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Abstract: This paper presents a general framework to address diverse notoriously difficult problems
arising in the area of optimal resource management, exploitation of natural reserves, pension fund
valuation, environmental protection, and storage operation. Using some common abstract features
of this problem class, we present a technique which provides a significant reduction of decision
variables. As an application, we discuss a battery storage control to show how a decision problem,
which is practically unsolvable in the original formulation, can be treated by our method.
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1. Introduction

Optimization of sequential decision-making under uncertainty arises in different fields, such as
finance, economics, robotics, manufacturing, and telecommunication. These problems are frequently
discussed under the framework of real options, as applications of optimal stochastic control. Therefore,
the real options viewpoint (see [1,2]) highlights a freedom in the choice of decisions and consistently
uses the operational flexibility for strategy optimization. The classical contributions [3,4] were
among the first, placing sequential decision optimization into real option context, with applications in
manufacturing [5], investment planning [6], mining [7], and commodities [8]. Therefore, a formulation
of decision problems in continuous time was preferred: using a jump-diffusion setting and its
well-established stochastic control toolbox, the so-called Hamilton-Jacobi Bellman (HJB) equations,
(see [9]) and the Backward Stochastic Differential Equations (BSDE) (see [10]) became applicable [11–13].
However, also using discrete-time modeling, sequential decision problems have been routinely treated
in terms of the Markov Decision Theory [14,15] whose approximate techniques are known as Approximate
Dynamic Programming, (see [16], which comprises diverse heuristic numerical approaches).

In this paper we discuss a specific class of discrete-time stochastic control problems from the
viewpoint of real options, and use a certain managerial flexibility which can be expressed in terms of
a virtual reserve price. We show that in the optimal regime at any time, the actions are connected to
each other (in a certain sense) via virtual reserve price. This observation can be used to significantly
reduce the range of actions available for decision choice by excluding at each step those which cannot
be optimal. More specifically, we consider an abstract but generic situation which frequently arises in
sequential decision-making, when a certain activity (production plan) must be optimally chosen to
meet the right balance between the current costs of the activity and the consumption of some resource.
While all activity costs have an immediate effect, the impact of resource consumption is uncertain
and becomes relevant in the future. In practice, one is frequently confronted with a huge range of
possibilities to choose activities, and their combinations form a complex space whose structure is
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usually determined by numerous inter-relations. Although a solution to such sequential decision
problem can be theoretically obtained in terms of the standard backward induction, its practical
implementation is virtually infeasible due to the high complexity of decisions.

It turns out that a certain transformation can be of great help in such situations. In particular,
under specific but natural assumptions, we show how the decision variables space can be reduced to
a simple one-parameter family. Such reduction is achieved by a solution to a separate deterministic
optimization problem which is usually easily obtainable. Using such re-formulation, diverse numerical
techniques for backward induction can be applied. In this context, in our particular situations, the
Bellman’s optimality principle turns out to be equivalent to certain fixed-point equations, which might
lead to alternative ways to further simplify computational efforts in the backward induction.

The paper is organized as follows. Section 2 reviews dynamical Bellman principle underlying
the classical and stochastic dynamic programing and explains how our method is placed within this
context and its use in practice. Section 3 presents the problem and our approach to variables reduction
within a general framework. Section 4 introduces an application to battery control which is reviewed in
Section 5 to obtain a variables reduction for battery storages. Section 6 is devoted to formal justification
of our techniques, while Section 7 concludes.

2. Dynamic Principle for Optimal Switching and Reduction of Decision Variables

In applications, sequential decision-making is usually addressed under the framework of
discrete-time Stochastic Control. The theory of Markov Decision Processes/Dynamic Programming provides
a variety of methods to deal with such questions. In generic situations, approaching analytical
solutions for even some simplest decision processes may be a cumbersome process ([10,14,16])
Furthermore, since closed-form solutions to practically important control problems are usually
unavailable, numerical approximations became popular among practitioners to obtain approximately
optimal control policies. Although a huge variety of computational methods have been developed
therefore, typical real-world problems are usually too complex for the existing solution techniques,
in particular if the state dimension of the underlying controlled evolution is high. Let us review the
finite-horizon Markov decision theory following [17].

Controlled Markov processes: Consider a random dynamics on a finite time horizon 0, . . . , T whose
state x evolves in E and is controlled by actions a from an action set A. For each a ∈ A, we assume that
Ka

t (x, dx′) is a stochastic transition kernel on E. A mapping πt : E 7→ A which describes the action that
the controller takes at time t is called a decision rule. A sequence of decision rules π = (πt)

T−1
t=0 is called

a policy. For each initial point x0 ∈ E and each policy π = (πt)
T−1
t=0 , there exists a probability measure

Px0,π and a stochastic process (Xt)T
t=0 satisfying the initial condition Px0,π(X0 = x0) = 1 such that

Px0,π(Xt+1 ∈ B |X0, . . . , Xt) = Kπt(Xt)
t (Xt, B) (1)

holds for each B ⊂ E at all times t = 0, . . . , T − 1, i.e., given that system is in state Xt at time t, the
action a = πt(Xt) is used to pick the transition probability Ka=πt(Xt)

t (Xt, ·) which randomly drives

the system from Xt to Xt+1 with the distribution Kπt(Xt)
t (Xt, · ). Let us use Ka

t to denote the one-step
transition operator associated with the transition kernel Ka

t when the action a ∈ A is chosen. In other
words, for each action a ∈ A the operator Ka

t acts on functions v by

(Ka
t v)(x) =

∫
E

v(x′)Ka
t (x, dx′) x ∈ E, (2)

whenever the above integrals are well-defined.

Costs of control: For each time t, we are given the t-step reward function rt : E× A 7→ R, where rt(x, a)
represents the reward for applying an action a ∈ A when the state of the system is x ∈ E at time t. At



Appl. Syst. Innov. 2020, 3, 21 3 of 20

the end of the time horizon, at time T, it is assumed that no action can be taken. Here, if the system
is in a state x, a scrap value rT(x), which is described by a pre-specified scrap function rT : E → R, is
collected. Given an initial point x0, the goal is to maximize the expected finite-horizon total reward, in
other words to find the argument π∗ = (π∗t )

T−1
t=0 such that

π∗ = argmaxπE
x0,π

(
T−1

∑
t=0

rt(Xt, πt(Xt)) + rT(XT)

)
, (3)

where A is the set of all policies, and Ex0,π denotes the expectation over the controlled Markov chain
defined by (1).

Decision optimization: The maximization (3) is well-defined under diverse additional assumptions
(see [14], p. 199). The calculation of the optimal policy is addressed in the following setting. For
t = 0, . . . , T − 1, introduce the Bellman operator

Ttv(x) = sup
a∈A

(rt(x, a) +Ka
t v(x)) , x ∈ E (4)

which acts on each measurable function v : E → R where the integrals Ka
t v for all a ∈ A exist.

