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ABSTRACT: 

 

Bathymetry in coastal environment plays a key role in understanding erosion dynamics and evolution along coasts. In the presented 

investigation depth along the shore-line was estimated using different multispectral satellite data. Training and validation data derived 

from a traditional bathymetric survey developed along transects in Cesenatico; measured data were collected with a single-beam sonar 

returning centimetric precision. To limit spatial auto-correlation training and validation dataset were built choosing alternatively one 

transect as training and another as validation.  Each set was composed by a total of ~6000 points. . To estimate water depth two methods 

were tested, Support Vector Machine (SVM) and Random Forest (RF). The RF method provided the higher accuracy with a root mean 

square error value of 0.228 m and mean absolute error of 0.158 m, against values of 0.409 and 0.226 respectively for SVM. Results 

show that application of machine learning methods to predict depth near shore can provide interesting results that can have practical 

applications.  

 

 

1. INTRODUCTION 

The study of bathymetry in coastal environment is becoming 

increasingly important because of the strategic importance of 

these areas and their vulnerability to different pressure factors. 

Coastal areas fragility derives in particular from the constant 

pressure of intense anthropogenic activities such as urbanisation, 

exploitation of natural resources, and climate change-induced 

natural hazards (Paterson et al., 2011). Considering these aspects 

bathymetry is particularly important to get a direct measure of the 

magnitude of these phenomena.  

 

Traditionally bathymetric surveys are conducted using different 

high precision tools, such as single or multi beam echo sounders. 

This way to collect information produces high precision 

measures. On the other hand, high survey costs and difficulties 

connected to large area measurement (time required, dependency 

on weather, sea condition etc…) are the main limitation of this 

approach to bathymetry.  

 

In the last years the use of satellite to estimate water depth 

became an important support tool to compensate the limitations 

of traditional surveys. In fact, Satellite Derived Bathymetry 

(SDB) provide an estimation of water depth, that can easily deal 

with large areas. Moreover, SDB analysis can be repeated over 

time. There are of course limitations related to water turbidity, 

weather and satellite data availability.  

 

About the kind of satellite products to be used there are various 

scientific articles that show the utilization different kinds of 

products, such as multispectral data and SAR. Spectral methods 

use light absorption models to correlate depth. Lidar technology 

also plays a key role, with bathymetric lidar being an existing 

technology in the market (Pirotti, 2019). SAR applications use 
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linear dispersion relation of wave properties to estimate the water 

depth (Pereira et al., 2019; Wiehle and Pleskachevsky, 2018). 

From a literature analysis it is possible to observe also different 

approaches to data elaboration and analysis. Some articles show 

water depth estimation using some empirical models, such as 

Stumpf’s or Jupp’s models (Danilo and Melgani, 2019; Deidda 

et al., 2016; Stumpf et al., 2003; Tang et al., 2019). This approach 

generally leads to high uncertainty on estimations. Another way 

to analyse data is the utilization of physics-based models, with 

the consideration of parameters like sediment size and wave 

dynamics (Brando et al., 2009; Lyzenga et al., 2006). This kind 

of solutions lead to relatively low uncertainty on predictions.  

 

More recently the use of Machine Learning (ML) to estimate 

SDB is providing promising results. In fact some investigations 

showed good results in term of errors on water depth estimation, 

i.e. Root Mean Square Error (RMSE) generally lower than 1m. 

(Manessa et al., 2016; Mavraeidopoulos et al., 2019; Pike et al., 

2019; Sagawa et al., 2019). 

The analysis of satellite data using a ML approach counts on a 

large number of algorithms that allow to refine estimations 

depending on particular aims or conditions. Dealing with satellite 

data analysis two consolidated ML algorithms are: 

 

• Support Vector Machines (SVM) 

• Random Forest (RF) 

 

SVM is a supervised non-parametric statistical learning 

technique (Mountrakis et al., 2010). This method was originally 

introduced to separate two classes by defining an hyperplane, that 

is the linear decision function with maximal margin between the 

vectors of the two classes (Cortes and Vapnik, 1995). The margin 

is defined by the so called “support vectors”. 
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SVM can be used booth for regression and classification 

problems. The particular efficiency of this approach is due to the 

possibility to transform data with different kernel functions 

(linear, sigmoid, radial and polynomial).  

