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An increasing number of eukaryotic proteins have been shown to have a dual
localization in the DNA-containing organelles, mitochondria and plastids,
and/or the nucleus. Regulation of dual targeting and relocation of proteins
from organelles to the nucleus offer the most direct means for communication
between organelles as well as organelles and nucleus. Most of the mitochon-
drial proteins of animals have functions in DNA repair and gene expression
by modelling of nucleoid architecture and/or chromatin. In plants, such
proteins can affect replication and early development. Most plastid proteins
with a confirmed or predicted second location in the nucleus are associated
with the prokaryotic core RNA polymerase and are required for chloroplast
development and light responses. Few plastid–nucleus-located proteins are
involved in pathogen defence and cell cycle control. For three proteins, it
has been clearly shown that they are first targeted to the organelle and then
relocated to the nucleus, i.e. the nucleoid-associated proteins HEMERA and
Whirly1 and the stroma-located defence protein NRIP1. Relocation to
the nucleus can be experimentally demonstrated by plastid transformation
leading to the synthesis of proteins with a tag that enables their detection in
the nucleus or by fusionswith fluoroproteins in different experimental set-ups.

This article is part of the theme issue ‘Retrograde signalling from
endosymbiotic organelles’.
1. Introduction
All eukaryotic cells have in addition to the nuclear genome a small genome
in mitochondria encoding only a minute part of the organelle’s proteome.
The plant cell has a third genome in plastids which in higher plants encodes
about 85 proteins. Mitochondria and plastids are endosymbiotic organelles with
prokaryotic ancestors. The majority of the prokaryotic genes were either lost or
transferred to thenucleusduringevolution [1], andmost of theorganelleproteome
are nuclear-encoded. Organelles have multiple copies of their small genomes; the
number per cell varies with respect to development and environmental cues [2].
Organelle genomes are organized in compact nucleoprotein structures, called
nucleoids, which contain proteins involved in gene expression such as RNA poly-
merases, transcription factors, and DNA architectural binding proteins [3–7] as
well as some unexpected proteins with roles in the metabolism of the organelles
[4]. In humans, the mitochondrial DNA (mtDNA) copy number varies between
100 and 1000 per cell depending on the type of tissue. Compared with the small
compact mtDNA of animals, mtDNA in plants is larger and more variable,
coinciding with a higher recombination frequency [2,8]. Plant mitochondria con-
tain fewer copies of mtDNA than animal mitochondria, indicating that some
mitochondria have no DNA [2]. The plastid DNA (ptDNA) copy numbers are
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much higher than the mtDNA copy numbers and vary in
chloroplasts from a few up to thousands per cell [9].

During the evolutionof eukaryotes, themajorDNAarchitec-
tural proteins typical for bacteria such as the HU protein have
been replaced with eukaryotic proteins for packaging of DNA
[10]. In contrast to animals, where the major DNA-binding
protein in mitochondria (TFMA) binds to double-stranded
DNA, plant mitochondria possess a variety of single-stranded
DNA-binding proteins which have been proposed to function
as transcriptionalmodulators [5]. It is likely that the eukaryotiza-
tion of nucleoids is linked to a tighter coordination of gene
expression in the different compartments.

A coordinate expression of the different genomes is essen-
tial for development and adaptation to the environment.
Organelles are the powerhouses of the cell, producing ATP in
conjunction with electron transfer reactions which are extre-
mely sensitive to environmental change. Efficient operation
of energy-producing reactions in both organelles is of funda-
mental importance for the energy supply of the organism
and for stress avoidance. The organelles are sensors of environ-
mental change, while the nucleus responds to functional
disturbances in the organelles by changes in gene expression.
The essential communication between the nucleus and the
two DNA-containing organelles is mediated by anterograde
and retrograde signalling [11–15].

Conceptually, the translocation of proteins from organelles
to the nucleus is the simplest andmost direct way of retrograde
communication [16]. Indeed, several DNA-binding proteins in
plastids have a second localization in the nucleus [4]. The bal-
ance between organelle and nuclear pools of these organelles
can be altered by two principal mechanisms, i.e. dual targeting
to either organelles or nucleus from the cytoplasm or import
into organelles and subsequent relocation to the nucleus [17].

In this review, all proteins with dual localization in either
one of the organelles or the nucleus will be designated as
organelle–nucleus (ON) proteins or more specifically as either
mitochondria–nucleus (MN) or plastid–nucleus (PN) proteins.
Identical ON proteins relocated from organelles to the nucleus
will be called echoproteins [18,19]. This term does not apply to
those ON proteins dually targeted to organelles and nucleus,
because their nuclear forms are usually larger owing to the pres-
ence of anN-terminal organelle target peptide (OTP, eitherMTP
(mitochondrial target peptide) or PTP (plastid target peptide)).
Often, organelle-located proteins have similar or context-related
functions in the two compartments where they are present. To
avoid misinterpretations, the term ‘moonlighting’, characteriz-
ing a protein with different unrelated functions [20], will not
be applied to this category of proteins.

In the focus of this review are plant proteins with functions
linked to coordination of the different genomes and their activi-
ties. The different mechanisms of their subcellular distribution
will be discussed in comparison with the knowledge obtained
with non-photosynthetic organisms. In addition, methodo-
logical approaches for analyses of protein movements from
organelles to the nucleus will be presented.
2. The significance of dual-localized proteins in
non-plant eukaryotic cells

Mitochondria are themajor powerhouses of non-photosynthetic
organisms. The energy, in the form of ATP, is generated
by oxidative phosphorylation (OXPHOS) and provided for
numerous cellular activities. In many common human diseases,
disturbances inmitochondrialmetabolism linkedwith oxidative
stress affect mtDNA that encodes central proteins required for
OXPHOS. Thereby energy production is reduced. Owing to its
implications for human health, research on the regulation of
mitochondrial activities involving MN proteins is of increasing
importance. Many of the MN proteins were originally over-
looked in their second compartment, because they localize
predominantly to one compartment and have a rather small
pool in the second one [21]. Progress in the methodology for
detection of low-abundance proteins during the past 20 years
has enabled the identification of numerous proteins in cellular
compartments other than those originally attributed to them
[21]. The regulated balance between the two protein pools
could be relevant for the biological function ofMNproteins [22].