Furthermore, consider the Bellman recursion

v∗T = rT , v∗t = Ttv∗t+1 for t = T − 1, . . . , 0. (5)

Under appropriate assumptions, there exists a recursive solution (v∗t )
T
t=0 to the Bellman recursion,

which gives the so-called value functions and determines an optimal policy π∗ via

π∗t (x) = argmaxa∈A
(
rt(x, a) +Ka

t v∗t+1(x)
)

, x ∈ E, t = 0, . . . , T − 1

Stochastic switching: Consider now a Markov decision model whose state evolution consists of one
controllable and one uncontrollable component. To be more specific, we assume that the state space
E = P×Z is the product of a space P (operation modes) and a set Z (states of environment) being
a subset Z ⊂ Rd of the Euclidean space. We suppose that at each time t = 0, . . . T − 1 the mode
component p ∈ P is driven by actions a ∈ A in terms of a deterministic function

αt : P×Z × A→ P, (p, z, a)→ α
p,z
t (a)

where α
p,z
t (a) ∈ P stands for the new mode from if the action a ∈ A was taken at time t = 0, . . . , T − 1

in the state (p, z) ∈ E. In this setting, the transition operators are given by

Ka
t v(p, z) = E(v(αp,z

t (a), Zt+1) | Zt = z), z ∈ Z (6)

for t = 0, . . . , T − 1, and a ∈ A.

Variables reduction: In the above context of stochastic switching, the application of Bellman operator

Ttv(p, z) = sup
a∈A

(
rt(p, z, a) +E(v(αp,z

t (a), Zt+1) | Zt = z)
)

, (p, z) ∈ E (7)

may cause numerical difficulties, particularly if the action space A is high-dimensional and fragmented.
Unfortunately, this situation appears frequently in practice, where high-dimensional vectors of decision
variables usually subject to numerous feasibility inter-dependencies. In such framework, the problem
may become unsolvable due to difficulty of maximization over a complex action set A. The main
contribution of our paper is to provide a significant reduction of set of actions, which are relevant
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for maximization. Under specific assumptions described in this paper, we show there exists a
one-parameter family (curve) Ap,z

t ⊂ A which depends on the recent time t = 0, . . . , T = 1 and
state (p, z) ∈ E such that the domain of maximization reduces from A to Ap,z

t which yields instead of
the infeasible maximization (7) a new problem

Ttv(p, z) = sup
a∈Ap,z

t

(
rt(p, z, a) +E(v(αp,z

t (a), Zt+1) | Zt = z)
)

, (p, z) ∈ E (8)

which is significantly simpler and usually admits a (numerical) solution. To determine the curve
Ap,z

t ⊂ A of relevant actions, a separate deterministic optimization problem must be solved. Its
solution is usually obtained explicitly and provides interesting economic insights.

Contribution of this work: Using a standard Bellman principle, we explore an abstract, but
natural framework to reduce a potentially very large space of decision variables (actions) to a single
one-parameter family. Although our technique is entirely placed within the traditional Bellman principle
of stochastic/classic dynamic programming and addresses a relatively narrow problem class, a wide
range of application is covered, including mining operations, pension fund management, and emission
control. This approach can serve efficient numerical algorithms for notoriously difficult and important
problems from practice.

3. Optimal Control via Virtual Resource Price

Let us introduce the required framework more precisely. Consider an agent who is confronted
with the following problem. At the beginning t = 0, 1 . . . , T − 1 of each decision epoch, an activity
plan (work schedule) ξt is to be determined. Therefore, all costs of this work plan must be optimally
balanced against their resource consumption/generation. Suppose that the limited resources are
described in terms of the state variable e ∈ I which stands for the current resource shortage and can
vary within a certain interval I ⊂ R. For instance, if the resource under consideration is a commodity
in the storage, then e ∈ I stands for the amount of commodity required to fill the storage to its maximal
capacity. The other state variable z ∈ Rd is supposed to represent the situation in the surrounding
environment. Let us agree that this environmental state variable z is relevant for decisions, but cannot
be influenced by agent’s actions. For instance, for commodity storage, z may comprise the driving
market factors of the commodity price evolution. We furtherly assume that the environment state
occurs at any time t = 0, . . . , T as a realization z = Zt of an Rd-valued Markov process (Zt)T

t=0 whose
dynamics carries all information, relevant for decisions.

Having observed at time t = 0, . . . , T − 1 the resource level e ∈ I and the realization of the
environmental state variable z = Zt, the agent selects a plan ξ ∈ Ξ from the set Ξ of all feasible activity
plans. This choice yields an immediate cost Ce,z

t (ξ) and causes an immediate resource consumption
Ee,z

t (ξ) via pre-specified functions Ce,z
t , Ee,z

t on Ξ which may depend on the recent state (e, z) ∈ I ×Rd.
While all costs are accumulated, the resource level is carried over to the next decision time t + 1 as
e + Ee,z

t (ξ) and will influence the decision at this time. The availability of resources becomes crucial
at the end t = T of the planning horizon, when a certain terminal costs CT(e, z) must be paid, which
depend on the total resource level e ∈ I and on the state z ∈ Rd of the environment. Under additional
assumptions, such control problems are solved in terms of the so-called value functions (Vt)T

t=0 which
are obtained via Bellman recursions as

VT(e, z) = CT(e, z) (9)

Ṽt+1(e, z) =

{
E(Vt+1(e, Zt+1) | Zt = z) e ∈ I
+∞ e 6∈ I

, z ∈ Rd (10)

Vt(e, z) = inf
ξ∈Ξ

(
Ce,z

t (ξ) + Ṽt+1(e + Ee,z
t (ξ), z)

)
, (11)
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for all arguments (e, z) ∈ I×Rd representing the current situation at decision time. Please note that we
implicitly agreed to penalize the violation of the admissible resource level in (10) by infinity, gaining
the freedom to interpret the value function for all arguments e ∈ R with possible values +∞ in order
to avoid watching restriction e + Ee,z

t (ξ) ∈ I in (11).
The idea underlying our variable reduction scheme is based on the realization that if the resources

had a market price, then an agent would minimize all activity costs taking into account the monetary
value of the consumed resources. To realize this concept, we suppose that some entity (a regulatory
body) could charge a resources price A ∈ R at any time t, depending on the situation (e, z). In the
presence of such virtual price A ∈ R, each the decision-maker would examine the virtual charges for
the resource consumption and chose an activity accordingly, by obtaining

X e,z
t (A), a minimizer of ξ 7→ Ce,z

t (ξ) + AEe,z
t (ξ) over ξ ∈ Ξ. (12)

Obviously, such mapping A 7→ X e,z
t (A) represents an optimal activity depending on the current

state (e, z) ∈ I × Rd, time t = 0, . . . , T − 1, given the resource price A ∈ R. To some degree, this
mapping can be interpreted as the willingness to save resources by following a less profitable strategy in
response to an increased value of the resource. For ease of understanding, let us postpone the discussion
concerning the existence of the minimizer in (12) and the properties of the relation A 7→ X e,z

t (A) which
are crucial for the targeted results. The important assumption for now is that for each state (e, z) there
exists a bounded interval Ae,z ⊂ R such that the one-parameter family of activities

