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ABSTRACT We consider the problem of controlling a smart lighting system of multiple luminaires with
collocated occupancy and light sensors. The objective is to attain illumination levels higher than specified
values (possibly changing over time) at the workplace by adapting dimming levels using sensor information,
while minimizing energy consumption. We propose to estimate the daylight illuminance levels at the
workplace based on the daylight illuminance measurements at the ceiling. More specifically, this daylight
estimator is based on a model built from data collected by light sensors placed at workplace reference
points and at the luminaires in a training phase. Three estimation methods are considered: regularized least
squares, locally weighted regularized least squares, and cluster-based regularized least squares. This model
is then used in the operational phase by the lighting controller to compute dimming levels by solving a linear
programming problem, in which power consumption is minimized under the constraint that the estimated
illuminance is higher than a specified target value. The performance of the proposed approach with the
three estimation methods is evaluated using an open-office lighting model with different daylight conditions.
We show that the proposed approach offers reduced under-illumination and energy consumption in compar-
ison to existing alternative approaches.

INDEX TERMS Lighting control systems, daylight estimation, occupancy and daylight adaptation,
least squares, linear programming.

I. INTRODUCTION
A major proportion of the electrical energy consumption in
commercial office buildings is due to artificial lighting [1].
Portions of lighting energy are often misspent due to ineffi-
cient management of ambient conditions [2], [3]. To reduce
lighting energy consumption, control of artificial lighting
has been an active topic of recent research, in particular
by adapting to occupancy and daylight changes [6]- [19].
Such lighting control systems require dimming ability in
luminaires, which can be achieved flexibly with light emitting
diodes (LEDs) [20].

In this paper, a smart lighting system consisting of multi-
ple luminaries, with collocated occupancy and light sensors,
and a central controller is considered. These sensors provide
binary occupancy and net illuminance values within their
fields-of-view respectively. The local sensor information at
each luminaire is used to control the luminaires individually
using a control law at the central controller. The main objec-
tive is to design a control law that, taking into account the

values from the sensors, is able to provide a total illuminance
level that is higher than specified values at certain control
points at workplaces. The total illuminance is an aggregation
of both artificial light and daylight. A key challenge in the
design of the control law is the lack of knowledge of the day-
light mapping from ceiling (where measurements are made
by the light sensors) to the workplaces.

A. RELATED WORK
Since the illuminance over workplaces is of interest, a direct
approach is to measure the illuminance at certain control
points in this plane. The works in [4] and [5] considered opti-
mization techniques for lighting control assuming knowledge
of light distributions at the workplaces as well as occupant
locations. In [8]–[10] light sensorswere placed at workplaces.
Lighting control for daylight adaptation was performed using
sensor measurement feedback transmitted to a controller by
wireless communication [8], [9]. In [6] and [7], light sen-
sors were carried by occupants. Such sensor configurations
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however have limitations. A commissioning step is needed to
properly associate light sensor data to control the luminaires.
Moreover, temporary physical obstructions may occur that
impact the quality of the sensor measurements as well as the
wireless connectivity between the sensors and the controller.

It is thus common practice in lighting control systems
to deploy light sensors at the ceiling [12], [16], [17], [18],
[21], [22]. In particular, collocated sensors at the luminaires
simplifies the commissioning step and have been considered
for lighting controls [11], [18], [21]. This however means that
direct measurements at the control points at workplaces are
not available. As such, a simple night time calibration [21]
using the artificial lighting is used to establish a relation
between illuminance at the ceiling and illuminance at the
workplaces.

The contribution of daylight at the workplace and at the
ceiling can vary with time, depending on the incidence of
daylight (influenced by time of day, weather conditions, etc.)
in the indoor space. To the best of our knowledge, this impor-
tant insight was first reported in [22] and [23], to show that
maintaining a constant output at a ceiling based light sensor
does not result in constant illumination at the workplace.
In these works, an offset was proposed to be included in a
closed-loop proportional control algorithm for a single light
sensor driven lighting system. This offset related to the ceiling
sensor to workplace daylight ratio was determined using a
one-time daylight calibration. An assumption made here was
that the ceiling sensor to workplace daylight ratio during
calibration is a good fit to the overall set of possible ratios.
Extensions of such an approach to a distributed lighting sys-
tem with multiple light sensors were studied in [11]. In [17],
we showed that a constrained optimization approach results
in a lower energy consumption compared to [11], while still
achieving the light sensor set-points. All the aforementioned
methods cannot effectively deal with the daylight mismatch
problem since light sensor measurements are done at ceiling
locations.