 

The RF algorithm was introduced in 2001 (Breiman, 2001); this 

model is based on an ensemble of decision trees (forest) that 

grows through training towards best combinations. An ensemble 

consist of a set of individual trained classifier (decision trees), 

which are combined for classify new instances (Kulkarni, 2013).  

 

Considering the promising results obtained by ML, this study 

aims to evaluate different ML techniques performance in SDB 

analysis. In particular this study aims to: 

 

Evaluate the best ML algorithms among those considered 

(SVM and RF) 

 

Evaluate the potential of different multispectral satellite data 

fusion in SDB analysis.  

 

 

2. MATERIALS AND METHODS 

2.1 Study Area 

The study area is situated in Cesenatico (FC) in Italy. Cesenatico 

is a small town on Adriatic costs that in the past years was 

particularly affected by sand deposition and erosion phenomena. 

These were particularly problematic because of the touristic 

vocation of Cesenatico beaches. As evidence of the susceptibility 

to this kind of problems it is possible to observe that along 

Cesenatico coasts, there are a lot of artificial reefs, situated 

approximately at 300-400 m of distance from shoreline; this kind 

of structures were built in past years as defence against sand 

erosion. Their efficiency is limited to small area, and causes 

further erosion/deposition dynamics in other parts of the coast. 

 

The study area is situated in the northern part of Cesenatico port 

and it is extended approximately 1,78 km2 (Figure 1). The area 

includes the final part of Cesenatico artificial reefs.  

 

 

Figure 1. Area of analysis  

 

2.2 Data collection 

Water depth data were collected on 26 April 2018 with a 

traditional bathymetric survey (range of depth 0m-5m). The 

survey was developed along transects perpendicular to beach axis 

(Figure 2). The transects length was approximately 500m – 

700m. Along transects each point of measure was approximately 

~1m distant from other measures (500-700 points of measure per 

transect).   

 

 

Figure 2. Points of water depth measure 

 

Water depth measures were taken from low draught boat, with a 

single-beam echo sounder. The instrument precision on water 

depth measures was centimetric. Data collected were managed 

by a dedicated software, which provided georeferenced output.  

 

2.3 Satellite Data 

The estimation of SDB was based on different platform 

multispectral satellite data. In particular the following satellite 

data were used: 

• Landsat 8. Bands 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11. The spatial 

resolution of Landsat 8 bands vary from 15m to 100m, while 

spectral resolution range comprehend spectral reflectance from 

visible to Short Wave Infrared (SWIR). 

• Sentinel 2. Bands 2, 3, 4, 5, 6, 7, 8, 9, 10, 11and 12. Sentinel 2 

data spatial resolution vary from 10m to 60m, while spectral 

resolution range of selected bands vary from visible to SWIR. 

• Planetscope. Bands 1, 2, 3 and 4. Planetscope data have a 

spatial resolution of 3m and are collected at visible and Near 

Infrared (NIR) wavelength.  

 

Data from above mentioned satellite platforms were acquired on 

the 26th of April 2018, in order to compare reflectance values with 

measured water depth.  

 

 

2.4 Data Processing 

The processing phase concerns using satellite data as vector of 

variables for training and fitting the ML model. Measured data 

from bathymetric survey were used as training and validation of 

ML models, without any kind of elaboration. Satellite data 

processing phase was developed with a data fusion approach. In 

particular all data from the three different satellite platforms were 

kept in consideration. Dealing with different spatial resolution 

and different grid products the first preliminary operation was the 

resampling of all data to the highest spatial resolution grid, i.e. 3 

m from the Planetscope images. Considering that the spectral 

signature of shallow water shows greater reflectance values on 

the green part of the visible area of the spectrum, decreasing 

drastically over the red and infrared part, all visible bands of three 

different satellite platforms were kept in consideration as 

predictors.  
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Reflectance values of some bands were then combined in order 

increase predictors number. In particular some predictors were 

created using well consolidated remote sensing indexes, basing 

both on Sentinel 2 and Landsat 8 data. 