ξ ∈ {X e,z
t (A) ∈ Ξ | A ∈ Ae,z} ⊂ Ξ (13)

contains only the “best candidates” (for the purpose of minimization in (11)). They can be used in the
Bellman recursion, replacing the minimization in (11) by (16) as follows

vT(e, z) = CT(e, z), (14)

ṽt+1(e, z) =

{
E(vt+1(e, Zt+1) | Zt = z) e ∈ I
+∞ e 6∈ I

z ∈ Rd, (15)

vt(e, z) = min
A∈Ae,z

(Ce,z
t (X e,z

t (A)) + ṽt+1(e + Ee,z
t (X e,z

t (A)), z)) . (16)

Please note that now the minimization in (16) must be performed merely over a curve (13) instead
of over the whole space Ξ as in (11). In practical applications, such reduction can provide a reasonable
(numerical) approach to a virtually unsolvable problem. The main question here is whether

the value functions (Vt)T
t=0 from (9)–(11)

coincide with those (vt)T
t=0 from (14)–(16).

(17)

In the following, we work out all conditions required therefore. Before we turn to the illustration
of our technique by battery storage management in Sections 4 and 5, followed by proofs in Section 6,
let us present all required assumptions which ensure the validity of the assertion (17).

Suppose that all information, relevant for decision-making, is carried by Rd-valued Markov
process (Zt)T

t=0 which is realized on a filtered probability space (Ω,F ,P, (Ft)T
t=0). As introduced above,

we assume that the resource level can vary within a certain bounded interval I ⊂ R. Having selected an
activity ξ from the set Ξ of all feasible activity plans at time t = 0, . . . , T − 1 in the state (e, z) ∈ I ×Rd,
the costs Ce,z

t (ξ) and resource consumption Ee,z
t (ξ) are determined via pre-specified functions

Ce,z
t , Ee,z

t : Ξ→ R, t = 0, . . . , T − 1, (e, z) ∈ I ×Rd, (18)
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while the terminal costs are determined by

CT : I ×Rd → R, (e, z) 7→ CT(e, z). (19)

All our considerations rely on additional assumptions on the functions (18) which we formulate
next. To ensure that the minimization in (11) is well-defined, let us agree that there exists an idle activity
which does not consume any resources:

for each (e, z) ∈ I ×Rd there
exits ξ ∈ Ξ such that Ee,z

t (ξ) = 0.

}
(20)

To ease our argumentation, we suppose that

for each (e, z) ∈ I ×Rd there is an interval Ae,z ⊂ R such that
the minimizer X e,z

t (A) ∈ Ξ to (12) exists for each A ∈ Ae,z.

}
(21)

Furthermore, let us propose a mild technical assumption

for each z ∈ Rd, ξ ′ ∈ Ξ and e, e′ ∈ I with e < e′ there exists
ξ ∈ Ξ reaching the same level e + Ee,z

t (ξ) = e′ + Ee′ ,z
t (ξ ′) of

resource consumption at no greater costs Ce,z
t (ξ) ≤ Ce′ ,z

t (ξ ′).

 (22)

To determine the desired minimizer ξ∗ = X e,z
t (A∗) to (11), we rely on the following natural

technical assumption

for each (e, z) ∈ I ×Rd and t = 0, . . . , T − 1,
the function A 7→ Ee,z

t (X e,z
t (A)) is continuous on

Ae,z, strictly decreasing, and possesses a root.

 (23)

Finally, we require some convexity properties in the sense that

the set Ξ is convex and for each z ∈ Rd, t = 0, . . . , T − 1 the
functions (e, ξ) 7→ Ce,z

t (ξ), (e, ξ) 7→ Ee,z
t (ξ) are convex on I × Ξ,

furthermore e 7→ CT(e, z) is convex and non-decreasing on I.

 (24)

As mentioned above, the advantage of our approach is that a simpler form (14)–(16) of Bellman
recursion occurs, whose efficient (numerical) treatment may be easily possible, unlike that of the
original problem (9)–(11). Indeed, it turns out that such simplification solves the original problem in
the following sense:

Theorem 1. Under the assumptions (20)–(24) consider (Vt)T
t=0 and (vt)T

t=0 defined by (9)–(11) and (14)–(16)
respectively. If a solution (vt)T

t=0 to (14)–(16) exists, then

the value functions coincide vt = Vt for all t = 0, . . . , T. (25)

In view of the above result, the practical solution now requires obtaining for each t = 0, . . . , T− 1
the optimal decision

π∗t : I ×Rd → R (26)
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via minimization in the simplified Bellman recursion where the virtual price for the optimal regime is
obtained via π∗t (e, z) = A∗ as a minimizer

A∗ = argminA∈Ae,z
(
Ce,z

t (X e,z
t (A)) + Ṽt+1(e + Ee,z

t (X e,z
t (A)), z)

)
. (27)

Remark 1. We also prove that the optimal decision π∗t (e, z) = A∗ can be obtained as a solution to the fixed-point
equation

A∗ ∈ ∇Ṽt+1(e + Ee,z
t (X e,z

t (A∗)), z),

meaning that A∗ must be a sub-gradient of the expected value function, i.e., in the optimal regime, the virtual
resource price must always be equal to the marginal change rate of the value function with respect to the resource
level. The economic interpretation of this insight is natural: when choosing an activity plan, the agent increases
the resource consumption to a level where the value loss caused by this consumption starts taking over the instant
revenue of the activity.

4. Battery Storage Control

To illustrate our variables reduction technique, we introduce a model for battery storage
installation operated within a deregulated electricity market. First, let us introduce some technical
characteristics. The battery capacity stands for the maximal energy stored (measured in MWh), whereas
the battery power is the amount of electrical power (measured in MW) the installation can provide at
any moment (see [18]). The conditions under which batteries are operated affect their performance
in terms of the so-called cycle life, which can be defined as the number of cycles completed before
the effective battery capacity falls below than 60% of its nominal capacity. Therefore, the Depth of
Discharge (DoD) is essential. To give the reader a quantitative understanding of this phenomena, let
us consider an example of a lithium ion battery. Assuming that each charge/discharge cycle causes a
battery deterioration, one would assume that emptying completely a battery (which corresponds to
100% DoD) 200 times is roughly equivalent (in terms of performance decline) to 400 cycles at 50% DoD
and 600 cycles at 33% DoD. However, the actual behavior is different. Usually, a lithium-type battery
serves longer than 400 cycles at 50% DoD and significantly longer than 600 cycles at 33% DoD, (see [19])
In our model, we suppose that visiting deep discharge states is costly since it affects battery life. For
this reason, we suggest including a user-defined function which penalizes deep discharge states
accordingly. Figure 1 illustrates its dependence measured in charge cycles and dependence on depth
of discharge. We include such effects into our model by a cost penalization of deep discharge states.

