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Abstract. In the context of a general semimartingale model of a complete market, we aim at

answering the following question: How much is an investor willing to pay for learning some ad-

ditional information that allows to achieve arbitrage? If such a value exists, we call it the value

of informational arbitrage. In particular, we are interested in the case where the additional infor-

mation yields arbitrage opportunities but not unbounded profits with bounded risk. In the spirit

of Amendinger et al. (2003, Finance Stoch.), we provide a general answer to the above question

by relying on an indifference valuation approach. To this effect, we establish some new results

on models with additional information and study optimal investment-consumption problems in the

presence of initial information and arbitrage, also allowing for the possibility of leveraged positions.

We characterize when the value of informational arbitrage is universal, in the sense that it does

not depend on the preference structure. Our results are illustrated by several explicit examples.

1. Introduction

The notion of information plays a crucial role in the analysis of investment decisions. In line with

economic intuition, access to more precise sources of information gives an informational advantage

leading to better performing portfolios. The problem of quantifying such an informational advan-

tage represents a central question in finance and has constantly attracted significant attention in

financial economics and, more recently, in mathematical finance.

We develop a general approach for quantifying in monetary terms the informational advantage

associated to some additional information, in the context of a general semimartingale model of a

complete market, under weak assumptions on the random variable (denoted by L) representing the

additional information. We adopt an indifference valuation approach and determine a value π(v)

which makes a risk averse agent with initial capital v indifferent between the following two alterna-

tives: (i) invest optimally the initial capital v by relying on the publicly available information only;

(ii) acquire the additional information L at the price π(v) and invest optimally the residual capital

v − π(v) by relying on the publicly available information enriched by the additional information.
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The idea of quantifying information through an indifference valuation approach can be traced

back to early contributions in information economics, see in particular [LV68, Mor74, Wil89].

The same approach has been pursued in the context of modern mathematical finance in [ABS03],

which represents the main starting point for the present work. In contrast to [ABS03], we assume

that the additional information can be potentially exploited to realize arbitrage opportunities, but

unbounded profits with bounded risk cannot be achieved (this represents the minimal condition

allowing for a meaningful solution to optimal portfolio problems, see [KK07, CDM15, CCFM17]).

In this framework, we call the indifference value π(v) the value of informational arbitrage.

As we are going to show, informational arbitrage appears whenever the additional information

reveals that some events, which are believed to occur with strictly positive probability by public

opinion, are actually impossible. In order to illustrate the notion of value of informational arbitrage,

let us present a simple example, which will be analysed in a more general version in Section 5.1.

Example 1.1. Consider a financial market with a single risky asset, with price process

St = exp (Wt − t/2) , for all t ∈ [0, 1],

where (Wt)t∈[0,1] is a standard Brownian motion. The ordinary information (publicly available) is

given by the observation of the price process alone, corresponding to the filtration F = (Ft)t∈[0,1].

We suppose that the additional information is represented by the observation at t = 0 of the

random variable L = 1{W1≥0}. The information flow available to an informed agent is described

by the initially enlarged filtration G = (Gt)t∈[0,1], where Gt = Ft ∨ σ(L) for all t ∈ [0, 1].

Clearly, the ordinary information does not allow any kind of arbitrage. On the contrary, the

additional information L yields arbitrage opportunities. In this sense, we say that L yields infor-

mational arbitrage and we aim at determining the maximal amount π(v) that an agent with initial

wealth v > 0 accepts to pay for learning the realization of L before the beginning of trading.

In the context of this example, we will show that for any risk averse agent constrained to invest

in non-negative portfolios the value of informational arbitrage is always given by

π(v) = v/2.

Moreover, there exists an arbitrage strategy which is optimal for every risk averse informed agent.

We remark that in this example the value π(v) presents the striking feature of being a universal

indifference value, which does not depend on the preference structure of the agent.

In the present work, we aim at revealing which features of the additional information are at the

origin of arbitrage and understanding the indifference value of informational arbitrage in a general

setting. Motivated by Example 1.1 and similarly as in [ABS03], the problem is naturally framed in

the context of an initial enlargement of filtration (see also [DMN10] in a related setting). In order

to allow for the possibility of informational arbitrage, we have to depart from the conventional

assumption that L is independent of the ordinary information flow F under an equivalent prob-

ability measure (called decoupling measure in [ABS03]). The notion of decoupling measure goes

back to early works in the theory of enlargement of filtrations and has been widely employed in the
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insider trading literature (see, e.g., [GP98, GP01, Ame00]). The existence of a decoupling measure

is tantamount to the equivalence between the F-conditional law of L and its unconditional law.

We assume the validity of Jacod’s density hypothesis, as introduced in the seminal paper [Jac85].

This condition is significantly weaker than the existence of a decoupling measure, as it corresponds

to the absolute continuity (but not necessarily equivalence) of the F-conditional law of L with

respect to its unconditional law. While the passage from an equivalence to an absolute continuity

relation could appear as a technical generalization, it turns out to require the development of a

new approach. Most importantly, it allows the additional information to generate arbitrage, as

shown in Example 1.1, thus covering situations that cannot be addressed by the theory of [ABS03].

Models where arbitrage opportunities appear due to the presence of additional information, while

preserving the well-posedness of expected utility maximization problems, have been previously

considered in [PK96, Ank05, AI05, ADI06, CRT18] (see also Remark 3.9 in this regard).

The main results and contributions of the paper can be outlined as follows. First, we show that

market completeness can be transferred from F to G up to a change of numéraire. By relying on

this result, we obtain a complete characterization of the validity of no free lunch with vanishing risk

(NFLVR) and no unbounded profit with bounded risk (NUPBR) in G. This provides the necessary

foundations for the solution of optimal consumption-investment problems under additional infor-

mation and, possibly, in the presence of arbitrage and leverage. Under natural assumptions, we

prove that π(v) is finite and also strictly positive and increasing in the allowable leverage whenever

L generates arbitrage opportunities, regardless of the preference structure. For logarithmic and

power utility functions, we obtain explicit expressions for π(v). We provide universal bounds for

the value of informational arbitrage and characterize when it is a universal value which does not

depend on the preference structure, as in the case of Example 1.1. In particular, we show that this

can happen in a non-trivial way only in the presence of arbitrage.