(a) Nuclear transcription factors with a secondary
activity in mitochondria

Several mammalian nuclear transcription factors locate in
addition to mitochondria where they act directly as regulators
of mitochondrial gene expression (figure 1a), e.g. the tumour
suppressor p53 and the thyroid hormone receptor T3 (p43)
[23], the activating transcription factor associated with stress-1
(ATFS-1) [24,25] and the MOF transcription factor, which
belongs to the MYST family of acetyl transferases. MOF resides
in mitochondria, and nucleus together with some of its inter-
acting proteins, and regulates OXPHOS by controlling the
expression of respiratory genes from both nuclear and
mtDNA [26]. By in organello analyses andmitochondria-specific
overexpression, the mitochondrial role independent of the
nuclear role of several transcription factors has been investi-
gated [23]. Often, the same signals that regulate the activity of
the nuclear pool also regulate the activity of the mitochondrial
pool [23], allowing coordinate changes in gene expression.

(b) Mitochondrial proteins with a secondary localization
in the nucleus

By contrast, an increasing number of mitochondrial proteins
have been reported to have a second localization in the nucleus
[22]. Among these proteins are several enzymes of the tricar-
boxylic acid (TCA) cycle involved in the metabolism of
mitochondria, which in the nucleus adjust gene expression in
response to metabolic flux (figure 1b). A typical example is
yeast fumarase which is the first metabolic enzyme described
to have a second localization in the nucleus. In the mitochon-
dria, it converts fumarate to malate and in the nucleus it
participates in DNA repair [27]. Upon ionizing radiation
provoking DNA double-strand breaks in the nucleus, a part
of the pool is rerouted to the nucleus, where it displays a
DNA-damage response by inhibiting histone demethylation
at double-strand breaks [28].

Another well-studied example is the pyruvate dehyd-
rogenase complex (PDC), which oxidatively decarboxylates
pyruvate to form NADH and acetyl-CoA in both compart-
ments. While in mitochondria acetyl-CoA is required for
the TCA cycle, in the nucleus it is used for histone acetylation
[29,30]. The subunits of PDC lack MTPs and were detected in
the nucleus even in the presence of translational inhibitors
[29] (§5), indicating that PDC is an echoprotein complex
which despite its large size (70–100 nm) translocates to the
nucleus as an intact particle.
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Figure 1. Schematic of three different categories of MN proteins in eukaryotic cells: nuclear transcription factors with a role in mitochondrial gene expression such as
ATFS-1 (a), mitochondrial enzymes such as fumarase with a second role in the nucleus that is associated with chromatin remodelling (b), and proteins involved in
MN crosstalk related to DNA damage and repair, e.g. PARP1 (c).
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It is intriguing that, besides thesemetabolic enzymes, several
other proteins with predominant localization in mitochondria
are involved in the maintenance of nuclear and mitochondrial
genome integrity [22]. Among these is the major transcription
factor A of mitochondria (TFAM), which is responsible for
transcription initiation linked with a bending of mtDNA [31].
In the nucleus, it was shown to change gene expression
in response to mitochondrial metabolism [32]. Other proteins
with similar distribution are components of telomerase (TERT,
telomerase reverse transcriptase), the TERT1-interacting protein
2 (TIN2) and the DNA helicase RECQ helicase-like 4 protein
(RECQL4). TERT is predominantly imported into
mitochondria, where it protects the genome [33]. It contains a
bipartite nuclear targeting signal that regulates its shuttling in
and out of the nucleus, and an MTP that guides a fraction of
TERT to the mitochondrial matrix [34,35].

Two MN proteins, recently identified and important for
human health, are CHCHD2 (coiled coil–helix–coiled coil–
helix2) and CHCHD10 [36,37]. They belong to the family of
twin CX9C motif proteins which are targeted to the
mitochondria intermembrane space, where they affect biogen-
esis of cytochrome c oxidase and protein import [38]. The
proteinswere shown to regulateOXPHOSdirectly inmitochon-
dria by binding to cytochrome c oxidase, and indirectly in the
nucleus,where they act as regulators of genes encoding proteins
of the mitochondrial metabolism, including their own genes
[39–41].Owing to its dual role in the regulation ofmitochondrial
function, CHCHD2 has been also dubbed mitochondrial
nuclear retrograde regulator 1 (MNRR1) [39].

(c) Proteins involved in MN crosstalk related to DNA
damage

Reactive oxygen species (ROS) produced as by-products of
OXPHOS can cause damage to mtDNA. Owing to its proxi-
mity to the site of OXPHOS, mtDNA is likely more
susceptible to oxidized DNA damage than nuclear DNA. If
mtDNA is not repaired immediately, heteroplasmy (co-exist-
ence of undamaged and damaged mtDNA) might occur, and
OXPHOSdecreased in consequence [42]. Prioritized protection
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of the mitochondrial genome might prevent a further increase
in the level of ROS and indirectly safeguard the nuclear
genome, which eventually would get damaged if the mutated
mtDNA stayed unrepaired. Mitochondria can combat DNA
damage by repair mechanisms that are analogous to those
found in the nucleus [42,43]. Among the proteins involved in
the repair of mtDNA in mammals are two proteins with a
dual localization in mitochondria and nucleus, i.e. POLY
(ADP ribose) polymerase 1 (PARP1) and p53. In mitochondria,
PARP1 is involved in the detection of single-strand breaks and
in the nucleus it regulates expression of genes encoding other
proteins involved in DNA repair [44] (figure 1c).
 tb
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3. Organelle–nucleus-located proteins in the
plant cell

As early as 1998, Small and co-workers postulated that, among
the enzymes involved in DNA maintenance and gene
expression, several might be targeted to all DNA-containing
compartments in order to guarantee the integrity of the gen-
omes [45]. This is particularly important for organelle
genomes, which are constantly subjected to changing environ-
mental conditions [2]. Among the proteins predicted to be
dual-located inorganelles andnucleus [46] are several transcrip-
tion factors of eukaryotic origin [47]. These contain motifs
typical for nuclear transcription factors, such as zinc finger
motifs in, e.g., the CND41 protease, leucine zipper motifs such
as in, e.g., the PEND protein and basic helix–loop–helix motifs
as in, e.g., NtWIN4 [48]. It has been suggested that clustered
basic residues at theN-terminusmight constitute a key structure
for the conversion of these proteins from nuclear transcription
factors to organelle-resident proteins [48].