 

The indexes calculated are: 

- Normalized Difference Water Index (NDWI) 

- Modification of Normalized Difference Water Index 

(MNDWI)  

- Automated Water Extraction Indexes (AWEI) 

- Visible-Band Difference Vegetation Index (VDVI) 

- Water Index (WI) 

 

After that different other predictors were created by combining 

mainly visible bands reflectance (such as normalized difference 

ratio) of all different satellite data (Planetscope, Sentinel 2, 

Landsat 8). The above described process generated vectors with 

53 variables, i.e. corresponding raster maps of predictors that 

were used for training the ML methods. The dataset was created 

by extracting predictors variable values at each measured water 

depth point.  

 

The whole dataset was then divided in training set and validation 

one. Due to the spatial distribution of the measured data points, 

it was decided to choose alternatively one transect as training and 

another as validation, as shown in the figure below (Figure 3). In 

fact, it was noticed that classic resampling technique used for 

dividing the dataset in training and validation (e.g. cross 

validation, random split), leads to a high probability of choosing 

neighbouring points. This led to an initial overestimation of the 

models’ accuracy, due to the lack of spatial independence 

between training and validation points. The split produced a 

training set that comprehend 6727 records and a validation one 

with 6585 records. 

 

 

Figure 3. Training (yellow) and validation (red) transects 

 

To estimate the performance of the SDB methods, two different 

algorithms were compared: Support Vector Machine SVM) and 

Random Forest (RF). The choice of the best configuration of 

algorithm hyper-parameters was achieved using an iterative 

procedure that tested against several combination.  

 

At each iteration algorithms were trained on training dataset, 

using different configurations, and then the estimation of water 

depth was performed on validation one.  At each iteration the 

Root Mean Square Error (RMSE) was calculated, using the 

following equation (1).  

  

 𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑝𝑟𝑒𝑑−𝑦𝑜𝑏𝑠)

2

𝑁
 (1) 

 

where ypred is the predicted water depth, yobs is the measured 

(observed) water depth and N is the number of record of 

validation dataset. Finally, for each algorithm it was selected the 

parameter configuration that minimized the RMSE. For the 

selected configurations also Mean Absolute Error (MAE) was 

computed, using the following equation (2). 

 

 𝑀𝐴𝐸 = ∑
|𝑦𝑝𝑟𝑒𝑑−𝑦𝑜𝑏𝑠|

𝑁
 (2) 

 

where ypred,i is the predicted water depth, yobs is the observed 

water depth and n is the number of points of validation dataset. 

In the next section a specific description of parameter setting of 

each of the algorithms compared is provided.  

 

1.4.1. Support Vector Machine (SVM) 

 

SVM setting procedures dealt mainly with kind of kernel and 

scale factor. The parameter “Kernel” represents the kind of 

transformation function that substitute the scalar product of 

predictors. The main kinds of function are linear, radial, 

polynomial and sigmoid.  

 

During the model tuning it was observed that radial, polynomial 

and sigmoid kernel reduced a lot the dimensions of dataset; this 

reduction was due to these specific kernel functions that, dealing 

with negative values, produced not real number (omitted by 

algorithm as NaN). For this reason it was decided to use linear 

kernel function. About the scale factor it is a parameter that 

defines the variable to be scaled. It was observed that any changes 

in this parameter didn’t produce any improvement in prediction. 

Basing on this result it was maintained the default value that is 1.  

 

1.4.2. Random Forest (RF) 

 

RF tuning procedures kept in consideration the parameters 

“ntree” and “mtry”.  The “ntree” parameters represent the number 

of decision trees built by the model. The “ntree” variation range 

considered was from 100 to 2000 trees.  The “mtry” parameter 

represents the number of variables to be split during to build each 

tree. The “mtry” variation range assumed was from 2 to 30. 

 

 

3. RESULTS 

The iterative procedure to identify the best configuration of 

algorithm lead to the choice of the following parameters for RF: 

“ntree” was set equal to 600 and “mtry” equal to 10. The next 

plot presents RMSE variation corresponding to different 

parameter configuration. 
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Figure 4. RMSE variations depending on mtry and ntree 

The results of algorithm tuning phase showed that RF prediction 

were characterized by lower RMSE values. The following table 

(Table 1) shows a comparison of algorithms best performances. 

 

Algorithm RMSE (m) MAE (m) 

RF 0.228 0.158 

SVM 0.409 0.226 

Table 1. Comparison of ML algorithms results 

 

The next figures show, for each algorithm, the scatter plot of 

predicted and observed water depth, for all the points 

comprehended in the validation dataset. 