0 20 40 60 80 100
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00
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00

Depth of discharge in %
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of
 c

yc
le

s

Figure 1. Typical relationship between battery life and depth of discharge.

Beyond preventing deep discharge, further operational improvements encompass avoiding that
the battery is fully charged (by reducing voltage when charging) and diminishing the so-called
charge/discharge rate, which stands for the maximal electric flow during charging/discharging.

We assume that the agent attempts to optimally manage an electricity storage by sequential
decisions on the amount of energy procured/purchased through the intraday market and on the
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optimal charge/discharge of batteries. Obviously, these decisions must take into account the current
electricity price, market state, storage level, and all costs and technical restrictions.

Consider an energy retailer facing the obligation to satisfy an unknown energy demand of its
customers at times t = 0, . . . , T − 1, while renewable energy sources produce a random electricity
amount given a certain battery storage. To manage a potential energy imbalance, appropriate forward
positions are taken in advance and decisions are made to drive the battery storage. This is a typical
dynamic control problem, since at any time t = 0, . . . , T an action must be chosen (encompassing
a simultaneous energy trade and battery control) which immediately causes some costs but also
determines a transition to the next system state (future battery level and market conditions). Clearly,
one needs to optimally balance the recent costs against those incurred in the future, based on
the current situation. The problems of this type are naturally formulated and solved in terms of
dynamic programming.

Remark 2. Please note that we investigate the problem of electricity storage management within an abstract
context which is applicable to most of the deregulated electricity markets, possibly with minor adaptation. Namely
we consider energy trading on two time scales. The longer-term trading is realized by forwards or futures or
by energy delivery contracts, for instance from the day-ahead trading. In practice, these long-term positions
are constantly adjusted on a short-term scale using intraday trading or balancing procedures. This two-scale
structure is universal and inherent to any deregulated electricity market and we usually observe significant
differences between both scales considering their prices, liquidity, and spread.

Consider an agent who serves an energy consumer whose random demand is (partially) covered
from a renewable energy generation facility whose energy output is also random. We denote by Dt

the cumulative electricity demand of such facility (which stands for demand if Dt < 0 and surplus
if Dt > 0) for the delivery period t. Assume that the time point t = 0, . . . , T − 1 corresponds to the
beginning of the period t and agree that the demand Dt is observed after t, at the end of the delivery
period t. Let us agree to model Dt = dt + εt, with a zero-mean random variable εt standing for the
deviation of the realized demand Dt from its prediction dt, which is observable at time t. Moreover,
assume that at each time t = 0, . . . , T, the producer can take a forward position which attempts to
cover Dt. Let us describe such position as dt + ft where ft stands for the deviation of the total amount
traded forward from the prediction dt. In generic situations, the quantity ft can be considered to be
a “safety margin” which must be purchased on the top of predicted demand dt to avoid a potential
energy shortage during delivery interval. However, we do not assume that ft or dt must always be
positive. Moreover, introduce the control variable bt, standing for the decision to transfer the energy
amount |bt| from/to the battery, where bt > 0 and bt < 0 represent discharging and charging actions,
respectively. Here, we agree that these control actions must be decided at time t (immediately before
the delivery period t starts). With these assumptions, the energy to be balanced during delivery period
t = 0, . . . , T using electricity grid is

ft + dt − Dt + bt = ft + bt − εt. (28)

Please note that on the right-hand side of this equation, the quantities ft and bt must be chosen at
t whereas εt becomes observable after time t.

Now we turn to storage control costs and introduce electricity prices

Ψt = (Ψ+
t , Ψ0

t , Ψ−t ) t = 0, . . . , T, (29)

with the interpretation that for delivery period t, Ψ0
t stands for the forward price, whereas Ψ+

t and Ψ−t
are the so-called upper and the lower balancing prices.
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Remark 3. Please note that Ψ0
t stands for the price of energy from long-term market. In the sense of the above

remark, this price can represent a forward, futures, or day-ahead price of electrical energy in front of delivery,
depending on modeling.

While the forward price Ψ0
t is listed prior to the delivery period t and applies to energy traded in

advance, the balancing prices Ψ+
t , Ψ−t are determined during delivery period t and apply for purchase

and procurement of the grid energy. Usually, it holds that

0 ≤ Ψ+
t < Ψ0

t < Ψ−t t = 0, . . . , T. (30)

In practice, the price range [Ψ+
t , Ψ−t ] can be wide, meaning that Ψ+

t is significantly lower than Ψ0
t

which is lower than Ψ−t . This issue makes any balancing using grid energy potentially unfavorable.
For this reason, the agent attempts to meet the demand as precisely as possible using a combination
of the energy from the forward position and from the battery. More specifically, we suppose that the
costs, associated with taking forward position, are given by

Ψ0
t (dt + ft) + q(dt + ft)

2 (31)

where q > 0 is a coefficient, representing the elasticity of the forward price with respect to contract
volume. The total costs associated with energy balancing during the period t = 0, . . . , T is given by

Ψ0
t (dt + ft) + q(dt + ft)

2 −Ψ+
t ( ft + bt − εt)

+ + Ψ−t ( ft + bt − εt)
−. (32)

Please note that this quantity is observable after t and is controlled by the variables ft and bt

which must be chosen at t.
Let us precisely formulate the assumptions on random variables observables, concerning the

time of their observation. Suppose that the processes (dt)T
t=0 ( ft)T

t=0 , (bt)T
t=0 , (εt)T

t=0 are given on
a filtered probability space (Ω,F ,P, (Ft)

T+1
t=0 ) where Ft represents the information available at time

point t, just before the start of the delivery period t. According to the above modeling, we suppose
that for t = 0, . . . , T

dt, ft, bt, Ψ0
t are Ft-measurable, and

εt, Ψ+
t , Ψ−t are Ft+1-measurable.

Let us suppose that

Ψt = (Ψ−t , Ψ0
t , Ψ+

t ) and εt are
conditionally independent, given Ft

t = 0, . . . , T, (33)

and denote by Et(·) the expectation, conditioned on Ft for t = 0, . . . , T. Applying such conditional
expectation Et(·) to (32), we use the conditional independence (4) to obtain

Ψ̄0
t (dt + ft) + q(dt + ft)

2 − Ψ̄+
t Et[( ft + bt − εt)

+] + Ψ̄−t Et[( ft + bt − εt)
−]. (34)

In this equation, the prices expected in front of delivery, are denoted by

Ψ̄−t = Et(Ψ−t ), Ψ̄0
t = Ψ0

t = Et(Ψ0
t ), Ψ̄+

t = Et(Ψ+
t ), t = 0, . . . , T.