1.1. Structure of the paper. In Section 2, we introduce the general setting. We provide a new

martingale representation result and study (no-)arbitrage properties in the presence of additional

information. Section 3 deals with optimal consumption-investment problems under non-trivial

initial information, leverage and arbitrage. In Section 4 we study the indifference value of additional

information and characterize its universal properties. Section 5 contains three examples. For better

readability, the proofs of some technical results are deferred to the Appendix. Additional comments

and side results can be found in the preprint version of this paper available on arXiv.

1.2. Notation. Throughout the paper, we adopt the following conventions and notations, refer-

ring to [HWY92, JS03] for all unexplained notions related to stochastic calculus. Let (Ω,A,P) be a

generic probability space endowed with some filtration H = (Ht)t∈[0,T ] satisfying the usual condi-

tions of right-continuity and P-completeness, with T ∈ (0,+∞) a fixed time horizon. We denote by

M(P,H) (Mloc(P,H), resp.) the set of martingales (local martingales, resp.) on (Ω,H,P) and we

tacitly assume that every local martingale has càdlàg paths. For a given Rd-valued semimartingale

X = (Xt)t∈[0,T ] on (Ω,H,P), we denote by L(X,H) the set of all H-predictable Rd-valued pro-

cesses ϕ = (ϕt)t∈[0,T ] which are integrable with respect to X in the filtration H. Recall that the set
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L(X,H) is invariant under equivalent changes of probability (see, e.g., [HWY92, Theorem 12.22]).

The stochastic integral of ϕ ∈ L(X,H) with respect to X is denoted by (ϕ ·X)t :=
∫

(0,t] ϕu dXu, for

all t ∈ [0, T ], with (ϕ ·X)0 = 0. Finally, we denote by O(H) and P(H), respectively, the optional

and predictable sigma-fields on Ω× [0, T ] with respect to the filtration H. For an adapted process

Y = (Yt)t∈[0,T ], we write Y ∈ O+(H) to denote that Y is a non-negative O(H)-measurable process.

2. The ordinary and the informed financial markets

In this section, we first present the ordinary financial market (Section 2.1), consisting of a general

arbitrage-free complete financial market with respect to a reference filtration F. In Section 2.2, we

introduce the initially enlarged filtration G associated to the additional information L and state

a new martingale representation result in G. In Section 2.3, we characterize the (no-)arbitrage

properties of the financial market under additional information.

2.1. The ordinary financial market. We consider a probability space (Ω,A,P) endowed with a

filtration F = (Ft)t∈[0,T ] satisfying the usual conditions, where T < +∞ represents a fixed invest-

ment horizon. For simplicity of presentation, we assume that the initial sigma-field F0 is trivial.

On (Ω,F,P), we let S = (St)t∈[0,T ] be a d-dimensional non-negative semimartingale, representing

the prices of d risky assets, discounted with respect to some baseline security.

We call ordinary financial market the tuple (Ω,F,P;S), where the filtration F is supposed

to represent the publicly available information. We assume that S satisfies no free lunch with

vanishing risk (NFLVR) on (Ω,F,P), see [DS98]. More specifically, we shall assume the validity of

the following condition throughout the paper.

Standing Assumption 1. There exists a unique probability measure Q on (Ω,FT ) such that

Q ∼ P and S ∈Mloc(Q,F).

Assumption 1 implies that the ordinary financial market (Ω,F,P;S) is arbitrage-free (in the

sense of NFLVR) and complete. We denote by Z = (Zt)t∈[0,T ] the density process of Q with

respect to P on F, i.e., Zt = dQ|Ft/dP|Ft , for all t ∈ [0, T ].

Remark 2.1. Assumption 1 can be relaxed by requiring the existence of a unique equivalent local

martingale deflator for S on (Ω,F,P). This ensures NUPBR in F and also implies that the financial

market (Ω,F,P;S) is complete (see [SY98]). However, since our main goal is to study the value

of an additional information generating arbitrage opportunities, when the latter are impossible to

achieve on the basis of F alone, we find it more natural to work under Assumption 1.

2.2. The initially enlarged filtration G. The additional information is generated by an A-

measurable random variable L taking values in a Lusin space (E,BE), where BE is the Borel

sigma-field of E. The initially enlarged filtration G = (Gt)t∈[0,T ] is defined as the smallest filtration

containing F and such that L is G0-measurable, i.e., Gt := Ft ∨ σ(L), for all t ∈ [0, T ]. We denote

by λ : BE → [0, 1] the unconditional law of L, so that λ(B) = P(L ∈ B) holds for all B ∈ BE . For

t ∈ [0, T ], let νt : Ω× BE → [0, 1] be a regular version of the Ft-conditional law of L.
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Throughout the paper, we shall assume the validity of the following condition, which is known

as Jacod’s density hypothesis in enlargement of filtrations theory.

Standing Assumption 2. For all t ∈ [0, T ], νt � λ holds in the a.s. sense.

Assumption 2 was introduced in the seminal work [Jac85] to prove the H ′-hypothesis (i.e., every

F-semimartingale is also a G-semimartingale). In a frictionless financial market, the failure of

the semimartingale property is incompatible with NUPBR (see [KP11]), which is in turn a neces-

sary condition for the solution of portfolio optimization problems (see [KK07, Proposition 4.19]).

Therefore, the validity of the H ′-hypothesis represents a necessary requirement in our framework.