(a) MN proteins
The MN proteins identified in non-photosynthetic organisms
are not necessarily dual-located in plants. For example, while
fumarase is located in nuclei of yeast, there is no indication
for nuclear localization in plants. By contrast, dihydrofolate
reductase-thymidylate synthase (DHFR-TS) has been demon-
strated in nuclei of animal cells aswell as in those of plants [49].

Ligase1. In Arabidopsis, DNA ligase 1 (AtLIG1) provides
the major DNA ligase activity in cells and plays a key role
in both DNA replication and excision repair pathways. The
AtLIG1 protein contains an MTP and a nuclear localization
sequence (NLS). The translation of different isoforms and
their targeting is regulated during plant development,
when the relative importance of DNA ligase activities in
the nucleus and cellular organelles can change depending
upon cell type and the cell’s metabolic state [50].

PPR protein localized to the nucleus and mitochondria 1
(PMN1). PNM1 encodes a novel pentatricopeptide repeat
protein. In mitochondria, PNM1 is associated with poly-
somes and may play a role in translation. In the nucleus,
PNM1 interacts with the transcription factor TCP8, which
can bind to the promoter of PNM1. This suggests that
PNM1 is involved in the autoregulation of its own gene [51].

Prohibitin 3 (PHB3) belongs to the highly conserved family of
prohibitins forming ring-like complexes in mitochondria that
were proposed to lead to a functional compartmentalization in
the inner membrane [52]. PHB3 controls ROS homeostasis in
mitochondria and thereby regulates cell division and root
development [53]. Furthermore, root development depends on
the impact of nuclear PHB3 on genome stability, DNA repair
and replication [54]. PHB3 translocation to the nucleus links oper-
ational information about mitochondria with mechanisms that
control DNA-damage response and cell cycle [55]. The role of
the nuclear fraction of PHB3 in DNA-damage response was
demonstrated successfully by hemicomplementation of phb3
mutants with a version of PHB3 lacking an N-terminal nuclear
export sequence (NES) [54].

Opener (OPNR) is expressed in rapidly dividing cells and
might function in cell cycle progression. Loss of function results
in embryo lethality. Intriguingly, OPNR localizes to the nuclear
envelope and mitochondria [56]. In the inner nuclear envelope
it interacts with SUN1, a transmembrane protein that is
involved in nuclear DNA-damage responses [57,58]. In mito-
chondria, it co-localizes with PHB3/4, suggesting a functional
relationship between these proteins.

Sirtuin1 and 2 (SRT1, 2) play a relevant role in fine tuning of
mitochondrial energy metabolism [59,60]. Genetic and tran-
scriptome analyses revealed that SRT1 and SRT2
are furthermore required for negative regulation of certain
ethylene-responsive genes. They have a histone deacetylase
activity and interact in the nucleus with positive regulators
of ethylene signalling, thereby maintaining a low level of
acetylated histones at genes repressed by ethylene [61].

Thioredoxin (TRXO). So far, the presence of a dual-located
TRX isoform (PsTRXO1) has been reported only in pea (Pisum
sativum). In mitochondria, PsTRXO1 in involved in the regu-
lation of the activity of ALTERNATIVE OXIDASE. In nuclei,
it has been suggested to protect the genome against oxidation
and to control the transcription of non-coding DNA [62].

Dihydrofolate reductase-thymidylate synthase (DHFR-
TS) catalyses the penultimate step in folate biosynthesis.
The three isoforms in Arabidopsis are localized in mitochon-
dria, cytosol and nucleus, and expression and localization
depend on the tissue. The third isoform, which inhibits the
activity of the two others, has in addition to its mitochondrial
localization a nuclear localization, but not in the same cell
[49]. It has been proposed that nucleus-located DHFR-TS
could take part in the formation of the replicase complex as
its animal counterpart [49].

DHFR-TS, SIR and PHB3 are also, in animals, located in
mitochondria and the nucleus. DHFR-TS localization varies
depending on the type of tissue. Owing to their conservation
in all eukaryotic organisms [55], PHB proteins provide an
excellent model to study the evolution of interorganellar
translocation [63].
(b) PN proteins
Several proteinswith a dual localization in plastids and nucleus
have previously been described in a review [64]. In the elec-
tronic supplementary material, table S1, these and more
recently discovered examples are listed. Usually, the functional-
ities of these proteins have been associated with DNA. Most of
the PN proteins play roles in either chloroplast development,
stress management or the coordination of organelle division
and cell cycle. Several proteins can, however, not be assigned
to any of these categories, so far. For some of them only the
function in one of the two compartments is known, e.g.
ANN5 (annexin5), ADT5 (arogenate dehydratase 5), PEND
(plastid envelope DNA-binding protein) and MFP1 (MAR
attachment region-binding filament-like protein 1).
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(i) Proteins required for chloroplast development
Plastids have a complex transcriptional apparatus consisting of
plastid- and nucleus-encoded proteins. A phage-type RNA
polymerase related to the mitochondrial RNAP is nucleus-
encoded (NEP, nucleus-encoded RNA polymerase), while the
core subunits of a prokaryotic RNAP are plastid-encoded
(PEP, plastid-encoded RNA polymerase). Chloroplast develop-
ment is associated with a shift from NEP-based transcription
to PEP-dominated transcription in plastids (for a review, see
[65]). The activityofPEP requiresnuclear-encoded sigma factors
and a couple of eukaryotic proteins associated with it (PAPs,
PEP-associated proteins), indicating an evolutionary re-shaping
of the prokaryotic core machinery [66].

HEMERA (pTAC12, PAP5). Originally, HEMERA was
identified as a component of the transcriptionally active
chromosome and hence dubbed pTAC12 [67]. It was found
to bind to RNA and ssDNA [68], and was also named PAP5
as a component of the PEP complex [69]. In the nucleus, the
protein was found to be important for phytochrome B localiz-
ation to photobodies and for degradation of phytochrome-
interacting factors (PIFs), which leads to photomorphogenesis
[70,71]. Moreover, it is required for PIF4-dependent induction
of temperature responses [72]. By immunoblot analyses, the
forms of HEMERA in Arabidopsis and maize were shown to
have the samemolecular weights in plastids and in the nucleus
[73,74]. Full complementation of the Arabidopsis hmr mutant
and nuclear localization required the presence of a PTP, indicat-
ing that HEMERA is an echoprotein directly translocated from
plastids to the nucleus [73].