To simplify our energy storage management, we furtherer agree that the distribution of prediction
errors does not depend on recent information in the sense that

εt and Ft are independent, t = 0, . . . , T. (35)
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This natural assumption yields a compact form for the expected costs (34):

Ψ̄0
t (dt + ft) + q(dt + ft)

2 − Ψ̄+
t h+t ( ft + bt) + Ψ̄−t h−t ( ft + bt) (36)

with functions h+ and h− explicitly computable from

h+t (u) = E[(u− εt)
+], h−t (u) = E[(u− εt)

−], u ∈ R, t = 0, . . . , T. (37)

In view of (34)–(37), the expected costs of (32) depend on the energy control variables f and b as

( f , b) 7→ Ψ̄0
t (dt + f ) + q(dt + f )2 − Ψ̄+

t h+t ( f + b) + Ψ̄−t h−t ( f + b) (38)

Please note that these costs are expected at time t and can be changed by appropriate adjustment
of decision variables f , b ∈ R.

For an agent concerned with the minimization of all costs accumulated within the decision period
ranging from t = 0 to t = T, the dynamical aspects are important. Specifically, the decision at time t to
use energy b from the storage changes the storage level, which has a distinct impact on the availability
of energy in the future, influencing all following decisions.

To formulate our storage control as a dynamic programming problem, we assume that a Markov
dynamics (Zt)T

t=0 on (Ω,F ,P, (Ft)T
t=0) carries all relevant information. Therefore, we suppose that

(Zt)T
t=0 is a Markovian process which takes values in Rd. This process describes the evolution of

all relevant state variables of the environment. In particular, we assume that the expected prices
are represented by function ψ : Rd → R3 of state variables, whose components ψ = (ψ−t , ψ0

t , ψ+
t )

determine the prices as follows:

(Ψ̄−t , Ψ̄0
t , Ψ̄+

t ) = ψt(Zt) = (ψ−t (Zt), ψ0
t (Zt), ψ+

t (Zt)) t = 0, . . . , T. (39)

In accordance to (30), we require for t = 0, . . . , T that

0 ≤ ψ+
t (z) < ψ0

t (z) < ψ−t (z), z ∈ Rd. (40)

Furthermore, we suppose that at any time t = 0, . . . , T, the conditional expectation of the next
period’s demand is described in terms of a deterministic function

d : {0, . . . , T} ×Rd → R, (t, z) 7→ dt(z).

Besides the state of the environment z ∈ Rd, the other important state variable is the current
storage level e ∈ I. Having denoted the minimal and the maximal energy amounts of the battery by e
and e respectively, we suppose that the storage level e represents by the amount e of energy, which is
needed to fully charge the battery. With this interpretation, our variable is the

resource level e, which takes values in the interval I =]0, e− e[. (41)

In view of (34)–(39), the expected costs of (32) are now written in terms of a function

Ce,z
t ( f , b) =ψ0

t (z)(dt(z) + f ) + q(dt(z) + f )2 − ψ+
t (z)h+t ( f + b)

+ ψ−t (z)h−t ( f + b) + χ(e) (42)

of the resource level e ∈ I, the state variable z ∈ Rd, and the control variables f , b ∈ R for t = 0, . . . , T.
Please note that in (42) we include the costs χ(e) of deep discharge corresponding to the resource level
e ∈ I, modeled by an

increasing and convex function χ : I → R. (43)
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Remark 4. Ideally, an understanding of the chemistry of a particular battery will suggest some generic
penalization function. However, in practice, there are diverse approaches to assess (in economic terms) how the
battery life is affected by visiting a deep discharge state. Here, the usual cycle life graph (as in Figure 1), does
not detail all aspects required by our approach. The point is that the cycle life is determined by charge/discharge
periods oscillating linearly between the minimal and the maximal capacity, rather by a certain strategy run
within a random environment. Such life cycle diagrams do not provide any information whether it could be worth
visiting a deep discharge state for a short period of time in order to catch an electricity price spike. Given diverse
battery storage technologies, there is no simple way of determining an appropriate penalization function. For
this reason, the authors suggest a pragmatic approach: For a pre-specified penalization as depicted in Figure 2,
the user will calculate the corresponding optimal strategy which must be examined and assessed in simulations.
If required by simulation results, the penalty function can be altered, followed by another round of optimization
and simulations. Such attempts can be repeated until satisfactory results (considering battery life expectation,
peak load response, and total revenue) are reached.
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Figure 2. A function as in (43) for 60 MWh, penalizing the middle and upper range of shortage level.

Now, let us propose Bellman recursion for our battery control problem. Recall that in our modeling,
the state variables at time t = 0, . . . , T comprise a market situation described by the realization z = Zt

of the environment state process and the current resource level e ∈ I. Having supposed that at the
final date t = T, in the environment state z = ZT the entire battery storage content e− e can be sold at
the market price ψ0

T(z), we agree that the terminal costs function is

CT(e, z) = −ψ0
T(z)(e− e− e) (z, e) ∈ Rd × I. (44)

This quantity determines the value function VT at the final time T by

VT(e, z) = CT(e, z), (z, e) ∈ Rd × I. (45)

Prior to the terminal time t = 0, . . . , T − 1, the backward induction yields the value functions
(Vt)

T−1
t=0 recursively by

Ṽt+1(e, z) = E(V(Zt+1, e) | Zt = z) (z, e) ∈ Rd × I, (46)

Vt(e, z) = min
( f ,b)∈Ξ(e,z)

(
Ce,z

t ( f , b) + Ṽt+1(e + b, z)
)

(z, e) ∈ Rd × I, (47)

where the minimum must be taken over the set Ξ(e, z) of all admissible controls

Ξ(e, z) = {( f , b) : f , b ∈ R, e + b ∈ I}, e ∈ I (48)

due to restriction that the energy transfer from/to the storage is limited by the storage capacity.
However, in our approach, many arguments rely on the assumption that the set of admissible decisions
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does not depend on the current situation. To replace the minimization over admissible controls Ξ(e, z)
in (11) by a minimization over an unrestricted set

Ξ = {( f , b) : f , b ∈ R},

we introduce a penalization for violation ( f , b) 6∈ Ξ(e, z), having in mind that for a sufficiently strong
penalization it will be never optimal to violate the restriction e + b ∈ I. This concept is realized by the
following recursions:

VT(e, z) = CT(e, z), (z, e) ∈ Rd × I (49)

Ṽt+1(e, z) =

{
E(Vt+1(e, Zt+1) | Zt = z) e ∈ I
+∞ e 6∈ I

, z ∈ Rd (50)

Vt(e, z) = inf
( f ,b)∈Ξ

(
Ce,z

t ( f , b) + Ṽt+1(e + b, z)
)

, (z, e) ∈ Rd × I. (51)

Please note that with this definition, the functions (Vt)T
t=0 satisfy (45)–(48) if and only if they

fulfill (49)–(51).