A central feature of our work is that Assumption 2 is only required to hold as an absolute

continuity relation and not as an equivalence. This fact turns out to be intimately linked to the

existence of arbitrage opportunities in G (see Theorem 2.4). The following lemma presents some

first consequences of Assumption 2 (see [Jac85] as well as [Fon18, Lemma 4.2]).

Lemma 2.2. The filtration G is right-continuous and every semimartingale on (Ω,F,P) is also

a semimartingale on (Ω,G,P). There exists a (BE ⊗O(F))-measurable function E × Ω× [0, T ] 3
(x, ω, t) 7→ qxt (ω) ∈ R+, càdlàg in t ∈ [0, T ] and such that:

(i) for every t ∈ [0, T ], νt(dx) = qxt λ(dx) holds a.s.;

(ii) for every x ∈ E, the process qx = (qxt )t∈[0,T ] is a martingale on (Ω,F,P).

Furthermore, it holds that P(qLt > 0) = 1, for all t ∈ [0, T ].

The following implication of Lemma 2.2 will be used in the following: for every t ∈ [0, T ] and

(BE ⊗Ft)-measurable function E × Ω 3 (x, ω) 7→ fxt (ω) ∈ R+, it holds that

(2.1) E
[
fLt
]

= E
[∫

E
fxt q

x
t λ(dx)

]
=

∫
E
E [fxt q

x
t ]λ(dx).

Under the present standing assumptions, we can prove the following proposition, which shows

that the martingale representation property of S on (Ω,F,Q) can be transferred to the initially

enlarged filtration G under P up to a suitable “change of numéraire”.

Proposition 2.3. Let M = (Mt)t∈[0,T ] be a local martingale on (Ω,G,P). There exists a process

K = (Kt)t∈[0,T ] ∈ L(S,G) such that

Mt =
Zt

qLt

(
M0 + (K · S)t

)
a.s. for all t ∈ [0, T ].

Proof. Define the Rd+1-valued semimartingale X := (1, S). Due to Assumption 1, it can be verified

that ZX has the martingale representation property on (Ω,F,P). Therefore, by [Fon18, Proposition

4.10], there exists a process H ∈ L(ZX,G) such that

(2.2) Mt =
1

qLt

(
M0 + (H · (ZX))t

)
=
Zt

qLt

M0 + (H · (ZX))t
Zt

a.s. for all t ∈ [0, T ].

Furthermore, due to the martingale representation property of S on (Ω,F,Q), there exists a process

θ ∈ L(S,F) such that 1/Z = 1 + θ · S. For each n ∈ N, let us define Hn := H1{‖H‖≤n}. Using
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integration by parts and the associativity of the stochastic integral, we have that

M0 +Hn · (ZX)

Z
= M0 +

(
M0 + (Hn · (ZX))−

)
· 1

Z
+
Hn

Z−
· (ZX) +Hn ·

[
ZX,

1

Z

]
= M0 +

((
M0 + (Hn · (ZX))−

)
θ
)
· S +Hn ·X −

(
(Hn)>X−Z−

)
· 1

Z

= M0 +Kn · S,

where the Rd-valued process Kn = (Kn
t )t∈[0,T ] is defined by

Kn,i
t := (M0 + (Hn · (ZX))t− − (Hn)>t Xt−Zt−)θit +Hn,i+1

t ,

for all i = 1, . . . , d and t ∈ [0, T ]. Arguing similarly as in [RS97, Proposition 8], the fact that

H ∈ L(ZX,G) implies that Hn · (ZX) converges to H · (ZX) in the semimartingale topology as

n → +∞. Hence, in view of [JS03, Proposition III.6.26], Kn · S = (M0 + Hn · (ZX))/Z −M0

also converges in the semimartingale topology to K · S, for some K ∈ L(S,G), thus proving that

(M0 +H · (ZX))/Z = M0 +K · S. Together with (2.2), this completes the proof. �

2.3. Market viability under additional information. An informed agent is supposed to have

access to the information generated by L, i.e., to the enlarged filtration G. Such an agent can trade

in the same set of securities available in the ordinary financial market, but is allowed to rely on

the information flow G when constructing portfolios. We call the tuple (Ω,G,P;S) the informed

financial market, recalling that Assumption 2 ensures that S is a semimartingale on (Ω,G,P).

We are especially interested in the situation where the additional information generated by

L yields arbitrage opportunities, so that NFLVR does not hold in the informed financial market

(Ω,G,P;S). However, we need to ensure that (Ω,G,P;S) still represents a viable financial market.

To this effect, the minimal requirement is represented by the no unbounded profit with bounded risk

(NUPBR) condition. By [TS14, Theorem 2.6], S satisfies NUPBR on (Ω,G,P) if and only if

Z :=
{
Z ∈Mloc(P,G) : Z > 0, Z0 = 1 and ZS ∈Mloc(P,G)

}
6= ∅,

with Z denoting the set of equivalent local martingale deflators (ELMDs) for S on (Ω,G,P).

The following result provides a complete characterization of the (no-)arbitrage properties of

the informed financial market (Ω,G,P;S), in the sense of NUPBR and NFLVR. Our standing

assumption of the completeness of (Ω,F,P;S) enables us to derive a set of necessary and suffi-

cient conditions for NUPBR and NFLVR to hold on (Ω,G,P), while existing results only provide

sufficient conditions (see [AIS98, Theorem 2.5], [ACJ15, Theorem 6], [AFK16, Theorem 1.12]).