NCP (nuclear control of REP activity) [75] is a paralogue of
RCB (regulator of chloroplast biogenesis) [76]. Both proteins
are required for activation of plastid gene expression by phyto-
chrome signalling during chloroplast development. They have
both been detected to have the samemolecular weights in plas-
tids and the nucleus. The two proteins belong to those ON
proteins with an eclipsed distribution. They were originally
detected as plastid proteins, dubbed SVR4 (MRL7) and
SVR4-like (MRL7-like) [77,78] (electronic supplementary
material, table S1). SVR4 has been found to be an intrinsic com-
ponent of highly purified nucleoids [79]. Both paralogues have
an obvious impact on the architecture of nucleoids, as shown
by DAPI staining of nucleoids in mutant plants [79]. Their
impact on plastid gene expression hence could be at least
partly caused by changes in compaction of nucleoids.

PAPs (PEP-associated proteins). Twelve PAPs have been
identified to associate with PEP in plastids [66,69]. Six PAPs
were also identified in the transcriptionally active chromo-
some and were dubbed pTAC proteins [67]. PAP1, 7, 8 and
12 are predicted to locate to the nucleus like PAP5, which is
identical with pTAC12/HEMERA (see above). Co-expression
analyses revealed a high degree of co-regulation in different
tissues preceding the development of chloroplasts [80]. Inter-
action studies revealed that the PAPs form a large complex
with PEP [81], the assembly of which seemingly depends
on NCP and RBC [75,76].

Whirly1 is a major nucleoid-associated protein of
chloroplasts [4,67,82]. In maize, Whirly1 has been shown to
promote chloroplast development by its positive impact on
plastid ribosome formation [83], as also obvious from the
delayed development of the photosynthetic apparatus in
RNAi-mediated Whirly1 knockdown plants of barley [84].
However, the protein has no effect on chloroplast development
in Arabidopsis, where it lacks the PRAPP motif responsible for
packaging of nucleoids [85] (table 1).

All proteins of this group show high expression at early
stages of development. However, the abundance of the pro-
teins may differ considerably. For example, while the level
of SRV4 (RCB) increases during chloroplast development in
barley, the level of SVR4-like decreases [79]. Mutant analyses
revealed that each of these proteins is required for chloroplast
development. In conclusion, chloroplast development is con-
trolled by at least seven PN proteins. Since all have the same
molecular weight in plastids and the nucleus, they all seem to
be relocated from plastids to the nucleus, as already exper-
imentally demonstrated for Whirly1 and HEMERA [73,93]
(§5 and figure 3).

(ii) Proteins associated with stress signalling
Chloroplasts are sensors of environmental change and are
required for the production of major hormones adjusting
plant metabolism to adverse environmental conditions [97].
During pathogen stress, high light intensity and exposure to
UV, about 90% of salicylic acid (SA) was found to be produced
in plastids, together with ROS as by-products of photosyn-
thesis [98,99]. It is hence likely that stress-associated hormone
signalling initiates in plastids and involves proteins that
relocate to the nucleus [16].

ANAC102 (Arabidopsis NAC transcription factor 102) is a
stress-associated transcription factor found to be located in
plastids when C-terminally fused with GFP. By contrast, a
fusion with GFP at the N-terminus was identified in the
nucleus [100]. Expression of ANAC102 is responsive to hydro-
gen peroxide [100], enhanced during excess light and upon
treatment with the carotenoid catabolite β-cyclocitral, which
is a component of plastid signalling [101]. The anac102
mutant is impaired in responses to β-cyclocitral, indicating
that ANAC102 is a master regulator in the establishment
of tolerance towards photooxidative stress downstream of
β-cyclocitral-mediated plastid signalling [101].

NRIP1 (N receptor interacting protein 1) is a defence protein
shown to be translocated from the chloroplast to the nucleus by
fusion with the cerulean fluorescent protein (§4b). The translo-
cation can be induced by treatment of plants with the pathogen
effector molecular p50 [102]. Sequence analysis revealed that
the protein is homologous to the chloroplast-located and
senescence-associated AtSEN1 protein [103], which has a func-
tion in the biosynthesis of molybdenum cofactors required for
enzymes such as xanthine dehydrogenase that are involved in
the regulation of ROS [104].

Orange (OR) [89,105] is a dually targeted chaperone with a
DnaJ-like zinc finger domain that plays a role in the transition
from non-pigmented plastids into carotenoid-accumulating
chromoplasts [89,106]. Overexpression in plants was shown to
enhance carotenoid accumulation and tolerance to abiotic
stress [107,108]. OR usually localizes in plastids, where it inter-
acts with phytoene synthase [109]. In etiolated cotyledons of
Arabidopsis [105], it has been also found in the nucleus, where
it has a higher molecular weight owing to the presence of the
PTP, indicating distribution by dual targeting [105,110].

RAF2 (Rubisco assembly factor 2) under normal con-
ditions is located in plastids, where it aids in the
assembly of Rubisco [111]. In the nucleus, the protein func-
tions as a cofactor in regulation of defence-related genes.
The intracellular distribution of NbRAF2, which in the



Table 1. Selected dually localized plant proteins playing roles in genome coordination. Localization and nucleic acid-binding motifs are indicated. The
coordinative functions are proposed based on the data available. M, mitochondria; N, nucleus; P, plastids; PEP, plastid-encoded RNA polymerase.

protein compartment
nucleic acid-
binding motifs (putative) coordinative function references

HEMERA, pTAC12,

PAP5

P, N Glu-rich coordination of PEP activity and

photomorphogenesis

[70,73,74]

MFP1 P, N coiled-coil unknown [86]

MSH1 P, M FYE link between organelle genome stability and

epigenetics

[87,88]

NCP, MRL7-L,

SVR4-L

P, N Glu and Asp-rich phytochrome control of PEP assembly and

chloroplast development, ptNAP

[75,77–79]

OR P, N DnaJ-like zinc

finger

development of carotenoid-accumulating plastids [89]

PAP1 P, N SAP nuclear control of PEP and chloroplast development [69,81]

PEND P, N leucine zipper bZIP link between nucleoid architecture and

photosynthesis-associated nuclear gene expression

[90–92]

PMN1 M, N PPR, helix–

turn–helix

link between mitochondrial translation and nuclear

gene expression

[51]

RCB, MRL7, SVR4 P, N Glu and Asp-rich link between organelle genome stability and

epigenetics

[76,77,79]

SWIB-4 P, M SWIB putative role in coordinated packaging of nucleoids

and remodelling of chromatin

[82]

SWIB-6 M, P SWIB putative role in coordinated packaging of nucleoids [82]

Whirly1 P, N KGKAAL,

PRAPP

plastid signalling linked to salicylic acid and abscisic

acid-dependent nuclear gene expression

[93–96]

Whirly3 M, P KGKAAL role in coordination of organelle functionalities M Zottini, K Krupinska

2019, unpublished data
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nucleus has the molecular weight of the mature plastid
protein, is affected by interaction with viral proteins [111].
Interaction with potato leafroll virus PoPL decreased
the nuclear pool of NbRAF2 and thereby might facilitate
virus infection.