5. Variables Reduction for Battery Control

In this section, we adopt and use our variable reduction technique to the specific situation
described in Section 4. Therefore, we show that all assumptions of Theorem 1 are fulfilled. Recall from
our modeling (44), (42) that the set of activities is given by

Ξ = {( f , b) : f ∈ R, b ∈ R} (52)

with the interpretation that f and b represent the energy from trading and that from the battery,
respectively. On this account, we have assumed that the costs and resource consumption functions are
given by

Ce,z
t ( f , b) =ψ0

t (z)(dt(z) + f ) + q(dt(z) + f )2 − ψ+
t (z)h+t ( f + b)

+ ψ−t (z)h−t ( f + b) + χ(e) (53)

Ee,z
t ( f , b) =b for z ∈ Rd, ( f , b) ∈ Ξ, t = 0, . . . , T − 1. (54)

Here the coefficient q > 0 represents the price elasticity whereas the functions h+t and h−t are
defined by (37) as

h+t (u) = E[(u− εt)
+] =

∫
R
(u− ε)+Pεt(dε),

h−t (u) = E[(u− εt)
−] =

∫
R
(u− ε)−Pεt(dε),

in terms of the distribution Pεt of the demand prediction error εt, this distribution is non-random by
assumption (35). Define the function

ht(z, u) =
∫
R[−ψ+

t (z)(u− ε)+ + ψ−t (z)(u− ε)−]Pεt(dε) z ∈ Rd, u ∈ R (55)

and observe that

u 7→ ht(z, u) is convex and non-increasing on R for each z ∈ Rd (56)
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due to 0 ≤ ψ+
t (z) < ψ−t (z) stated in (30). Using (55), we rewrite (53) as

Ce,z
t ( f , b) = ψ0

t (z)(dt(z) + f ) + q(dt(z) + f )2 + ht(z, f + b) + χ(e)
for ( f , b) ∈ Ξ, (e, z) ∈ I ×Rd.

(57)

With this representation, the convexity required by (24) is obvious, since the functions ( f , b) 7→
q(dt(z) + f )2 and ( f , b) 7→ ht(z, f + b) are convex on Ξ, while e 7→ χ(e) is convex on I.

To verify (22), consider ξ ′ = ( f ′, b′) ∈ Ξ and e, e′ ∈ I with e < e′ to define

ξ = ( f , b) = ( f ′, b′ + e′ − e)

which yields the same resource consumption

e + Ee,z
t (ξ) = e′ + b′ = e′ + Ee′ ,z

t (ξ ′)

at no greater costs

Ce,z
t (ξ) = ψ0

t (z)(dt(z) + f ′) + q(dt + f ′)2 + ht(z, f ′ + b′ + e′ − e) + χ(e)

≤ ψ0
t (z)(dt(z) + f ′) + q(dt + f ′)2 + ht(z, f ′ + b′) + χ(e′) = Ce′ ,z

t (ξ ′),

since ht is non-increasing by (56) in the second variable and the deep discharge penalization function
χ is strictly increasing by assumption (43).

Now let us turn to the Legendre-type transform and verify (21) and (23). To obtain explicit
expressions, let us suppose for the sake of concreteness that

for t = 0, . . . , T − 1, the distribution Pεt possesses a strictly
increasing and continuous distribution function Fεt .

(58)

The derivative of the function ht from (55) under the assumptions (58) is evaluated explicitly as

∂(0,1)ht(z, u) = (ψ−t (z)− ψ+
t (z))Fεt(u)− ψ−t (z), u ∈ R. (59)

Given an A ∈ R, consider the minimization (12) of Ce,z
t (ξ) + AEe,z

t (ξ) over ξ ∈ Ξ, which yields
the minimization of a convex and smooth function

R2 → R, ( f , b) 7→ ψ0
t (z)(dt(z) + f ′) + q(dt(z) + f ′)2 + ht(z, f + b) + Ab (60)

whose first-order conditions are

ψ0
t (z) + 2q(dt(z) + f ) + ∂(0,1)ht(z, f + b) = 0, ∂(0,1)ht(z, f + b) + A = 0.

These conditions are fulfilled by ( f ∗, b∗) ∈ R2 obtained from

ψ0
t (z) + 2q(dt(z) + f ∗) = A, ∂(0,1)ht(z, f ∗ + b∗) = −A. (61)

That is, the unique minimum of (60) exists for 0 < ψ+
t (z) < A < ψ−t (z) and is given by solution

to (61) as

f e,z
t (A) =

A− ψ0
t (z)

2q
− dt(z), (62)

be,z
t (A) = F−1

εt

(
ψ−t (z)− A

ψ−t (z)− ψ+
t (z)

)
− A− ψ0

t (z)
2q

+ dt(z), (63)
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giving the minimizer
X e,z

t (A) = ( f e,z
t (A), be,z

t (A))

for (21) over the relevant interval

A ∈ Ae,z =]ψ+
t (z), ψ−t (z)[. (64)

Furthermore, assumption (23) is satisfied, since

A 7→ Ee,z
t (X e,z

t (A)) = be,z
t (A)

is linearly decreasing over the interval (64) ranging from a positive

lim
A↓ψ+

t (z)
be,z

t (A) = F−1
εt (1−)−

ψ+
t (z)− ψ0

t (z)
2q

> 0,

to a negative value

lim
A↑ψ+

t (z)
be,z

t (A) = F−1
εt (0+)−

ψ−t (z)− ψ0
t (z)

2q
< 0.

All ingredients required for (14)–(16) are specified for t = 0, . . . , T − 1, z ∈ Rd, A ∈ Ae,z by the
following quantities

Ee,z
t (X e,z

t (A)) = be,z
t (A)

Ce,z
t (X e,z

t (A)) = ψ0
t (z)(dt(z) + f e,z

t )(A) + q(dt(z) + f e,z
t )A2 + ht(z, f e,z

t (A) + be,z
t (A)) + χ(e)

which are relevant in (14)–(16).

6. The Variables Reduction Technique

This section is devoted to the derivation of Theorem 1. Let us prepare the proof by gradually
showing auxiliary results. Our arguments rely on convexity of the functions (Vt)T

t=0 from (9)–(11).
It turns out that, based on the assumption

Ṽt+1(·, z) is convex and non-decreasing on I
and Ṽt+1(·, z) = +∞ on R \ I, for all z ∈ Rd,

(65)

the same properties can be deduced for Ṽt(·, z) as formulated in the following lemma.

Lemma 1. Given costs and resource consumption (18), let t ∈ {0, . . . , T − 1}, suppose that (65) holds and
consider Vt(·, z) defined by (11). If (22) holds then Vt(·, z) is non-decreasing on I for all z ∈ Rd. If in addition
(24) is satisfied, then Vt(·, z) is non-decreasing and convex on I for all z ∈ Rd.