Theorem 2.4. Suppose that the space L1(Ω,FT ,P) is separable.1 Then, NUPBR holds on (Ω,G,P)

if and only if the set {qx = 0 < qx−} is evanescent for λ-a.e. x ∈ E. In this case, it holds that

Z = {Z/qL}. Moreover, the following properties are equivalent:

(i) S satisfies NFLVR on (Ω,G,P);

(ii) for all t ∈ [0, T ], λ� νt holds in the a.s. sense;

(iii) P(qxT > 0) = 1 for λ-a.e. x ∈ E;

1The separability assumption is only needed in the proof of the necessity part of NUPBR on (Ω,G,P).
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(iv) E[1/qLT ] = 1;

(v) E[ZT /q
L
T ] = 1;

(vi) the process 1/qL = (1/qLt )t∈[0,T ] is a martingale on (Ω,G,P);

(vii) the process N/qL = (Nt/q
L
t )t∈[0,T ] is a martingale on (Ω,G,P), for every N ∈M(P,F).

Proof. The sufficiency part of the first assertion follows directly from [AFK16, Theorem 1.12]. In

order to prove the necessity, let us define the F-stopping times

ζx := inf{t ∈ [0, T ] : qxt = 0} and ηx := ζx1{qxζx−>0} + (+∞)1{qxζx−=0}, for x ∈ E,

and suppose there exists a set B ∈ BE with λ(B) > 0 such that P(ηx < +∞) > 0, for all

x ∈ B. By Lemma 2.2, it holds that ηL = ζL = +∞ a.s. For each x ∈ B, let us define

the F-martingale Mx := −(1[[ηx,T ]] − (1[[ηx,T ]])
p), where (1[[ηx,T ]])

p denotes the dual F-predictable

projection of 1[[ηx,T ]]. Since L1(Ω,FT ,P) is separable, [SY78, Proposition 4] ensures the existence

of a (P(F) ⊗ BE)-measurable version of (1[[ηx,T ]])
p. As a consequence of Assumption 1 together

with [Fon18, Proposition 4.9], there exists a (P(F) ⊗ BE)-measurable process Hx ∈ L(S,F) such

that Mx = Hx · S, for every x ∈ E. Moreover, the same arguments used in the proof of [Fon18,

Proposition 4.10] allow to show that HL ∈ L(S,G) and HL ·S = ML = (1[[ηx,T ]])
p|x=L. The process

HL · S is non-negative, non-decreasing and, by formula (2.1),

E
[
(HL · S)T

]
= E

[
(1[[ηx,T ]])

p
T

∣∣
x=L

]
=

∫
E
E
[
qxT (1[[ηx,T ]])

p
T

]
λ(dx) =

∫
E
E
[
qxηx−1{ηx≤T}

]
λ(dx) > 0,

where the third equality follows from [HWY92, Theorems 5.32-5.33]. This contradicts the validity

of NUPBR on (Ω,G,P), thus proving the first assertion of the theorem. The fact that Z = {Z/qL}
follows by Proposition 2.3 together with [SY98, Corollary 2.1].

Let us now prove the second part of the theorem. The equivalence between properties (ii)-

(iii)-(iv)-(v)-(vi)-(vii) as well as the implication (ii) ⇒ (i) easily follow from Proposition 2.3 and

Theorem 2.5 of [AIS98]. Therefore, we only need to show that, under Assumption 1, any of the

properties (ii)-(iii)-(iv)-(v)-(vi)-(vii) is necessary for NFLVR to hold on (Ω,G,P). To this effect,

we prove that (i) ⇒ (v). Arguing by contradiction, suppose that E[ZT /q
L
T ] 6= 1. Since Z/qL is

a supermartingale on (Ω,G,P) (being a non-negative local martingale, see [AFK16, Proposition

3.4]), it must be that E[ZT /q
L
T ] < 1. Define M = (Mt)t∈[0,T ] ∈M(P,G) by Mt := E[ZT /q

L
T |Gt], for

all t ∈ [0, T ]. By Proposition 2.3, there exists K ∈ L(S,G) such that Mt = Zt/q
L
t (M0 + (K · S)t)

a.s. for all t ∈ [0, T ]. Note that

(K · S)t =
qLt
Zt
Mt −M0 ≥ −M0 ≥ −1 a.s. for all t ∈ [0, T ],

where the last inequality follows from the G-supermartingale property of Z/qL. Therefore, the

strategy K is 1-admissible, in the sense of [DS94]. Moreover, it holds that (K · S)T = 1−M0 ≥ 0

a.s. and P((K ·S)T > 0) > 0 since E[M0] < 1, thus showing that K is an arbitrage opportunity. �

Motivated by the above theorem, we now introduce our last standing assumption.

Standing Assumption 3. The set {qx = 0 < qx−} is evanescent for λ-a.e. x ∈ E.
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We are especially interested in the case where the densities qx can reach zero, as this corresponds

to the existence of arbitrage opportunities in the informed financial market (Ω,G,P;S). In general,

the densities qx can reach zero either in a continuous way or due to a jump to zero. Assumption 3

excludes a jump-to-zero behavior. As shown in Theorem 2.4, under our standing assumptions, the

set of ELMDs for S on (Ω,G,P) is non-empty and consists of a singleton.

In view of Theorem 2.4, the additional information generates arbitrage opportunities if and only

if the FT -conditional law νT of L fails to be equivalent with respect to the unconditional law λ.

The failure of the equivalence means that there exist some scenarios that, from the point of view

of an ordinary agent, are a priori possible (i.e., they have a strictly positive λ-measure) but can

be later revealed to be impossible (i.e., they can be assigned zero νT -measure). For an informed

agent, such scenarios would be excluded already before the beginning of trading, thus providing a

clear informational advantage. This phenomenon will be clarified by some examples in Section 5.

3. Optimal consumption-investment problems under additional information

In this section, we study general optimal consumption-investment problems, allowing for state-

dependent utilities and intermediate consumption. Similarly to [ABS03], we allow for a non-trivial

initial information, represented by L, with the additional feature of the possibility of arbitrage. For

better readability, the technical proofs of the results of this section are deferred to the Appendix.

3.1. Admissible portfolios. We fix a stochastic clock κ = (κt)t∈[0,T ], which is a non-decreasing

càdlàg F-adapted bounded process with κ0 =0 and such that P(κT > 0|G0) > 0 a.s. The stochastic

clock κ represents the notion of time according to which consumption is assumed to occur.

