% of B for 2 min, followed by a transition to gradient from 2% to 80% of B in
5 min and an isocratic step of 8 min. After that, the run was stopped and the column was reconditioned
for 4 min at initial conditions. An autosampler injected each sample using a needle wash program of
10 sec with methanol. Each run cycle was completed in 20 min. The ion source operated in positive
ion mode using nitrogen as drying gas at 35 psi and 250 ◦C. The capillary was set at 2000 V with
fragmentor, skimmer and octopole Radio Frequency (RF) set at 110, 65 and 750, respectively. Dynamic
mass axis calibration with accuracy < 5 ppm was achieved by continuous infusion in the source of
a reference mass solution (Agilent G1969-85001). The spectrometer acquired data in full-scan mode
in the 50 - 1700 mass range at 1.5 spectra/sec. LC/MS raw files were aligned and processed using
Batch Recursive Feature Extraction algorithm of MassHunter Profinder (Agilent B.08.00). The data
of features with score > 90% were imported in Mass Profiler Software (Agilent B.08.01) to perform
features annotation using the Search Database algorithm. For this purpose, the Yeast Metabolome
Database [58] was adapted to work in Agilent Mass Profiler. Only annotated metabolites with a quality
identification score > 90% were retained.

3.5. Data Analysis

3.5.1. Significant Wavelengths Analysis (SWA) Throughout the Spectra

An R script (www.cran.org) was employed to select and display the FTIR spectral regions with
statistically significant differences in the comparison between spectra of parental and recombinant
strains from the different experimental conditions tested. Briefly, pairs of spectra, each with three
replicas, were compared using the Student t-test for each wavelength separately. For each wave
number, the calculated p-value was recorded. This operation produced, for each pair of spectra, a vector
of p-values that were subsequently transformed in 1 (for p < 0.01) and 0 (for p > 0.01). Vectors were
collected in two types of matrices, one containing the vectors for all possible pairwise comparisons, i.e.,
the (n2

− n)/2 comparisons among the n conditions under test, and the other, containing only the (n − 1)
comparisons of the n conditions with the control condition. The matrix data were plotted with wave
numbers in the x-axis and comparisons in the y-axis. These plots reported the presence of a wavelength
with statistically significant difference (p < 0.01) as a dot. These operations were reiteratively carried
out for each experimental condition tested.

3.5.2. Metabolite Data Analysis

The sample weight and non-normalized peak areas are available in Supplementary Table S1.

www.cran.org
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Metabolomic data analysis was performed with MetaboAnalyst 4.0 [59]. Data were filtered based
on Interquartile Range, and normalized to sample median and scaled by Pareto scaling. PLS-DA was
applied on control samples to explore the metabolomic changes induced by δ-integration. PLS-DA
models were validated by 100 permutations. Two-way ANOVA and ASCA was used to investigate the
short-term responses of δ-integrated strains to short-term ethanol stress. The two-way ANOVA type
used was “within subjects ANOVA”, significance threshold was defined as the corrected p-value <

0.05, and False Discovery Rate < 0.05 was chosen for multiple testing correction. ASCA was performed
with the default parameters supplied by the website. HCA was employed to highlight the variation
trend of differential metabolites between comparisons using the Euclidean correlation method and
Ward clustering algorithm. Metabolites were selected based on these criteria: t-test (p adjusted < 0.05)
and PLS-DA (VIP component 1 > 1). Pathway analysis was performed to discover the most relative
pathways involving the ethanol stress response of recombinant strains respect to that of the parental.
The global test algorithm and relative-betweenness centrality algorithm were specified for pathway
enrichment analysis and pathway topology analysis, respectively, in pathway analysis.

4. Conclusions

The results of this study indicated that, once exposed to short-term ethanol stress, the engineered
strains F2 and F6, previously developed by the multiple δ-integration of a glucoamylase in the industrial
S. cerevisiae 27P, did not display any statistically significant differences in terms of mortality, with respect
to their parental. Conversely, yeast differentially shaped their metabolomes, showing strain-specific
patterns. FTIR resulted in a useful predictor of LC/MS analysis which indicated a huge alteration in
their metabolomes towards the different pathways involved in ethanol and oxidative stress response.
These findings suggest that the multiple δ-integrations prompted massive metabolomic changes in
response to short-term ethanol stress. Deeper transcriptomic, metabolomic and genomic insights are
therefore needed to understand how, and to what extent, genetic engineering, which can be successful
in terms of the target phenotype, could strongly affect the yeast metabolome.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/4/140/s1,
Figure S1: Major patterns associated with Phenotype and with the Interaction between Phenotype and Ethanol
in the comparison between 27P vs. F2 strains (A) and 27P vs. F6 strains (B). Figure S2: Metabolites involved
in the disturbance of the beta-alanine and glutathione metabolism. The bar plots on the left show the original
values (mean +/- SD). The box and whisker plots on the right summarize the normalized values. Note, positive
infinite numbers are represented as 999,999, and negative infinite numbers -999999. Table S1: List of metabolites
identified in 27P, F2 and F6 strains under ethanol stress. Table S2: Important features identified by PLS-DA.
VIP scores are calculated for each component. Table S3: Features identified by Significant features identified
by advanced ANOVA in the comparison between 27P vs. F2 strain. Table S4: Features identified by Significant
features identified by advanced ANOVA in the comparison between 27P vs. F6 strain. Table S5: Important
features identified by ASCA in the comparison between 27P vs. F2 recombinant. Table S6: Important features
identified by ASCA in the comparison between 27P vs. F6 recombinant. Table S7: Important features selected by
t-test. Comparison between 27P vs. F2 recombinant. Table S8: Important features selected by t-test. Comparison
between 27P vs. F6 recombinant. Table S9: Detailed results from Pathway Analysis. Comparison between 27P
vs. F2 recombinant. The statistical p values from enrichment analysis are further adjusted for multiple testings.
The Total is the total number of compounds in the pathway; the Hits is the actual matched number from the
user-uploaded data; the Raw p is the original p value calculated from the enrichment analysis; the Holm p is
the p value adjusted by Holm-Bonferroni method; the FDR p is the p value adjusted using False Discovery Rate;
the Impact is the pathway impact value calculated from pathway topology analysis. Table S10: Detailed results
from Pathway Analysis. Comparison between 27P vs. F6 recombinant. The statistical p values from enrichment
analysis are further adjusted for multiple testings. The Total is the total number of compounds in the pathway;
the Hits is the actual matched number from the user-uploaded data; the Raw p is the original p value calculated
from the enrichment analysis; the Holm p is the p value adjusted by Holm-Bonferroni method; the FDR p is the
p value adjusted using False Discovery Rate; the Impact is the pathway impact value calculated from pathway
topology analysis.
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