Proof. Given z ∈ Rd, e, e′ ∈ I with e < e′, and arbitrary ξ ′ ∈ Ξ there exists by (22) an action ξ ∈ Ξ with

e + Ee,z
t (ξ) = e′ + Ee′ ,z

t (ξ ′) and Ce,z
t (ξ) ≤ Ce′ ,z

t (ξ ′)

which gives
Ce,z

t (ξ) + Ṽt+1(e + Ee,z
t (ξ), z) ≤ Ce′ ,z

t (ξ ′) + Ṽt+1(e′ + Ee′ ,z
t (ξ ′), z)

and shows Vt(e, z) ≤ Vt(e′, z) by minimization in ξ and ξ ′ over Ξ.
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Now we turn to the convexity. Using the infimum in (11) for each δ > 0, there exist ξ, ξ ′ ∈ Ξ
such that

δ

2
+ Vt(e, z) ≥ Ce,z

t (ξ) + Ṽt+1(e + Ee,z
t (ξ), z),

δ

2
+ Vt(e′, z) ≥ Ce′ ,z

t (ξ ′) + Ṽt+1(e′ + Ee′ ,z
t (ξ ′), z).

Please note that these values are finite due to (20), which means that

e + Ee,z
t (ξ) ∈ I, e′ + Ee′ ,z

t (ξ ′) ∈ I.

That is, by convex linear combinations of the activities (Ξ is convex by (24)) and resource levels
we obtain

ξ(λ) = λξ + (1− λ)ξ ′ ∈ Ξ

e(λ) = λe + (1− λ)e′ ∈ I.

Now, by convexity of costs functions (24) it holds that

λCe,z
t (ξ) + (1− λ) Ce′ ,z

t (ξ ′) ≥ Ce(λ),z
t (ξ(λ))

and using assumption (65) we conclude

λṼt+1(e + Ee,z
t (ξ), z) + (1− λ)Ṽt+1(e′ + Ee′ ,z

t (ξ ′), z) ≥

≥ Ṽt+1(λe + (1− λ)e′ + λEe,z
t (ξ) + (1− λ)Ee′ ,z

t (ξ ′), z) ≥

≥ Ṽt+1(e(λ) + Ee(λ),z
t (ξ(λ)), z).

From this, we proceed with

δ + λVt(e, z) + (1− λ)Vt(e′, z) ≥ Ce(λ),z
t (ξ(λ)) + Ṽt+1(e(λ) + Ee(λ),z

t (ξ(λ)), z)

≥ inf
ξ∈Ξ

(
Ce(λ),z

t (ξ) + Ṽt+1(e(λ) + Ee,z
t (ξ), z)

)
≥ Vt(e(λ), z)

that shows the desired convexity.

In what follows, we recall the notion ∇g of the so-called sub-gradient of a convex function
g : Rn → R∪ {∞}, (n ∈ N) which is defined at each point u ∈ Rn as the family of linear functionals

∇g(u) = {l : Rn → R : l is linear with g(u) + l(u′ − u) ≤ g(u′), for u′ ∈ Rn}.

For a function V on I × Rd → R as in (65) which is convex in the first component on I, we
agree to consider its sub-gradient in the first component, only for arguments in I. More precisely, for
(e, z) ∈ I ×Rd we write ∇V(e, z) to denote the set of linear functionals l : R→ R satisfying

V(e, z) + l(e′ − e) ≤ V(e′, z) for all e′ ∈ R.

Now, let us elaborate on the fixed-point property of the virtual resource price in the optimal
regime in the spirit of the remark before Section 4.
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Lemma 2. Assume that the costs and resource consumption functions are given as in (18). Let t ∈ {0, . . . , T−
1} and Ṽt+1 be a function which satisfies (65), furthermore, suppose that (21) holds. If for (e, z) ∈ Rd there
exists A∗ ∈ Ae,z satisfying the fixed-point equation

A∗ ∈ ∇Ṽt+1(e + Ee,z
t (X e,z

t (A∗)), z), (66)

then ξ∗ = X e,z
t (A∗) is a minimizer to (11).

Proof. By assumption (21) the minimizer ξ∗ = X e,z
t (A∗) to (12) satisfies

Ce,z
t (ξ∗) + A∗Ee,z

t (ξ∗) ≤ Ce,z
t (ξ) + A∗Ee,z

t (ξ) (67)

for each ξ ∈ Ξ, which is equivalent to

Ce,z
t (ξ∗)− Ce,z

t (ξ) ≤ A∗(Ee,z
t (ξ)− Ee,z

t (ξ∗)). (68)

On the other hand, since A∗ ∈ ∇Ṽt+1(e + Ee,z
t (ξ∗), z) by assumption (66), we conclude that

A∗(Ee,z
t (ξ)− Ee,z

t (ξ∗)) ≤ Ṽt+1(e + Ee,z
t (ξ), z)− Ṽt+1(e + Ee,z

t (ξ∗), z). (69)

By combining (68) and (69)

Ce,z
t (ξ∗)− Ce,z

t (ξ) ≤ Ṽt+1(e + Ee,z
t (ξ), z)− Ṽt+1(e + Ee,z

t (ξ∗), z)

we obtain the desired assertion

Ce,z
t (ξ∗) + Ṽt+1(e + Ee,z

t (ξ∗), z) ≤ Ce,z
t (ξ) + Ṽt+1(e + Ee,z

t (ξ), z).

The above lemma suggests determining a minimizer ξ∗ to (11) as ξ∗ = X e,z
t (A∗) where A∗ is

obtained as a solution to the fixed-point relation (66). However, according to the dynamic programing
principle, the virtual resource price A∗ ∈ Ae,z shall be determined by the minimization (27) rather
than by solving a fixed-point relation. The result below shows that under natural assumptions, (27) in
fact implies (66).

Lemma 3. Given costs and resource consumption (18), let t ∈ {0, . . . , T − 1} and (e, z) ∈ I ×Rd, suppose
that (65) holds and assume that (21) holds and (23) is satisfied. If A∗ = Ae,z fulfills (27), then A∗ also fulfills
the fixed-point equation (66).

Proof. Given (e, z) ∈ I ×Rd, suppose that A∗ = Ae,z ∈ Ae,z satisfies (27). Recall that by assumption
(23) there exists A0 ∈ Ae,z there exists a root such that Ee,z

t (X e,z
t (A0)) = 0. Since this root is included

in the minimization, with a finite (due to e ∈ I) value

Vt+1(e + Ee,z
t (X e,z

t (A0)), z) = Vt+1(z, e) < ∞,

the infimum is also finite

Ce,z
t (X e,z

t (A∗)) + Ṽt+1(e + Ee,z
t (X e,z

t (A∗)), z) < ∞.
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By the minimum property (27), for each A ∈ Ae,z it holds that

Ce,z
t (X e,z

t (A∗)) + Ṽt+1(e + Ee,z
t (X e,z

t (A∗)), z) ≤
≤ Ce,z

t (X e,z
t (A)) + Ṽt+1(e + Ee,z

t (X e,z
t (A)), z). (70)