A portfolio is defined as a triplet Π = (v, ϑ, c), where v ∈ R represents an initial capital,

ϑ = (ϑt)t∈[0,T ] is an Rd-valued S-integrable process representing the holdings in the d risky assets

and c = (ct)t∈[0,T ] is a non-negative process representing the consumption rate. For an ordinary

agent, the strategy ϑ and the consumption process c are required to be measurable with respect

to P(F) and O(F), respectively. On the other hand, an informed agent is allowed to construct

portfolios by choosing P(G)-measurable strategies ϑ and O(G)-measurable consumption processes

c. The value process V v,ϑ,c = (V v,ϑ,c
t )t∈[0,T ] of a portfolio Π = (v, ϑ, c) is defined as

V v,ϑ,c
t := v +

∫ t

0
ϑu dSu −

∫ t

0
cu dκu, for all t ∈ [0, T ].

Definition 3.1. Let H ∈ {F,G}, k ∈ R+ and v ∈ R. The set of H-admissible portfolios with

initial capital v and allowable credit line k, denoted by AH,k(v), is defined as

AH,k(v) :=
{

(ϑ, c) ∈ L(S,H)×O+(H) : V v,ϑ,c
t ≥ −k a.s. for all t ∈ [0, T ] and V v,ϑ,c

T ≥ 0 a.s.
}
.

According to Definition 3.1, we assume that investors have access to a finite and fixed credit

line k over the investment horizon [0, T ] and are required to fully repay their debts by the terminal

date T . Observe that, in the absence of arbitrage opportunities, the requirement V v,ϑ,c
T ≥ 0 a.s.

automatically implies that V v,ϑ,c
t ≥ 0 a.s. for all t ≤ T (compare with [DS94, Proposition 3.5]), so

that AH,k(v) = AH,0(v), for all k ∈ R+. However, this is no longer true in the presence of arbitrage

opportunities. For k = 0, we recover the usual notion of admissibility via non-negative portfolios.
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Note that AF,k(v) ⊆ AG,k(v), meaning that every portfolio which is admissible for an ordinary

agent is also admissible for an informed agent. This follows from the fact that L(S,F) ⊆ L(S,G),

as a consequence of [Jeu80, Proposition 2.1] together with Lemma 2.2.

3.2. Optimal consumption-investment problems. We assume that preferences are defined

with respect to intermediate consumption over [0, T ] and/or wealth at the terminal date T . More

specifically, we introduce a utility stochastic field U = U(ω, t, x) : Ω × [0, T ] × R+ → R ∪ {−∞}
satisfying the following requirements.

Assumption 3.2. For every (ω, t) ∈ Ω × [0, T ], the function x 7→ U(ω, t, x) is strictly concave,

strictly increasing, continuously differentiable on (0,+∞) and satisfies the Inada condition

lim
x→+∞

U ′(ω, t, x) = 0,

with U ′ denoting the derivative of U with respect to x. By continuity, we assume that U(ω, t, 0) =

limx↓0 U(ω, t, x). Finally, for every x ≥ 0, the stochastic process U(·, ·, x) is O(F)-measurable.

In the following, we shall always assume that a utility stochastic field satisfies Assumption 3.2.

For H ∈ {F,G}, we define the following set of consumption processes:

CH,k(v) :=
{
c ∈ O+(H) : ∃ ϑ ∈ L(S,H) s.t. (ϑ, c) ∈ AH,k(v)

}
,

corresponding to all consumption plans that can be financed by portfolios with initial capital v

respecting the allowable credit line k. The optimal consumption-investment problem of an agent

having access to the information flow H and with initial capital v is defined as follows:2

(3.1) uH,k(v) := sup
c∈CH,k(v)

E
[∫ T

0
U(u, cu) dκu

]
,

with the convention E[
∫ T

0 U(u, cu) dκu] = −∞ if E[
∫ T

0 U−(u, cu) dκu] = +∞. We also define the

related H0-conditional optimization problem:

(3.2) ess sup
c∈CH,k(v)

E
[∫ T

0
U(u, cu) dκu

∣∣∣∣H0

]
,

with an analogous convention. Note that an element c ∈ CH,k(v) attains the supremum in (3.1)

if it attains the supremum in problem (3.2) (see, e.g., [ABS03, Section 4]). We also remark that

the set CH,k(v) is closed in the topology of convergence in measure (dκ ⊗ P) (see [CCFM17] and

compare also with Lemma 3.3 below).

In the following lemma, we provide a characterization of financeable consumption plans. For

convenience of notation, we define the processes ZF = (ZF
t )t∈[0,T ] and ZG = (ZG

t )t∈[0,T ] by

ZF
t := Zt and ZG

t := Zt/q
L
t , for all t ∈ [0, T ].

Lemma 3.3. Let H ∈ {F,G}, k ∈ R+ and v ∈ R. For every consumption process c ∈ O+(H), it

holds that c ∈ CH,k(v) if and only if E[
∫ T

0 ZH
u cu dκu|H0] ≤ v + k(1− E[ZH

T |H0]) a.s.

2For simplicity of notation, we omit to write explicitly the dependence on ω in the utility stochastic field U .
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Remark 3.4. It is important to observe that the credit line (or allowable leverage) k plays no role

in the characterization of financeable consumption plans if and only if ZH ∈ M(P,H). In turn,

this implies that uH,k(v) = uH,0(v), for every v ∈ R+, if and only if ZH ∈ M(P,H). In other

words, the optimal expected utility does not depend on the allowable leverage if and only if there

are no arbitrage opportunities in (Ω,H,P;S). To this effect, see also Remark 3.6.