B. CONTRIBUTIONS AND OUTLINE OF THE PAPER
In this work, we propose a data-driven daylight estimation
approach to lighting control. We consider a training phase
wherein light sensors are placed at workplaces in addition to
those at the ceiling. In this phase, daylight values are collected
at both sets of sensors. The data is then used to obtain an esti-
mate of the mapping between the ceiling measurement points
and the control points at the workplaces. Three methods are
investigated to obtain the estimate: regularized least squares,
locally weighted regularized least squares, and cluster-based
regularized least squares. These methods are described fur-
ther in Section III.

We then formulate an optimization problem forminimizing
the power consumption of the lighting system under the
constraints that the achieved illuminance at certain control
points at the workplaces is higher than specified values and
the dimming levels are within physical limits. The estimated
mapping is used in the first constraint to obtain an estimate of

the achieved illuminance value. This optimization framework
is described in Section IV.

Finally we evaluate the performance of our proposed
approach using data from an open-office lighting model
in Section V. As comparison, we consider a lighting sys-
tem that is controlled solely on the basis of measurements
at the ceiling-based light sensors (no training phase), with
illuminance constraints defined at these light sensors. We
show that the proposed approach is able to achieve reduced
under-illumination, while also obtaining substantial energy
savings.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a smart lighting system in an open office with
N workplaces. The smart lighting system has M LED lumi-
naires with collocated occupancy and light sensors that pro-
vide binary occupancy information and illuminance levels,
respectively. At each workplace, a control point is defined
where a minimum illuminance level is desired. This scenario
is illustrated in the lighting models shown in Figure 1 and 2.

FIGURE 1. Open-office lighting system model with multiple luminaires
and collocated sensors.

Let y(k) ∈ RM and w(k) ∈ RN be the vectors that contain
the illuminance levels at time instant k at the light sensors at
the ceiling and at the control points at the workplace plane,
respectively. We also define d(k) ∈ RM and p(k) ∈ RN as the
daylight contribution to the light sensors at the ceiling and at
the control points at the workplace plane, respectively.

We consider that the output power of the luminaries is
controlled using pulse width modulation (PWM). Denote by
u(k) ∈ RM the vector containing the PWM duty cycles of
the luminaires, representing their dimming values. Due to
physical limits on dimming, each element of u(k) takes a
value between zero and unity, i.e.

0 ≤ u(k) ≤ 1, (1)

where the inequality should be interpreted component-wise,
and 0 = [0 0 · · · 0]T ∈ RM and 1 = [1 1 · · · 1]T ∈ RM

represent vectors of all zeros and all ones, respectively. Under
PWM dimming, lighting energy is proportional to the control
input [21]. Therefore, J (u(k)), the total energy consumed at
time instant k is proportional to the sum of the dimming
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FIGURE 2. Top view of the simulated office model in Figure 1 showing
location and numbering of the 80 luminaries and collocated ceiling
sensors (depicted by blue boxes and red dots respectively) and of the
36 light sensors at the workplaces (red dots). Windows span the right
side of the office.

values, i.e.

J (u(k)) = Emax

M∑
m=1

um(k) = Emax 1T u(k), (2)

where Emax is the maximum energy consumption of each
LED luminaire and u(k) = [u1(k) · · · uM (k)]T .

The illuminance levels at time instant k at the ceiling and
workplace plane (y(k) and w(k), respectively) can be written
as a linear combination of the artificial illumination due to the
lighting system and daylight contribution [11],{

y(k) = Gu(k − 1)+ d(k),
w(k) = Hu(k − 1)+ p(k),

(3)

where

y(k) = [y1(k) · · · yM (k)]T ,

d(k) = [d1(k) · · · dM (k)]T ,

w(k) = [w1(k) · · · wN (k)]T and

p(k) = [p1(k) · · · pN (k)]T .

Matrices G ∈ RM×M and H ∈ RN×M are the illumi-
nance gain matrices for the ceiling and workplace illumi-
nation, respectively. More specifically, Gi,j ≥ 0 represents
the illuminance measured by the i-th light sensor when the

j-th luminaire is turned on to its maximum, i.e. uj(k) = 1,
while all the others are off, i.e. uh(k) = 0, h 6= j, and under
the absence of daylight, i.e. d(k) = 0. A similar consideration
holds for Hi,j ≥ 0.