Furthermore, by definition of X e,z
t (A), it holds on the other hand that

Ce,z
t (X e,z

t (A)) + Ee,z
t (X e,z

t (A)) ≤ Ce,z
t (ξ) + AEe,z

t (ξ)

for each ξ ∈ Ξ. Replacing ξ by X e,z
t (A∗), we deduce

Ce,z
t (X e,z

t (A)) ≤ Ce,z
t (X e,z

t (A∗)) + A(Ee,z
t (X e,z

t (A∗))− Ee,z
t (X e,z

t (A)))

which we combine with (70) to obtain

Ṽt+1(e + Ee,z
t (X e,z

t (A∗)), z) ≤
≤ A(Ee,z

t (X e,z
t (A∗))− Ee,z

t (X e,z
t (A))) + Ṽt+1(e + Ee,z

t (X e,z
t (A)), z). (71)

Introducing for (ε, z) ∈ I ×Rd the notations

E(A) = e + Ee,z
t (X e,z

t (A)), A ∈ Ae,z,

Ṽ(ε) = Ṽt+1(ε, z),

the inequality (71) is written as

Ṽ(E(A∗)) + A(E(A)− E(A∗)) ≤ Ṽ(E(A)), A ∈ Ae,z. (72)

For a strictly increasing sequence (A+
n )n≥1 ⊂ Ae,z converging to A∗ define a sequence

∆+
n = E(A+

n )− E(A∗), n ≥ 1

which is strictly decreasing, converges to zero due to (23), and satisfies

Ṽ(E(A∗)) + A+
n ∆+

n ≤ Ṽ(E(A∗) + ∆+
n ), (73)

because of (72). Similarly, for a strictly decreasing sequence (A−n )n≥1 ⊂ Ae,z converging to A∗, define
a sequence

∆−n = E(A−n )− E(A∗), n ≥ 1

which is strictly increasing, converges to zero due to (23), and satisfies

Ṽ(E(A∗)) + A−n ∆−n ≤ Ṽ(E(A∗) + ∆−n ). (74)

Now apply Lemma 4 with above sequences (∆+
n )n≥1, (A+

n )n≥1 and (∆−n )n≥1, (A−n )n≥1 using their
properties (73) and (74) to deduce the assertion

A∗ ∈ ∇Ṽ(E(A∗)) = ∇Ṽt+1(e + Ee,z
t (X e,z

t (A∗)), z).
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Lemma 4. Let Ṽ : R 7→ R ∪ {∞} be a convex function and ε ∈ R such that Ṽ(ε) < ∞. Suppose that there
exist sequences (∆+

n )n≥1 ⊂]0, ∞[, (∆−n )n≥1 ⊂]−∞, 0[ converging to zero and sequences (A−n )n≥1, (A+
n )n≥1

converging to A∗ ∈ R such that

Ṽ(ε) + A+
n ∆+

n ≤ Ṽ(ε + ∆+
n )

Ṽ(ε) + A−n ∆−n ≤ Ṽ(ε + ∆−n )
, for all n ≥ 1. (75)

Then it holds that A∗ ∈ ∇Ṽ(ε).

Proof. Suppose on the contrary that A∗ 6∈ ∇Ṽ(ε): then there exists δ ∈ R with

Ṽ(ε) + A∗δ > Ṽ(e + δ). (76)

First, we assume that δ > 0, then there exists A0 < A∗ such that

Ṽ(ε) + A0δ > Ṽ(ε + δ)

and since Ṽ is convex, the above inequality holds for all intermediate points

Ṽ(ε) + A0∆ > Ṽ(ε + ∆), ∆ ∈]0, δ[. (77)

However, for sufficiently large n ∈ N we obtain A+
n > A0 such that

Ṽ(ε) + A+
n ∆+

n > Ṽ(ε) + A0∆+
n > Ṽ(ε + ∆+

n ),

which gives a contradiction to (75) for n ∈ N sufficiently large to satisfy ∆+
n ∈]0, δ[. A similar argument

in the alternative situation δ < 0 also shows a contradiction and completes the proof.

Finally, let us now compose the outcomes of the Lemmas 1–4 to our technique for control variables
reduction. Consider a problem defined in Section under the assumptions formulated in Section 3. Let
us prove Theorem 1.

Proof. We proceed by induction to show that

the functions (Vt(·, z))T
t=0 and (Ṽt(·, z))T

t=0 are
convex and non-decreasing on I for each z ∈ Rd.

}
(78)

Since for each z ∈ Rd the function

I → R, e 7→ CT(e, z)

is convex and non-decreasing by (24), the initialization (10) ensures that ṼT(·, z) is convex and
non-decreasing on I. Please note that all conditions of Lemma 1 are fulfilled by assumptions, thus for
t = T− 1 we conclude that that VT−1(·, z) is also convex and non-decreasing on I for each z ∈ Rd, and
calculating the conditional expectation, we observe that ṼT−1(·, z) is also convex and non-decreasing
on I for each z ∈ Rd. Proceeding for t = T − 1, . . . , 0 inductively, with the same argumentation, the
assertion (78) follows.

Now we turn to the main claim (25). Since (9), (10) coincide with (14), (15), we obtain ṼT = ṽT .
With this, we apply Lemma 3 whose assumption (65) is satisfied because of (78), ensuring that ṼT = ṽT
is convex and non-decreasing in the first argument on I. Further conditions (21), (23) of this lemma
also hold. Moreover, since we have supposed in (16) that the minimum is reached, say at A∗ = A∗,e,z,
the fixed-point property (66)

A∗,e,z ∈ ∇ṼT(e + Ee,z
T−1(X

e,z
T−1(A∗,e,z)), z)
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holds for all (e, z) ∈ I ×Rd. Using Lemma 2, we conclude that

ξ∗T−1 = X e,z
T−1(A∗,e,z)

is a minimizer to (10), showing that VT−1 = vT−1. Repeating the argumentation for t = T − 1, . . . , 1,
the desired assertion vt = Vt for t = T, . . . , 0 follows inductively.

7. Conclusions

New technologies have triggered a growing attention to optimization algorithms for operational
management of energy storage facilities. In the generic settings, a typical electricity retailer determines
an optimal strategy for purchase, procurement, generation, and storage of electrical power while
taking into account a fluctuating energy price, storage costs, limited storage capacity, and uncertain
production rates. Such problems are challenging, since numerous decision and control variables
must be considered within a potentially high-dimensional setting. This paper addresses a variables
reduction technique for such problems. Within an abstract, but natural framework, we show that
a certain Legendre-type transform can be applied to equivalently reformulate the original strategy
optimization into a stochastic control problem driven by a single one-parameter family of decision
variables. It turns out that the presented technique is sufficiently general and can be applied to solve
diverse dynamic resource allocation involving scarce reserves. These problems encompass a wide
range of important areas including mining operations, pension fund management, and emission
abatement. The authors believe that their approach can be used as a starting point for efficient
numerical algorithms and will address this topic in future research.
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