 

 

Figure 5. RF predicted-observed plot 

 

 

Figure 6. SVM predicted-observed plot 

 

 

In the following table (Table 2) a comparison of the two different 

algorithms in term of coefficient of determination R2 is presented, 

considering predicted depth and observed depth. 

 

 

 

 

 

 

Algorithm R2 

RF 0.97 

SVM 0.89 

Table 2. Comparison of different algorithms coefficient of 

determination. 

 

Following figures show different bathymetric map of the study 

area using different algorithms.  

 

 

Figure 7. Bathymetric map using SVM 
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Figure 8. Bathymetric map using RF 

 

The following plots (Figure 9) present a comparison of three 

representatives transect section using measured (observed) depth 

and depth predicted by the two ML algorithms. The three 

transects are taken from the ones used for validation, therefore 

represent independent measures. Results in the top plot in Figure 

9 show that water deeper than 4 m is overestimated, reasonably 

water composition at that point was different from the one used 

for training.   

 

 

 

 
 

Figure 9. Depth values of three of the transects used for 

validation. 

 

 

 

4. DISCUSSION 

The two tested methods, RF and SVM provided acceptable 

results, with RF providing higher accuracy values in this study. 

SVM algorithm RMSE value was equal to 0.409 m and the MAE 

to 0.23m. Coefficient of determination, R2, calculated for 

predicted depth and observed one, showed a good correlation 

(R2= 0.89).  

Dealing with negative variables it was not possible to adopt 

different kernel function to transform data in order to improve 

algorithm performances; in fact the use of other kernel functions 

(polynomial, sigmoid and radial) lead to a strong reduction of 

training and validation datasets (due to the omission of NaN 

data).  

In this study the best results were obtained with RF. This 

algorithm, with the adopted configuration allows to reach 

extremely content errors (RMSE=0.23m and MAE=0.16m).  

Considering the spatial resolution of satellite products adopted 

(highest spatial resolution 3m) the result is particularly good. In 

fact it must be considered that inside each pixel the reflectance 

value represents the reflectance of the average depth of that pixel, 

with possible disturbance of turbidity, algae…ecc . For this 

reason while comparing real punctual depth to the predicted pixel 

depth it is reasonable that some differences remain. Punctual 

depth in fact can for example give indication of local pits 

underwater. 

 

However, the exam of longitudinal profiles obtained by measured 

data and predicted ones (Figure 9) shows that results are really 

closed, especially RF one.  

 

In general, it is worth noting that using the ML approach, training 

must be provided for obtaining such good predictions, therefore 

care must be taken if the trained model is to be used over a dataset 

from different imagery and from different dates from those used 

in training. As matter of fact the water turbidity and other factors 

can be different, therefore making new predicted results not 

useful. Nevertheless, a well-trained RF model can provide 

distributed information using a few surveyed points. A scenario 

can be one of making a fast survey with only a few transects, thus 

decreasing time-in-the-field and therefore economic effort.  

 

Another point to take care of is that all forms of disturbance from 

clear water will decrease the accuracy and also cause spurious 

errors. For example algal bloom will provide a very different 
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reflectivity value and reasonably underestimate depth (i.e. deep 

water might be estimated as shallow). The same can happen with 

dark materials (e.g. oil spill) that absorb light and thus show 

shallow water as deep water. To avoid these errors, 

circumstances have to be verified before taking results as final 

and with the accuracy values reported in this paper. 

 

Further future investigation in this direction will include a 

definition of variable importance, and further analysis on the 

implication of using fewer variables and fewer training points. 

This solution can be particularly indicated if the aim of analysis 

is the estimation of sand volume movements.  

 

 

5. CONCLUSIONS  

The study has compared three different ML algorithms 

performances in predicting sea water depth. The approach to data 

analysis was a data fusion one, because data from different 

platform were kept in consideration together in training and 

validation phases. Results show that RF, with data fusion 

approach, gave particularly good results with extremely content 

errors. In conclusion this study shows that ML can be an efficient 

tool to predict shallow water depth. In this way SDB can support 

traditional bathymetric surveys in order to get a more efficient 

monitoring tools.  
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