The illuminance levels at the control points at the work-
place plane, w(k), can only be measured by placing light
sensors at each control point. However, in practice, this might
not be possible or desirable due to reliability issues, e.g.
the user may unintentionally block the light sensor. Note
that using (3) we can estimate the illuminance level at time
instant k for each control point at the workplace plane, w(k),
if we have knowledge of: (i) illuminance gain matrix, H ,
(ii) dimming vector, u(k − 1), and (iii) daylight contribution
term, p(k). The illuminance gain matrix H can be measured
during a calibration phase and the dimming vector is known
at the lighting control. Thus, the only remaining unknown is
the daylight contribution term p(k).
The objective of this work is to propose a method to obtain

an estimate of the daylight contribution at each control point
at the workplace plane at each time instant k , p̂(k), based
on daylight contribution measurements at light sensors at the
ceiling, d(k). Using the estimate p̂(k), we propose a lighting
control method that minimizes the energy consumption of
the lighting system while providing the desired illuminance
levels at each control point at the workplace plane, i.e.

u∗(k) = argmin
u

Emax 1T u

s.t.


0 ≤ u ≤ 1
w(k) = Hu+ p̂(k)
w(k) ≥ wr (k),

(4)

where u = [u1 · · · uM ]T . Here, wr (k) ∈ RN is the vector of
reference illuminance values at the workplace plane at time
instant k , which is a function of the presence of a person and
possibly his/her personal desired illuminance level.

III. DATA-DRIVEN DAYLIGHT ESTIMATION
In this Section, we propose a method to estimate at each
time instant k the daylight contribution term p(k) based on
the current value of daylight contribution at the ceiling d(k).
Note that d(k) can be estimated from the light sensor mea-
surements y(k) and the previous control input u(k − 1) as
d(k) = y(k)−Gu(k−1). More formally, we want to compute
an estimator function f : RM

→ RN such that

p̂(k) = f (d(k)), (5)

where p̂(k) is an estimate of p(k) at time instant k .
This function will be computed via an identification-based

approach [30] based on experimental data collected during
a training phase. During the training phase, we assume that
it is possible to collect not only daylight measurements at the
ceiling d(k), but also daylight measurements at the workplace
plane p(k). In the next subsections we describe in detail the
proposed approach. In section V-B the performance of the
estimation techniques will be evaluated and compared.

VOLUME 5, 2017 21463



S. Borile et al.: Data-Driven Daylight Estimation Approach to Lighting Control

A. DATA COLLECTION
During the training phase, illuminance data is collected at
both the ceiling light sensors and the control points at the
workplace plane. This data can be collected during periods
of unoccupancy, e.g. over weekends. The light sensors at the
workplaces do not need to be installed permanently; they
only need to be in place over a time period necessary for
data collection. Another option is to obtain the data set via
realistic simulated light propagation models. For simplicity,
we also assume that this data is collected when all luminaries
are turned off, i.e. u(k) = 0,∀k during the training phase. Let
D be the data set containing all the collected data. We assume
that r samples were collected during the training phase, i.e.

D = {(pi, di)}ri=1, (6)

where each pair (pi, di) represents the measurements col-
lected at some time instant ti, i.e. pi = p(ti), di = d(ti). In our
approach we will not take into account the specific time of the
day and the month when samples were collected, but we will
look for a function that is able to estimate the current value
of the daylight contribution at the workplace based on the
measurement vector at the ceiling. As such, the specific order
of the pairs (pi, di) is irrelevant and the sampling time ti is
not used as part of the data set. The data set is further divided
in two disjoint subsets: a training set T used to compute the
estimator, and a validation setV used to evaluate the estimator
performance. More formally:

D = T ∪ V, T = {(di, pi)}qi=1, V = {(di, pi)}
r
i=q+1.

Typically the size of the training data set is larger than the
size of the validation set. In the next subsections, we propose
several approaches to perform the estimation in (5).

B. REGULARIZED LEAST SQUARES (RLS)
DAYLIGHT ESTIMATOR
We now consider estimation of a static linear mapping
C ∈ RN×M between the daylight measured at the ceiling and
the daylight measured at the workplace plane for any time
instant k , i.e.

p̂(k) = f (d(k)) = Cd(k). (7)

Using a least-squares (LS) approach [24], C in (7) is
given as the solution of a quadratic optimization problem that
minimizes the sum of the square of the residual between the
measured illuminance vector at the workplace plane pi and
the model estimation p̂i = Cdi, i.e.