Sigma factor binding protein 1 (SIB1) was first identified as
an interaction partner of the plastidic sigma factor 1 of PEP
[112] and was shown to activate transcription of WRKY33
during the plant defence response [113]. Recently, it has been
shown that the dual targeting of SIB1 to chloroplasts and the
nucleus in response to SA leads to a simultaneous change in
transcription of photosynthesis-associated genes in the two
compartments [114].While the photosynthesis-associated plas-
tid genes (PhAPGs) are down-regulated, the photosynthesis-
associated nuclear genes (PhANGs) are up-regulated. Owing
to the induced imbalance of the stoichiometry in photosystem
II, singlet oxygen is produced, which is known to participate in
retrograde signalling to induce a cell death programme [115].

Whirly1 is a multifunctional protein that before its
detection in chloroplasts was implicated in SA signalling
[94,95,98]. Its binding to pathogen response promoters in the
nucleus was shown to depend on SA. Accordingly, an
Arabidopsis why1 mutant has a reduced sensitivity towards
SA [96]. It has been proposed that an inactive pool of
Whirly1 is activated by SA [94]. Likely, this inactive pool is
the chloroplast pool of Whirly1.
(iii) Coordination of plastid division and cell cycle
CDC10 Target 1 (CDT1) is a kinase involved in cell cycle regu-
lation. In the nucleus, it interacts with DNA polymerase ɛ and
functions in replication and response to DNA stress/mainten-
ance of genome integrity [116]. CDT1-RNAi plants show
endogenous DNA stress and are more tolerant to DNA-
damage-inducing agents owing to constitutive expression of
genes encoding DNA repair proteins [116]. CDT1a, but not
CTD1b, has a functioning PTP [117] and was furthermore
shown to function in plastid division. This could indicate that
CDT1a plays a role in the coordination of plastid division
and cell cycle [116].

ATXR5 (Arabidopsis trithorax-related 5) is an SET domain
protein involved in the regulation of replication and DNA
repair [118]. Its localization in the organelle has been pro-
posed to provide a means to keep it out of the nucleus,
where it is active.
(iv) DNA association of PN proteins
A couple of the PN proteins have DNA-associated functions
and hence are candidates for genome coordination by affecting
on one hand shaping and organization of nucleoids and tran-
scriptional activity in the organelle and on the other hand
nuclear gene expression (table 1). Their binding to DNA is
mediated by typical eukaryotic DNA-binding motifs such as
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the coiled-coil motif (MFP1), a zinc finger (OR), an SAP motif
(PAP1), a leucine zipper (PEND) or the SWIB domain. The
nucleoid-associated proteins SVR4 and SVR4-like, identical
with RCB and NCP respectively, as well as HEMERA are
enriched in negatively charged amino acids, which is a charac-
teristic feature of chaperones assisting in assembly and
maintenance of DNA–protein complexes [3,79,119]. SWIB-4 is
the only PN member of the group of small SWIB (SWI/SNF
complex B) domain-containing proteins identified in Arabidop-
sis [82]. The protein was shown to induce compaction and
condensation of nucleoids and to functionally complement a
mutant of Escherichia coli lacking the histone-like nucleoid
structuring protein H-NS [82] and likely has a chromatin-
associated function in the nucleus. Whirly1 has been shown
to bind as a single-stranded DNA-binding protein to a specific
cis-element in promoters of pathogenesis related (PR) genes
[95,120]. By contrast, in plastids Whirly1 binds unspecifically
to DNA [83] and promotes compaction of nucleoids [120]
caused by the PRAPP motif, which is shared by the Whirly1
proteins in monocots such as barley and maize [85].

Regulated changes in the distribution of such genome-
coordinating proteins likely present a strategy to shift patterns
of gene expression in the organelles and the nucleus, as clearly
demonstrated for SIB1 in a stress situation [114].
(c) DNA-associated proteins dually targeted to
mitochondria and plastids

Owing to ambiguous OTP sequences, in plant cells numerous
proteins were found to be dually targeted to both DNA-con-
taining organelles [121,122]. In the framework of this review,
we selected only those with DNA-associated functions being
potentially involved in genome communication (table 1).
(i) Proteins involved in DNA repair
MutS homologue 1 (MSH1). In plant mitochondria recombina-
tion betweenmtDNAmolecules is frequent and common [123],
requiring control by a ‘recombination surveillance’machinery.
MSH1 [124] is a key component of this machinery and a dis-
turbance of the machinery leads to an increase in the
recombination rate of mtDNA [125]. msh1 mutants show leaf
variegation arising by incomplete development or premature
degeneration of plastids. Plastid genome rearrangements in
white sectors of mutant leaves revealed that MSH1 functions
in both organelles [124]. Disturbances in the organelles give
rise to retrograde signalling and have an impact on nuclear
gene expression and consequently growth, developmental pro-
cesses and abiotic stress responses. Retrograde signalling has
been proposed to bemediated by ROS and to interact with hor-
mone signalling [126]. The magnitude of the complex and
partially environment-dependent phenotypes ofmsh1mutants
involves heritable changes in small RNAs and chromatin
organization that increase according to the mutant generation
[87,126].

RECG is a plant-specific orthologue of the bacterial DNA
helicase RECG. RECG localizes to both chloroplast and mito-
chondrial nucleoids and has multiple roles in mtDNA repair.
In particular, it is required for recombination-dependent repair
and for suppression of ectopic recombination in mitochondria,
most likely because of its role in the recovery of stalled replica-
tion forks [127]. Knockout of RECG causes growth defects and
abnormal ultrastructure of chloroplasts and mitochondria
and leads to instability of the organelle genomes as a result of
recombination [128]. The dual localization of RECG indicates
that the mechanisms underlying the suppression of aberrant
recombination are shared by plastids and mitochondria.