We are now in a position to solve problems (3.1)-(3.2). Similarly as in [Ame00, ABS03], we

rely on a martingale approach. However, since in our setting arbitrage opportunities can exist,

we have to rely on ELMDs instead of martingale measures (compare with [KS98, Chapter 3]). To

this effect, we define the stochastic field I = I(ω, t, y) : Ω× [0, T ]× (0,+∞)→ R+ by I(ω, t, y) :=

inf{z ∈ (0,+∞) : U ′(ω, t, z) ≤ y}. Due to the strict concavity and continuous differentiability of

the utility stochastic field U (see Assumption 3.2), it holds that

U ′
(
ω, t, I(ω, t, y)

)
=

y, if 0 < y < U ′(ω, t, 0),

U ′(ω, t, 0), if y ≥ U ′(ω, t, 0),

where by continuity we set U ′(ω, t, 0) = limx↓0 U
′(ω, t, x). Observe that, due to Assumption 3.2,

for every process (Yt)t∈[0,T ] ∈ O+(H), it holds that (I(ω, t, Yt(ω)))t∈[0,T ] ∈ O+(H).

Proposition 3.5. Let H ∈ {F,G}, k ∈ R+ and v ≥ −k(1− ‖E[ZH
T |H0]‖∞) =: vHk . Suppose that

there exists an H0-measurable random variable ΛH,k(v) : Ω→ (0,+∞) such that3

(3.3) E
[ ∫ T

0
ZH
u I
(
u,ΛH,k(v)ZH

u

)
dκu

∣∣∣∣H0

]
= v + k

(
1− E[ZH

T |H0]
)

a.s.

and such that the process (I(t,ΛH,k(v)ZH
t ))t∈[0,T ] satisfies

∫ T
0 U

−(u, I(u,ΛH,k(v)ZH
u )) dκu ∈ L1(P).

Then, the optimal consumption process cH = (cHt )t∈[0,T ] solving problem (3.2) with initial capital v

and allowable leverage k is given by cHt = I(t,ΛH,k(v)ZH
t ), for all t ∈ [0, T ].

If uH,k(v) < +∞, then the strict concavity of U implies that the optimal consumption process

cH = (cHt )t∈[0,T ] is unique up to a (dκ ⊗ P)-nullset. The associated optimal trading strategy

ϑH ∈ L(S,H) is given by the integrand appearing in the representation of the local martingale

M = (Mt)t∈[0,T ] defined by Mt := E[
∫ T
t Z

H
u c

H
u dκu|Ht] + ZH

t

∫ t
0 c

H
u dκu + k(E[ZH

T |Ht]− ZH
t ), for all

t ∈ [0, T ]. Note that the optimal solution does not depend on the allowable leverage k if NFLVR

holds on (Ω,H,P;S). The quantity vHk introduced in Proposition 3.5 represents the maximum

amount of liabilities with which an agent can start at t = 0. For v < vHk , there does not exist a

strategy which can fully ensure the agent against his liabilities at T , so that CH,k(v) = ∅.

Remark 3.6. Let 0 ≤ k1 < k2 and suppose that there exist H0-measurable random variables

ΛH,k1(v) and ΛH,k2(v) satisfying (3.3), for some v > vHk1 . Since P(κT > 0|H0) > 0 a.s., it can

be shown that ΛH,k1(v) ≥ ΛH,k2(v) a.s., with strict inequality holding on {E[ZH
T |H0] < 1}. This

means that, in the presence of arbitrage, a deeper credit line yields a higher consumption rate. In

turn, this implies that uH,k(v) is strictly increasing with respect to k if E[ZH
T ] < 1.

3For brevity of notation, we omit to write explicitly the dependence on ω in the stochastic field I.
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Remark 3.7. The existence of an H0-measurable random variable ΛH,k(v) solving equation (3.3) is

ensured if
∫ T

0 ZH
u I(u, yZH

u ) dκu ∈ L1(P), for all y > 0. This corresponds to a classical condition in

the theory of expected utility maximization (see [Ame00, Lemma 5.2] and [KS98, Chapter 3]).

3.3. Explicit solutions. In this section, we derive explicit solutions to the optimal consumption-

investment problem in the case of logarithmic, power, and exponential utility functions. Besides

allowing for intermediate consumption, this section generalizes [ABS03, Corollary 4.7] to the case

where the additional information can generate arbitrage. The following result will be used in

Section 4 for the explicit computation of the value of informational arbitrage.

Corollary 3.8. Let H ∈ {F,G}, k ∈ R+ and v > vHk . The optimal expected utilities in problem

(3.1) for logarithmic, power and exponential utility functions are explicitly given as follows:

(i) Let U(ω, t, x) = log(x), for all (ω, t, x) ∈ Ω× [0, T ]× (0,+∞).

If
∫ T

0 log(1/ZH
u ) dκu ∈ L1(P), then

(3.4)

uH,k(v) = E
[
log
(
v + k(1− E[ZH

T |H0])
)
κT
]
− E

[
log
(
E[κT |H0]

)
κT
]

+ E
[∫ T

0
log

(
1

ZH
u

)
dκu

]
.

(ii) Let U(ω, t, x) = xp/p, for some p ∈ (0, 1), for all (ω, t, x) ∈ Ω× [0, T ]× (0,+∞).

If E[
∫ T

0 (ZH
u )p/(p−1) dκu|H0] < +∞ a.s., then

(3.5) uH,k(v) =
1

p
E

[(
v + k(1− E[ZH

T |H0])
)p E [∫ T

0

(
ZH
u

) p
p−1 dκu

∣∣∣∣H0

]1−p]

and uH,k(v) < +∞ if E[
∫ T

0 (ZH
u )

p
p−1 dκu|H0]1−p ∈ L1(P).