CLS = argmin
C

q∑
i=1

||pi − Cdi||2 (8)

where || · || is the `2 norm. If the inverse of DDT exists, then
the closed-form solution to (8) is given by

CLS = PDT (DDT )−1,

where P = [p1 p2 · · · pq] ∈ RN×q and D = [d1 d2 · · · dq] ∈
RM×q are typically ‘‘fat’’ matrices, i.e. q � M , q � N
obtained by the data available in the training set T .

Matrix DDT may be ill-conditioned if the data elements di
are strongly correlated, i.e. very similar to each other (over-
fitting problem), or the size of the training set T is small.
A good practice in these scenarios is to add a regularization
term ε > 0. The regularized least square problem is formally
defined as follows:

CRLS (ε) = argmin
C

q∑
i=1

||pi − Cdi||2 + ε‖C‖2F (9)

= PDT (DDT + εI )−1. (10)

where we made explicit the dependence of CRLS on ε and
|| · ||F is the Frobenius norm. Parameter ε is often chosen by
finding the best performance on the validation set V [25], i.e.

ε∗ = argmin
ε≥0

r∑
i=q+1

||pi − CRLS (ε)di||2. (11)

Note that the LS solution in (8) is a special case of (9) where
the regularization parameter ε is set to zero.

C. LOCALLY WEIGHED REGULARIZED LEAST
SQUARES (LWRLS) DAYLIGHT ESTIMATOR
The LS problem can be extended by possibly weighing each
residual ‖pi − p̂i‖2 differently. To do so, a Locally Weighted
Least Squares (LWLS) approach is performed. The problem
formulation is the following

CLWLS (d, λ) = argmin
C

q∑
i=1

γi(T , d, λ)||pi − C · di||2

= P0(T , d, λ)DT (D0(T , d, λ)DT )−1, (12)

where P and D are defined as above, γi(T , d, λ) ≥ 0,∀i and
0(T , d, λ) = diag(γ1(T , d, λ), . . . , γq(T , d, λ)) ∈ Rq×q is
referred as a diagonal weight matrix where the weight are
computed as follows:

γi(T , d, λ) = g
(
‖d − di‖
h(T , d, λ)

)
, (13)

where g : R+→ R+ is a weight function,

h(T , d, λ) = max
i∈N (T ,d,λ)

‖d − di‖, (14)

and N (T , d, λ) is a subset of T containing the q̂ closest
neighbors to d such that q̂q = λ.
Note that the diagonal matrix 0(T , d, λ) selects a frac-

tion λ of measurements from the set T that are closer to
input vector d ; these measurements are assigned a weight
defined by function g(·). The intuition behind this choice is
that the estimated workplace luminance p̂ will be close to the
observed workplace luminance p̂i whose corresponding ceil-
ing measurement di is close to the current measured value d .
In particular, if the n-th diagonal entry in matrix 0(·) is close
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to 1, then the n-th measurement in set T will have a higher
importance during the estimation of matrix CLWRLS.
The weight function g(·) can be any function that satisfies

the properties as discussed in [31]. A standard choice of g for
locally weighted regression problems is the tri-cube weight
function [31]:

g(x) =

{(
1− |x|3

)3
|x| ≤ 1

0 |x| > 1.

The parameter λ ≥ 0 is chosen by computing the best
performance on the validation set

λ∗ = argmin
λ≥0

r∑
i=q+1

||pi − CLWLS (di, λ)di||2. (15)

Similarly to the LS problem, it is convenient to regularize
the problem to obtain a Locally Weighted Regularized Least
Square problem (LWRLS):

CLWRLS (d, ε, λ)=P0(T , d, λ)DT (D0(T , d, λ)DT + εI )−1.
(16)

In this case ε and λ need to be chosen by computing the
best performance on the validation set:

(ε∗, λ∗)= argmin
λ≥0,ε≥0

r∑
i=q+1

||pi − CLWRLS (di, ε, λ)di||2. (17)

D. CLUSTER-BASED REGULARIZED LEAST
SQUARES (CRLS) DAYLIGHT ESTIMATOR
The LWRLS has the potential to provide better performance
than standard RLS. The main disadvantage is that at any
time instant k , when a new measurement d is available, a
new matrix C should be calculated using (16). This can be
computationally expensive if the training data set T is large.
A possible solution is to compute off-line a set of different
estimated transfer matrices C which are constant within a
certain domain of the ceiling measurement space d . To do
this, during the preliminary training phase, a clustering of
the measurements at the ceiling {di}

q
i=1 is performed. We

define L clusters and for the `-th cluster a RLS estimation
matrix C [`]

CRLS based only on the data belonging to the `-th
cluster is obtained. A convenient metric, used for the cluster-
ing, is the Euclidean distance.