(ii) Replication enzymes
Plant organelle polymerase (POP) [129]. Plastid and mitochon-
dria share one or two enzymes with homology to bacterial
DNA polymerase I. In A. thaliana, two POP genes are differen-
tially expressed in different tissues [130]. While POLIA seems
to be exclusively involved in replication, POLIB might also
function in the repair of DNA [131].

Twinkle is a homologue of a T7 phage protein functioning
during replication as a DNA helicase and primase [132]. In
fusion with GFP, TWINKLE was shown to localize to both
mitochondria and chloroplasts [133].

Topoisomerases prevent and correct topological problems
when DNA becomes overwound at the replication fork.
Both type II (gyrase A) and type A enzymes have been
shown to localize to both organelles inArabidopsis (for reviews,
see [134]).

(iii) Proteins involved in gene expression and nucleoid
architecture

RNA polymerase of the phage-type (RPOTmp) is a third
nuclear-encoded organelle RNA polymerase targeted to
both organelles. It is only found in some plants, including
A. thaliana and Nicotiana tabacum [135]. While in mitochondria
RPOTmp plays a major role in the regulation of gene
expression, in chloroplasts it seems to be important only at
early stages of plant development [136].

SWIB-6 [82] belongs to the SWIB domain-containing
proteins which are subunits of nuclear ATP-dependent chro-
matin-remodelling complexes of the SWI/SNF type (§3b).
SWIB-6 has been demonstrated to localize in both chloro-
plasts and mitochondria as a nucleoid protein and could
be involved in the architecture of nucleoids, acting in a similar
way to the nuclear SWIB complex [137] and SWIB-5
in mitochondria, which interacts with other SWIB proteins in
the organelle [138].

Whirly3 is a homologous protein to Whirly1 that is only
present in A. thaliana and other species of the family Brassica-
ceae. Although predicted to be a plastid protein, it has
recently been shown to be dually imported into chloroplast
and mitochondria by an organelle protein transporter (B Ben-
newitz, RB Klösgen, K Krupinska, M Zottini 2019,
unpublished data). Accordingly, Whirly3 can replace mito-
chondrial Whirly2 in a why2 knockout mutant at certain
stages of development.
4. Mechanisms of dual targeting and relocation
(a) Dual targeting to organelles and nucleus
The above sections demonstrate that the dual localization of
proteins in the nucleus and endosymbiotic organelles are
rather a common phenomenon. Various alternative mechan-
isms have been proposed or partially revealed to underlie the
dual distribution of a single gene product between organelles
and the nucleus, as summarized by Krause & Krupinska
[17]. In general terms, these mechanisms can be classified
into two major categories: dual targeting to organelles and
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nucleus (§4a) or relocalization of a protein from one organelle
to nucleus (§4b). In the first category, two principal strategies
involve the formation of multiple proteins from different
transcription or translation start sites resulting in proteins
with different targeting information or a post-translational
modification of a single protein.

An interesting example of dual targeting is displayed by a
bZIP transcription factor named activated transcription factor
associated with stress 1 (ATFS-1). The distribution of ATFS-1,
which harbours anNLS besides anMTP sequence, is dependent
on themitochondrial import efficiency,which in turndependson
the functioning of the organelle [140]. In Caenorhabditis elegans,
ATFS-1 regulates a signalling mechanism named mitochondrial
unfolded protein response (UPRmt). The UPRmt is triggered by
several situations affecting the functionality of mitochondria,
such as disturbed OXPHOS and ROS, and induces a block in
the mitochondrial import machinery [141]. Whereas under con-
trol conditions ATFS-1 is efficiently imported in mitochondria,
upon UPRmt induction, the mitochondrial pool of ATFS-1 is
stabilized, binds to mtDNA and down-regulates the level and
turnover of mitochondrial mRNAs [25]. Owing to impaired
mitochondrial protein import, ATFS-1 is targeted to the nucleus,
where it down-regulates the expression of genes involved in
OXPHOS [25].

Events like alternative splicing at the N-terminal or mul-
tiple transcription or translation start sites might affect the
hierarchy for preferential targeting of a protein to organelles
and nucleus. For example, the longer version of Arabidopsis
DNA ligase 1 (§3a), encoded from the first AUG, harbours
both anMTP sequence and an NLS and is exclusively targeted
to mitochondria, confirming the dominance of the mito-
chondrial importing machinery over nuclear importation.
A second downstream AUG generates an alternative trans-
lation initiation, dependent on secondary RNA structure, and
leads to a shorter protein, which only harbours the NLS and
is specifically targeted to the nucleus. A similar scenario
applies to TRXO and PNM1 (§3a), which both contain the
NLS in the C-terminal part of the sequence.

An overlap of NLS and OTP can provide different scen-
arios of controlled intracellular distribution. SIB1 (§3b) was
identified in chloroplasts and the nucleus, harbouring a 54
amino acid PTP with an internal NLS [114]. Upon import
into plastids, the PTP including the NLS is cleaved, trapping
the protein in the organelle. Both pools increase upon SA
treatment and lead to simultaneous changes in gene
expression in both compartments [114] (§3b).
(b) Translocation of organelle proteins to the nucleus
The distribution of echoproteins having the same molecular
weight in organelles and nucleus cannot be explained by dual
targeting from the cytoplasm. Although not fully understood,
different mechanisms of redistribution between organelles
and nucleus are conceivable.

Fumarase, the first described echoprotein, is relocated to the
nucleus after processing in the organelle [142]. Thereby the
protein is released from mitochondria via TOM40 as an
escape gate—a mechanism proposed to control also the mito-
chondrial pools of numerous other proteins [143]. However,
large protein complexes such as PDC, which in human cells
has been found to be translocated upon stress from mitochon-
dria to the nucleus, indicate the existence of at least one other
relocation mechanism [29]. Several possibilities for such a
translocation mechanism have been proposed: release
via mitochondria-derived vesicles [144], retrotranslocation of
PDC components following cleavage of the N-terminal MTP
with subsequent formation of the complex in the cytosol and
its translocation to the nucleus, or most simply and most
likely the leakage from damaged mitochondria (figure 2) [22].