(iii) Let U(ω, t, x) = −e−αx, for some α > 0, for all (ω, t, x) ∈ Ω× [0, T ]× (0,+∞). Then

(3.6) uH,k(v) = − 1

α
E
[∫ T

0

(
ΛH,k(v)ZH

u ∧ α
)

dκu

]
,

where the H0-measurable random variable ΛH,k(v) is the a.s. unique solution to the equation

(3.7)
1

α
E

[∫ T

0
ZH
u

(
log

(
α

ΛH,k(v)ZH
u

))+

dκu

∣∣∣∣H0

]
= v + k

(
1− E[ZH

T |H0]
)
.

Observe that the optimal expected utilities do not depend on k if and only if there are no

arbitrage opportunities in (Ω,H,P;S), in line with Remark 3.4. On the other hand, in the presence

of arbitrage, the optimal expected utilities are strictly increasing in k, reflecting the fact that

higher levels of consumption can be financed by taking leveraged positions in an arbitrage strategy.

Equation (3.7) can be explicitly solved in some simple models. In particular, if dκu = δT (du) and

k = 0, a sufficient condition is that log(ZH
T ) ≤ E[ZH

T log(ZH
T )|H0]/E[ZH

T |H0] a.s. The last condition

is always satisfied if Q = P and L is a discrete FT -measurable random variable generating arbitrage

opportunities in (Ω,G,P;S) (compare with the examples given in Sections 5.1-5.2).

Remark 3.9. Consider the classical setting where dκu = δT (du) and U(ω, t, x) = log(x), corre-

sponding to maximization of expected logarithmic utility from terminal wealth. Suppose that
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uG,k(v) < +∞, for some k ∈ R+ and v > 0. Corollary 3.8 implies that

uG,k(v)− uF,k(v) = E
[
log
(
v + k(1− E[ZG

T |G0])
)]

+ E
[
log
(
1/ZG

T

)]
− log(v)− E

[
log
(
1/ZF

T

)]
= E

[
log

(
1 +

k

v

(
1−Q(qxT > 0)

∣∣
x=L

))]
+ E

[
log(qLT )

]
,(3.8)

which represents the utility gain of an informed agent with allowable leverage k. This generalizes

[AIS98, Theorem 3.7], where relation (3.8) has been obtained in the case k = 0 under the additional

assumption that the densities qx are a.s. strictly positive and continuous. Note also that

uG,k(v)− uF,k(v) ≥ uG,0(v)− uF,0(v) ≥ − log(E[1/qLT ]) ≥ 0.

In particular, these inequalities imply that the utility gain is always strictly positive whenever the

additional information L yields arbitrage opportunities in (Ω,G,P;S) (see Theorem 2.4).

For continuous S, the logarithmic utility gain of an informed agent has been studied in detail

in [AI05, ADI06]. In particular, [AI05, Theorem 2.13] shows that the utility gain E[log(qLT )] can

be expressed in terms of the information drift of G with respect to F, even when L generates

arbitrage in (Ω,G,P;S). Moreover, as a consequence of [ADI06, Theorem 5.13], the quantity

E[log(qLT )] corresponds to the Shannon information between L and FT . If L is a discrete FT -

measurable random variable, as considered in Sections 5.1-5.2, and k = 0, the utility gain equals

the entropy of L, i.e., E[log(qLT )] = −
∑

x∈E P(L = x) log(P(L = x)) (compare also with [ADI06,

Remark 5.14] and [Ank05, Theorem 12.6.1]). We point out that the results of [Ank05, AI05, ADI06]

are not limited to initial filtration enlargements, but can be also applied to more general situations.

On the other hand, [Ank05, AI05, ADI06] work under the assumption that S is continuous, while

we allow for a general (possibly discontinuous) semimartingale.

For utility functions other than the logarithmic one, the utility gain of an informed agent admits

a representation in terms of an f -divergence, as shown in [Ank05, Chapter 12] under the assumption

that S has continuous paths. In particular, it can be easily verified that the optimal expected utility

uG,0(v) given in (3.5) coincides with the expression given in [Ank05, Proposition 12.5.1].

4. The utility indifference value of additional information

By relying on the results established in the previous section, we are now in a position to study

and compute the value of an additional information which potentially enables an informed agent

to achieve arbitrage opportunities. Inspired by [ABS03], we introduce the following definition.

Definition 4.1. For k ∈ R+ and v > 0, the utility indifference value of the additional information

L is defined as a solution π = πU,k(v) ∈ R+ to the following equation:

(4.1) uF,k(v) = uG,k(v − π).

As explained in the introduction, the value πU,k(v) is such that an investor is indifferent between

two alternatives: (i) invest optimally the total initial wealth v on the basis of the publicly available

information F; (ii) acquire the additional information L at the price πU,k(v) and invest optimally

the residual wealth v − πU,k(v), possibly exploiting the arbitrage opportunities generated by the
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knowledge of L. If the additional information L allows an investor to achieve arbitrage, then we

call the quantity πU,k(v) the indifference value of informational arbitrage.

Under natural assumptions, the utility indifference value πU,k(v) exists and is unique as long as

the optimal consumption-investment problem of an informed agent is well-posed.

Theorem 4.2. Suppose that uF,0(v) > −∞, for every v > 0, and that the assumptions of Propo-

sition 3.5 are satisfied, for every k ∈ R+, v > vHk and H ∈ {F,G}. Assume furthermore that

uG,k(v0) < +∞, for some v0 > vGk . Then, for every v > 0, the following hold:

(i) If limw↓vGk
uG,k(w)<uF,0(v), then the utility indifference value πU,k(v) exists and is unique.

(ii) The map k 7→ πU,k(v) is strictly increasing if and only if E[1/qLT ] < 1.

(iii) If
∫
E(E[

∫ T
0 1{qxt =0}dκt] + kP(qxT = 0))λ(dx) > 0 and U ′(ω, t, 0) = +∞, for all (ω, t) ∈

Ω× [0, T ], then it always holds that πU,k(v) > 0.