When a new measurement data d becomes available, we
find the closest cluster centroid to this measurement and then
the corresponding RLS estimation p̂ is obtained using the
matrixC [`]

CRLS . More specifically, we divide the data set T into
L subsets T` with possibly non-uniform sizes r`, i.e.

T = ∪L`=1T`, |T`| = ri,
L∑
`=1

r` = q.

This can be obtained by applying the k-mean++ algo-
rithm [32] using the measurements at the ceiling {di}

q
i=1.

Let the centroid of the `-th cluster be given by

d
[`]
=

1
q`

∑
(di,pi)∈T`

di.

For the `-th cluster the corresponding regularized regres-
sion matrix C [`]

CRLS is calculated as follows

C [`]
CRLS (ε`) = argmin

C

∑
(di,pi)∈T`

||pi − Cdi||2 + ε`‖C‖2F ,

where ε` is optimized using the data in the validation set, i.e.

ε∗` = argmin
ε≥0

∑
(di,pi)∈V`

||pi − C
[`]
CRLS (ε)di||

2

and

V` = {(di, pi) : ‖di − d
[`]
‖ < ‖di − d

[j]
‖ , ∀j 6= `}.

When a new measurement vector at the light sensors at
the ceiling d is available, the corresponding estimation at the
workplace p̂ is calculated as

p̂ = C [`∗(d)]
RLS d,

where

`∗(d) = argmin
`

{‖d − d
[`]
‖}
L
`=1

is the cluster with the lowest Euclidean distance between its
centroid and d .
This approach is computationally more efficient than the

LWRLS since the computation of the clusters and the matri-
ces C [`]

CRLS along with the optimal regularization parameters
is performed off-line. Only the computation of the closest
cluster `∗(d) and the RLS estimation step p̂ = C [`∗(d)]

CRLS d are
computed on-line.

Note that the number of clusters needs to be cho-
sen depending on the size of the training data set. We
consider only the Cluster-based regularized Least Squares
because of the overfitting problem: the size of the data set
used to compute C [`]

CRLS is smaller than all the previous
approaches.

IV. LIGHTING CONTROL
In this section we consider two different type of con-
trollers: (A) ceiling-based control and (B) workplace-based
control.

A. CEILING-BASED CONTROL
In ceiling-based control, at each time instant k , the lighting
system is adapted based on:

• daylight contributions at each light sensor at the ceiling,
d(k);

• illuminance gain matrices for the ceiling, G; and
• desired illuminance levels at each light sensor at the
ceiling, yr (k).
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In [17], the ceiling-based control was formulated as an
optimization problem given by

u∗(k) = argmin
u

1T u

s.t.


y(k) ≥ yr (k)
y(k) = Gu+ d(k)
0 ≤ u ≤ 1.

(18)

The ceiling-based control given by (18) is hereafter
referred to as REF_CONTROL. In [17], this approach was
shown to result in a lower energy consumption compared
to [11], while still achieving the light sensor set-points. Hence
we use this as a reference method for performance compari-
son.

The ceiling sensor references, yr (k), are determined in
a preliminary night time calibration phase as explained
in [11] and [21]. In the absence of daylight, the luminaries are
turned to maximum intensity and both the average workplace
plane illuminance value and the ceiling sensor measurements
are saved. The ceiling sensor references are then obtained by
suitable scaling to result in the specified reference average
illuminance at the workplace plane. It is assumed that the
reference values are feasible, i.e. G1 ≥ yr (k) which implies
that there is a set of dimming values u(k) (in the most extreme
scenario u(k) = 1), that ensures that the illuminance on the
ceiling is no smaller than the reference illuminance.

B. WORKPLACE-BASED CONTROL
In workplace-based control, at each time instant k , the
lighting system is adapted based on:

• daylight contributions at each control point at the work-
place plane, p(k) (or estimates p̂(k));

• illuminance gain matrices for the workplace, H ; and
• desired illuminance levels at each control point at the
workplace plane, wr (k).