(i) Involvement of protrusions from the organelles in protein
transfer

Under certain conditions organelles form protrusions which
have been named stromules in the case of plastids [145] or
matrixules in the case of mitochondria [146]. In chloroplasts,
these structures occur at higher frequency in stress situations
associated with the formation of ROS and SA [145]. It is still
a matter of debate whether these structures are involved in
transfer of proteins from organelles to the nucleus or a sign
of chloroplast malfunction. The best evidence for their involve-
ment in protein transfer comes from the impressive study of the
pathogen-induced relocation of the defence protein NRIP1
from plastids to the nucleus [102] (§3b).

In plastids, NRIP1 recognizes the effector protein p50
helicase from TMV and translocates with it to the cytosol and
nucleus. The transfer could occur either by shedding of vesicles
from stromules or simply by damage of membranes as a result
of pathogen-induced stress coinciding with the production of
ROS and SA (figure 2). This latter scenario was described for
stroma-targeted GFP in conditions of biotic and abiotic stress
that provoke an increase in ROS inside chloroplasts [147,148].

(ii) Translocation of organelle DNA to the nucleus
It is striking that most of the ON proteins bind to DNA,
enabling them to functions as transcription factors, chromatin-
remodelling factors or nucleoid architectural proteins (figure 1
and table 1). Considering that organelle DNA is continuously
transferred to the nucleus, leading to a considerable fraction
of organelle DNA in the nucleus [149], it seems possible that
nucleoid proteins are translocated to the nucleus while attached
to organelle DNA. DNA transfer from organelles has been
determined with transplastomic plants containing a nuclear-
selectable marker gene [150,151]. Its frequency was shown to
be highest during degradation of organelle DNA during male
gametogenesis in plantswithmaternal inheritance of organelles
[152]. It is possible thatDNA is translocated to the nucleus in the
form of nucleoprotein complexes such as those formed by viral
movement proteins [153] or simply by release of fragmented
organelle DNA from damaged chloroplasts/mitochondria
which after random arrival in the nucleus might get integrated
into the genome [153].

The mechanism whereby mtDNA is released into the
cytosol of mammalian cells upon apoptotic stimuli has
recently been elucidated [154,155]. After permeabilization
of the inner mitochondrial membrane, leading to release of
apoptotic factors such as cytochrome c, a gradual widening
of the pores in the outer membrane was observed to
induce a release of mtDNA to the cytosol, as monitored by
super-resolution imaging [154].

All ON proteins so far described in plants have been
detected in organelles and in the nucleus, but not in the cytosol.
Although it seems obvious to expect such a protein in the cyto-
sol, so far there is no evidence for a cytosolic localization [16]. It
is hence likely that translocation from organelles to the nucleus
requires close contact between the two compartments. Indeed it



(a)

(c)

(b)

(d)

(e)

Figure 2. Schematic of putative mechanisms of protein release from the organelles and translocation into the nucleus, modified according to Krause & Krupinska [17]:
release of proteins from damaged organelles (a); retranslocation via the translocon complexes (TOM/TIM, TOC/TIC) after processing (b); vesicle-mediated efflux of proteins
(c); stromule tip shedding and fusion of double-bounded vesicles with the nuclear envelope (d ); stress-induced escape of proteins bound to organelle DNA (e).
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has been shown that chloroplasts are tightly associated with the
nucleusduringhigh light exposure [156], a situationknown tobe
associatedwith chloroplasticproductionof SA [99] andpotential
damage of organelle membrane structure by SA [157]. Indeed,
damage of membranes seemingly is a prerequisite of stress-
induced plastid signalling that is experimentally induced,
often by treatments with the herbicide norflurazon [158].

Physical interactions of organelles with the nucleus might
be an important prerequisite for the transfer of DNA to the
nucleus [159].During certain stages ofplant development,mito-
chondria and chloroplasts have been observed even inside the
nucleus byelectronmicroscopy [160,161]. Such events are, how-
ever, rare and might only occur when the nuclear envelope is
disintegrating during cell division.
5. Methods suited for analyses of
organelle–nucleus translocation

(a) Strategies used for analysis of the dual
localization of selected proteins

In this review, the redistribution of proteins between endosym-
biotic organelles and nucleus through various mechanistic
models that are in line with the hypothesis of an initial orga-
nelle importation event and a subsequent translocation to the
nucleus has been presented. These mechanisms of transloca-
tion fit either the idea of a link between the function of the
dual-localized protein in each of its locations or/and a trans-
duction of information from one compartment to the other to
trigger a specific response. Several techniques and experi-
mental approaches have been used to demonstrate the dual
localization of a protein and/or its relocalization between
endosymbiotic organelles and the nucleus.

One of the initial approaches to confirm a real organelle to
nucleus translocation in human cells was the use of cyclo-
heximide (CHX), an inhibitor of cytoplasmic translation. CHX
treatment prevented de novo synthesis of e.g. the subunit
E-1 of PDC, confirming that the simultaneous increase of the
nuclear PDC-E1 level and the decrease of mitochondrial pool
were consequences of a relocation from mitochondria [29].
Other strategies employed a combination of microscopic and
biochemical techniques to reveal translocation processes.
A straightforward and conclusive strategy to show translocation
from plastids to the nucleus is the production of transplastomic
plants and the subsequent detection of the protein in the nucleus
(figure 3a). With transplastomic tobacco plants expressing a
sequence encoding anHA-tagged version of AtWhirly1 lacking
the PTP in the plastid genome [93], the protein was shown to
relocate to nuclei, as demonstrated by immunofluorescence
and immunogold microscopy using an antibody directed
towards the tag [93]. The abundant nuclear localization of
chloroplast-derived tagged Whirly1 coincided with enhanced
expression of PR genes (§3b). This strategy is, however, rather
time-consuming and most successful transformations have
been done with tobacco plants [163].

Another elegant approach to demonstrate the relocation
from plastids to the nucleus was reported for the defence
protein NRIP1. A construct encoding an NES preceding the
PTP of NRIP1 was fused with the cerulean fluorescent protein
[102]. The nuclear localization was only detectable when the
recombinant protein lost the NES as a result of processing
inside chloroplasts (figure 3b). When NRIP1 was fused with
the NES without the PTP, fluorescence was excluded from the
nucleus and accumulated in the cytosol [102].