In this paper, we propose the following optimization
problem for workplace-based control:

u∗(k) = argmin
u

1T u

s.t.


w(k) ≥ wr (k)
w(k) = Hu+ p̂(k)
0 ≤ u ≤ 1,

(19)

where p̂(k) is the estimate of daylight contribution at the
workplace plane obtained using the estimation approaches
described in Section III. It is assumed that the references are
feasible, i.e.H1 ≥ wr (k). The workplace-based control given
by (19) is hereafter referred to asWP_CONTROL, regardless
of the estimation method used.

The optimization problems given by (18) and (19) are lin-
ear programming problems. These can be solved, for exam-
ple, with the simplex method, interior-point algorithms or
variants [33]. In this paper, we focus our attention on the
steady-state behavior and do not consider the entire control

behavior. As such, with knowledge of the daylight contribu-
tion estimate p̂(k) and illuminations gains, H , at the work-
place, the optimization problem (19) can be solved to obtain
the optimal dimming level u∗(k) and applied to the LEDs to
achieve the desired value Wr . To ensure smooth changes in
dimming levels such that the user is not disturbed by dimming
control, methods considered in [34] may be used.

We now consider a way for the controller to deal with
errors in daylight estimation. In particular, we consider
over-estimation errors since our main concern is the under-
illuminated workplaces. The optimization problem (19) may
be modified as follows:

u∗(k) = argmin
u

1T u

s.t.


w(k) ≥ min{wmax,wr (k)+ ξ}
w(k) = Hu+ p̂(k)
0 ≤ u ≤ 1,

(20)

where wmax is a vector with the maximum achievable illumi-
nance level at each control point due to artificial light and ξ is
a offset vector to be determined. The purpose of adding this
offset vector is to provide some robustness against errors in
daylight estimation. In section V-B, we will explain how ξ is
computed. The improved control given by (20) is hereafter
referred to as WP_CONTROL with Offset, regardless of the
estimation method used.

We do not consider adding an offset to the target level for
the REF_CONTROL because in practice we do not know
the offset vector to be added to the target levels at the light
sensors at the ceiling such that the target illumination at the
workspace is achieved.

V. SIMULATIONS RESULTS
A. LIGHTING DATA SET
The open-plan office lighting model considered in [11] was
used, with the lighting plan depicted in Figure 2. The office
has length 24m, width 19m and height of the ceiling is 2.6 m.
There are M = 80 luminaires with collocated sensors in a
grid of 10 by 8, and N = 36 workplaces with a collocated
light sensor. The additional light sensors at control points at
the workplaces were used for data acquisition as explained in
Section III-A. The windows are located on the right side of
the office next to luminaires 71-80; hence the biggest contri-
bution of the daylight is observed in this area. All the artificial
light and daylight distributions were obtained from the office
model implemented in lighting software DIALux [38]. The
lighting control system was implemented in Matlab.

Data from days in different months (January, March, June,
August, September and December) and with different sky
conditions (clear sky, overcast sky and mixed sky) was col-
lected at a 15 minute interval. The daylight distributions in
the office were simulated from 7:00 AM to 7:45 PM for a
total of 18 days spread across all four seasons and with the
three different sky conditions. The data from these 18 days
was divided into 12 days for the training set T and 6 days for
the validation set V .
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B. MODEL VALIDATION AND PERFORMANCE METRICS
We consider the following metrics for evaluating the perfor-
mance of each estimator described in Section III with respect
to the validation data set V:
• root mean squared error (RMSE) for each control
point n,

RMSEn =

√
1

(r − q)

∑
i∈V

[ei]2n, (21)

where ei = pi − p̂i is the vector containing the error in
daylight estimation at the control points at the workplace
plane;

• root average mean squared error (RAMSE) over all
control points,

RAMSE =

√√√√ 1
N

N∑
n=1

(RMSEn)2; (22)

• cumulative distribution function (CDF) of the error in
daylight estimation for each control point n,

CDFn(e) =
1

r − q

∑
i∈V

1(e− [ei]n), (23)

where 1(x) is the unit step function which is equal to
zero for x < 0 and equal to one for x > 0; and

• CDF of the error in daylight estimation over all control
points,

CDF(e) =
1
N

N∑
n=1

CDFn(e). (24)

Using (23), we choose the bias term in (20) as

[ξ ]n = max{0,−αn}, n = 1, . . . ,N (25)

where CDFn(αn) = 1−4 and 0 ≤ 4 ≤ 1 is a parameter that
indicates the proportion of samples to be compensated during
offset control in (20). We choose 4 = 0.99.