A way to minimize the impact of bulky fluorescence tags
on folding features of the fusion proteins used in localization
experiments of ON proteins is the usage of self-assembling
split-fluorescent proteins [162,164]. The rationale behind
this technique is the fusion of the candidate protein to a
small part of the GFP protein (GFP11), which is targeted to
organelles and after translocation from organelles combines
with the larger portion of GFPs (GFP1–10) that is already
present in the nucleus (figure 3c).



organelle

protein of interest GFP11

GFP1–10

GFP-complemented

NES + PTP

PTP

nucleus

(a)

(c)

(b)

Figure 3. Methods allowing study of the relocation of proteins from organelles to the nucleus. Relocation of a recombinant tagged protein synthesized in trans-
plastomic plants such as Whirly1 : HA [96] (a), targeting of a protein such as NRIP having a PTP and an NES [102] (b), self-assembly of split GFP in the nucleus,
whereby the protein of interest is fused to GFP11 [162] (c).
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Conclusive results on the translocation of a protein from
organelles to the nucleus can be also provided by hemi-
complementation of mutants. Such a genetic approach has
been undertaken in the case of HEMERA, which functions in
phytochrome signalling as well as in plastid gene expression
and chloroplast development (§3b). The complementation of
the hmr-5 mutant with the mature HEMERA fused to the
PTP of the small subunit of Rubisco (ribulose-1,5-bisphosphate
carboxylase/oxygenase) was able to fully restore the functions
of HEMERA in chloroplasts on one hand and phytochrome
signalling on the other hand, while complementation with a
construct lacking the PTP failed to rescue these functions
[73]. The results of this complementation approach are in
accordancewith the idea thatHEMERA likeWhirly1 is first tar-
geted to plastids, where it is processed to the mature form and
then relocated to the nucleus [73]. In the case of Whirly1, this
approach could not be undertaken owing to the lack of an
NLS [96]. A fusion of the full-length Whirly1 with an NES
sequence excluding the protein from the nucleus was not
successful (N Grabe, K Krause 2010, unpublished results).

Super-resolution fluorescence microscopy provides the
promising prospect of directly tracking translocation of proteins
fromorganelles to the nucleus. This technique has been recently
employed to demonstrate the release of mtDNA from mito-
chondria [154]. It is likely that this technology can also trace a
putative simultaneous release of DNA and DNA-binding
proteins from the organelles. State-of-the-art microscopic
techniques with augmented resolution have been tested for
life-cell imaging in plants, which entails specific challenges
such as high light scattering [165,166]. Furthermore, photo-
convertible fluorescent proteins such as Dendra2 are emerging
as useful tools in tracing a fraction of the whole protein cellular
population on its way from an organelle to the nucleus
[167,168].
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(b) Best practices for demonstrating dual location and
relocation of proteins

The most obvious approaches to study dual localization rely on
in vitromethods such as transient transformation of protoplasts,
agro-infiltration of leaves or biolistic transformation of different
tissues with constructs encoding fusion proteins with a fluor-
escent tag. In addition, proteins with predicted localization in
organelles are tested by in-organelle protein import assays.
These approaches are usually performed with standard systems
and model organisms, such as mesophyll protoplasts prepared
from fully developed leaves, epidermal cells from onions and
chloroplasts from pea leaves. The results of these approaches
might be erroneous and conflicting in the case of proteins with
specific spatio-temporal regulation. Indeed, most ON proteins,
e.g. DHFR-TS (§3a) and those PN proteins required for
chloroplast development (§3b), show tissue- and development-
dependent changes in expression and accumulation. Therefore,
the in vitro studies have to be complemented by immunological
methods such as immunogold labelling and immunoblot analy-
sis of subcellular fractions.A combination of techniquesmight be
also applied to studies of hemicomplementation of mutants to
support the phenotypic observations.

Results obtained by biochemical and microscopic investi-
gations can be further fostered by information derived from
the curated database SUBA4, which offers an integrated collec-
tion of published information about protein subcellular
localization based on large-scale subcellular proteomics, fluor-
escent protein visualization, protein–protein interaction and
prediction programmes [169]. Enhanced sensitivity of mass
spectrometry-based proteomics combined with improved
subcellular fractionation will provide more information on
the subcellular distribution of proteins [170].

Taken together, there is no obvious unique method to
determine reliably the subcellular distribution of a protein in
eukaryotic cells. To avoid erroneous results or misinterpreta-
tions, studies on protein localization should combine
complementary strategies, ideally involving the phenotypic
and functional characterization of mutants complemented
with compartment-specific sequences.
6. Conclusion
Dual targeting or dual localization of proteins in eukaryotic
cells has eventually been accepted as an important phenom-
enon linked with multi-functionalization. The knowledge on
ON proteins presented in this review indicates that dual
localization is an obvious strategy to tighten and coordinate
genome-related functions in organelles and the nucleus.

Organelles are critical integrators of both internal and exter-
nal cues, and activities in the organelles need to be tightly
coordinatedwith nuclear activities to enable plant development
and stress signalling. It is tempting to speculate that changes in
the distribution of those ON proteins binding to DNA between
organelles ononehandand thenucleus on theother handmight
be an efficient and orchestratedway to adjust gene expression in
the two compartments by changes in nucleoid architecture and
nuclear chromatin remodelling. Candidate proteins for such a
coordinated control of organelle and nuclear genomes are,
e.g., the SWIB and Whirly proteins. While in plants studies on
the variability of nucleoid architecture and its significance for
plant growth and stress resistance are still in their infancy, in
humans induced changes in the architecture of nucleoids by
mtDNA-binding proteins considered as ‘mito-epigenetics’
have gained increasing attention with regard to their impact
on health [171].

Dual localization of proteins in eukaryotic cells has been
proposed to have an evolutionary advantage [172]. In accord-
ance with their multi-functionality featuring combinations of
diverse motifs in one polypeptide chain, dual-located pro-
teins are evolutionarily more conserved than proteins
exclusively found in one compartment [173]. In higher
plants, the evolutionary advantage of dual-located plastid
proteins might be linked to the multitude of organelles in
one cell. In contrast to algae, which usually have one or
very few chloroplasts per cell, photosynthetic tissues of
higher plants possess 50 to hundreds of chloroplasts.
It would be sufficient to release a protein from one or a few
plastids from the multitude of plastids within one cell to
rapidly change gene expression in the nucleus under con-
ditions of stress [17]. Although systematic research linking
organelle number per cell, retrograde signalling and plant
stress resistance remains to be done, it is obvious that
multi-functionalization of proteins such as Whirly1 is a
recent evolutionary strategy to increase the adaptability
and robustness of plants, enabling them to survive in an
ever-changing environment [174].
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