Figure 3 shows the CDF for the proposed daylight esti-
mation methods (RLS, LWRLS and CRLS) over all control
points as given by (24). We can see that the estimation errors
for the three proposed approaches are concentrated within an
error bound of ±20 lux. The error is rather small (less than
5%) as compared to the desired illuminance at the workplace
plane which is around 500 lux. Figure 4 gives a more detailed
insight on how these errors (using (21)) are distributed across
the N = 36 different workplaces (control points). It clearly
shows that the larger errors are on those workplaces near the
windows (29 - 36). This is expected since those are the work-
places over which daylight exhibits the largest variation (up
to several thousands lux as seen in Figure 5). The workplaces
that are further away from the windows (1 - 28) receive small
amounts of daylight even on a bright day as seen in Figure 5.

For our data set, all approaches (RLS, LWRLS and CRLS)
achieve similar performance for estimating daylight contribu-
tion at control points over the workplace plane. The RAMSE
as given by (22) is about 3.732 for RLS, 3.004 for LWRLS
and 3.229 for CRLS.

FIGURE 3. CDF of the daylight estimation error on workplaces for the
considered estimators.

FIGURE 4. RMSE of the daylight estimation error for each workplace as
given by (21). LS, LWRLS and CRLS are considered.

FIGURE 5. Boxplot showing the daylight value at workplace level for our
data set.

C. SATURATION OF LIGHT SENSORS
Formost lighting control applications, if the illuminance level
due to daylight is larger than several hundred lux, then it
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would result in the luminaire dimming down to minimum
intensity. Hence, in practice, light sensors are designed to
measure a limited range of illuminance levels [39], [40].
An illuminance level larger than the maximum range of a
light sensor would result in saturation, i.e. the measurement
is capped to the maximum valid value.

In this section, we compare the performance of the esti-
mators under saturation of the light sensors. We consider a
saturation level for the light sensors of 1000 lux.

The percentage of the samples that are affected by satu-
ration is zero for the data originating from the light sensors
at the ceiling. The percentage of the samples affected by
saturation from the workplace plane is around 2%; if we
consider just the workplaces next to the windows the percent-
age is about 8%. In Figure 5, we plot the daylight values at
each control point at the workplace plane without saturation.
We can see that those control points in the proximity of the
windows (29 to 36) have the largest daylight contribution and
thus they are more likely to be affected by saturation. Hence,
we focus our comparison on only those control points.

FIGURE 6. CDF of the daylight estimation error on the workplaces 29 to
36 for the considered estimators. All sensors are saturated at 1000 lux.

In Figure 6, we show the CDF of the daylight estimation
error for all approaches under saturation of light sensors. Note
that the saturation of light sensors introduces a non-linearity
in the relationship between daylight levels at the ceiling and
at the workplace plane. We can see that the performance
of the RLS approach is degraded due to this non-linearity.
In comparison, the LWRLS and CRLS approaches provide a
good estimate of daylight under saturation of light sensors.

D. SMALL TRAINING SET
In Section III, we discussed that adding a regularization
parameter could be effective if the training data set is small.
In fact, adding the regularization term when we use the entire
training set has little effect on the estimation performance.
Using a small training set, we compare the performance of
the LWRLS and RLS approach. For comparison, we also
consider the performance of a LS approach, i.e. RLS with
ε = 0. Note that the cluster-based approach would further

divides the training set into smaller sets and thus it is not
recommended when the training set is small.

FIGURE 7. CDF of the daylight estimation error on all workplaces using
only two training days: overcast day in September and December. No
saturation.

In Figure 7, we show the CDF of the daylight estimation
error when the training set is small. We consider a training
set with only two dayswith small variations in daylight condi-
tions: Overcast Sky days in September andDecember.We can
see that all approaches overestimate the daylight contribution
at control points at the workplace plane. In particular, the RLS
approach with ε = 0 overestimates more often (around 15%
of the samples are overestimated by more than 50 lux) than
the other two approaches (less than 10% of the samples are
overestimated by more than 50 lux).

Additionally, we show in Figure 8 the CDF of the daylight
estimation error when the training set includes two days
with large variations in daylight conditions: a single day in
September with clear sky and another single day in December
with overcast sky. We can see that the RLS and LWRLS

FIGURE 8. CDF of the daylight estimation error on all workplaces using
only two training days: clear day in September and overcast day in
December. No saturation.
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approaches provide good estimates of the daylight contribu-
tion while the RLS approach with ε = 0 underestimates
the daylight contribution (around 20% of the samples are
underestimated by more than 50 lux).

E. CONTROLLER PERFORMANCE
In this section we evaluate the performance of the differ-
ent controllers described in Section IV using the validation
set V . For the WP_CONTROL and WP_CONTROL with
Offset we consider the LWRLS approach for daylight esti-
mation due to its good performance under large and small
training set, and saturation of light sensors. For comparison,
we consider theWP_CONTROL when the daylight contribu-
tion terms p(k) are perfectly known, hereafter referred to as
ORACLE_CONTROL, and the REF_CONTROL introduced
in (18).

The simulations were done by having all workplaces
in occupied state, which requires an illuminance level at
workplace plane of W = 500 lux in all the workplaces,
i.e. wr (k) = W1,∀k .

FIGURE 9. CDF of the controller error on the workplaces for different
approaches with respect to the nominal value of 500 lux as given
by Eqn. (26).

In Figure 9, we show the CDF of the error in achieved
illumination at the control points at the workplace plane with
respect to the nominal value ofW = 500 lux for each control
strategy.More specifically, we show for each control strategy:

CDFw(e) =
1
NK

N∑
n=1

K∑
k=1

1(e− [ew(k)]n),

ew(k) = w(k)− wr (k). (26)

In Figure 9, we can see that the proposed controllers
using the daylight estimation approach provides sufficient
illumination at the control points at the workplace plane
(the under-illumination is less than 10 lux). In compari-
son, the REF_CONTROL has a larger variation in the error
in achieved illumination at the control points at the work-
place plane (half of the time the control points are under-
illuminated and the other half they are over-illuminated).

The WP_CONTROL with Offset provides most of the time
sufficient illumination at the control points at the workplace
plane. Note that the ORACLE_CONTROL always provides
sufficient illumination.

FIGURE 10. Normalized energy consumption averaged over several days
of the years and weather conditions for different control strategies.

Figure 10 shows the normalized energy consumption aver-
aged over several days of the years and daylight conditions
for each control strategies. The energy consumption is nor-
malized with respect to a lighting system that, under the
absence of daylight, provides an average illumination at the
workplace plane of about W = 500 lux, i.e. all luminaires
are set to a constant value of 0.85 throughout the day: u(k) =
0.85 × 1 and 1

N

∑N
n=1[w(k)]n = W when d(k) = 0. We

can see that our proposed control strategies have reduced and
similar normalized energy consumption levels with respect to
REF_CONTROL and ORACLE_CONTROL, respectively.

TABLE 1. Normalized energy consumption and percentage of workplaces
that are under-illuminated by more than 1 lux, under different control
strategies.

In Table 1, we summarize both the average normalized
lighting energy consumption and the level of under-
illumination. Here, we can see that our proposed con-
trol strategies are close in performance to the
ORACLE_CONTROL.

Finally, we simulate the effect of different occupancy dis-
tributions. We consider a scenario wherein probability of
a workplace being occupied is equal to 0.5. In Fig. 11,
we can see that the proposed controllers outperform the
REF_CONTROL with respect to providing sufficient illumi-
nation at the workplaces under different occupancy distribu-
tions. Note that the proportion of under-illuminated zones
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FIGURE 11. CDF of the controller error on the workplaces for different
approaches under different occupancy distributions as given by Eqn. (26).

under REF_CONTROL is smaller when compared to all
zones occupied (Figure 9). This is due to a lower illumination
requirement (300 lx) in unoccupied zones. Similarly, we can
see that a larger proportion of zones are over-illuminated
under all methods.

VI. CONCLUSIONS
We considered three methods for daylight mapping estima-
tion in a training phase for use in lighting control. The day-
light mapping is used to obtain an estimate of the achieved
illuminance at the workplaces. This knowledge is used in the
control law to obtain the dimming levels of the luminaires
and adapt the artificial light output to changing daylight con-
ditions. We show that in comparison to the REF_CONTROL
approach, the proposed solution achieves illuminance values
closer to the desired values and also saves energy. In practice,
the least squares method for daylight estimation has worse
performance among the considered methods. In particular,
the performance is poor when (i) the training set is small,
and/or (ii) when non-linearities, for example in the form
of saturated light sensor measurements, exist. The former
issue can be solved by considering a regularization term.
The latter issue can only be handled by the locally weighted
regularized least squares and cluster-based regularized least
squares methods. Note that both these methods assume lin-
earity within a (neighboring) subset of the measurements.
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