Proof. (i): Due to the concavity of U , the assumption that uG,k(v0) < +∞ for some v0 > vGk
implies that the function uG,k is concave and uG,k(v) < +∞, for all v ≥ vGk . Moreover, it holds

that uG,k(v) ≥ uF,k(v) = uF,0(v) > −∞. Therefore, for every v > 0, equation (4.1) admits a

unique non-negative solution πU,k(v) if the function uG,k is continuous, strictly increasing and

satisfies limw↓vGk
uG,k(w) < uF,0(v). Under the present assumptions, these properties are satisfied.

Indeed, by concavity, the function uG,k is continuous on (vGk ,+∞). As a consequence of (3.3) and

since I(ω, t, ·) is decreasing, for all (ω, t) ∈ Ω× [0, T ], it holds that ΛG,k(v + δ) < ΛG,k(v) a.s., for

every v > vGk and δ > 0. In turn, by Proposition 3.5, this implies that uG,k is strictly increasing.

(ii): If E[1/qLT ] < 1, then E[ZG
T ] < 1 (see Theorem 2.4). As explained in Remark 3.6, this

entails that k 7→ uG,k(v) is strictly increasing. In turn, in view of Definition 4.1, this implies that

k 7→ πU,k(v) is strictly increasing, for every v > 0. Conversely, if the map k 7→ πU,k(v) is strictly

increasing, then it necessarily holds that uG,k(v) > uG,0(v), for every v > vGk . In view of Remark

3.4 together with Theorem 2.4, this implies that E[1/qLT ] < 1.

(iii): It suffices to show that, if
∫
E(E[

∫ T
0 1{qxt =0}dκt] + kP(qxT = 0))λ(dx) > 0 holds, then

uG,k(v) > uF,0(v). Under the present assumptions and in view of Lemma 3.3, there exists a

pair (ϑF, cF) ∈ AF,0(v) such that cF solves problem (3.1) in F. Hence:

M0 := E
[∫ T

0
ZG
u c

F
u dκu + kZG

T

∣∣∣∣G0

]
≤ v + k a.s.

By formula (2.1), the random variable M0 can be computed explicitly. Indeed, let h : E → R be

an arbitrary BE-measurable bounded function. Then

E
[
h(L)

(∫ T

0
ZG
u c

F
u dκu + kZG

T

)]
=

∫
E
h(x)E

[
qxT

∫ T

0

ZF
u

qxu
1{qxu>0}c

F
u dκu + kZF

T 1{qxT>0}

]
λ(dx)

=

∫
E
h(x)E

[∫ T

0
ZF
u 1{qxu>0}c

F
u dκu + kZF

T 1{qxT>0}

]
λ(dx),

where the second equality follows from [HWY92, Theorem 5.32]. We have thus shown that M0 =

E[
∫ T

0 Z
F
u 1{qxu>0}c

F
u dκu+kZF

T 1{qxT>0}]|x=L a.s. Since U ′(ω, t, 0) = +∞, for all (ω, t) ∈ Ω× [0, T ], the

process cF is strictly positive (dκ⊗P)-a.e. and, hence,
∫
E(E[

∫ T
0 1{qxt =0}dκt]+kP(qxT = 0))λ(dx) > 0
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implies that P(M0 < v + k) > 0. Define then an O+(G)-measurable process ĉ = (ĉt)t∈[0,T ] by

ĉt := cFt +
v + k −M0

ZG
t E[κT |G0]

, for all t ∈ [0, T ].

By Lemma 3.3, ĉ ∈ CG,k(v). Furthermore, since P(ĉt > cFt ) > 0 for all t ∈ [0, T ], we have that

uG,k(v) ≥ E
[∫ T

0
U(u, ĉu) dκu

]
> E

[∫ T

0
U(u, cFu ) dκu

]
= uF,0(v),

thus completing the proof. �

The condition appearing in part (i) of the above theorem is always satisfied in the absence of

leverage (i.e., if k = 0). Note that the assumption uF,0(v) > −∞, for every v > 0, always holds if

U is bounded from below by a real-valued function (in particular, if U is deterministic).

Part (ii) of Theorem 4.2 shows that, whenever the additional information L yields arbitrage, then

the indifference value of informational arbitrage is strictly increasing in the credit line k. Having

access to a deeper line of credit, an informed agent can take more leveraged positions, yielding

arbitrage profits which can be scaled up to the limit of the allowable leverage.

The condition
∫
E(E[

∫ T
0 1{qxt =0}dκt] + kP(qxT = 0))λ(dx) > 0 implies that an informed agent

can finance any consumption plan c ∈ CF,k(v) at a cost smaller than v, using the remaining

resources to increase consumption. This is possible since an informed agent does not need to

finance consumption in the states of the world which are incompatible with the realization of L

observed at t = 0. In this case, an investor will always be willing to pay a strictly positive price to

learn the additional information, regardless of the specific preference structure.

The conclusions of Theorem 4.2 always hold for the utility functions considered in Section 3.3,

under suitable integrability conditions. This enables us to obtain explicit expressions for the

utility indifference value of the additional information L as shown in the next proposition, which

generalizes [ABS03, Theorem 5.3] and follows as a direct consequence of Corollary 3.8.

Proposition 4.3. Suppose that k = 0. Then the utility indifference value of the additional infor-

mation L is explicitly given as follows:

(i) Let U(ω, t, x) = log(x), for all (ω, t, x) ∈ Ω× [0, T ]× (0,+∞).

If
∫ T

0 log(qLu /Zu) dκu ∈ L1(P), then, for every v > 0,

(4.2) πlog(v) = v

(
1− exp

(
1

E[κT ]

(
χG − χF − E

[∫ T

0
log(qLu ) dκu

])))
,

where χH := E[log(E[κT |H0])κT ], for H ∈ {F,G}.
(ii) Let U(ω, t, x) = xp/p, for some p ∈ (0, 1), for all (ω, t, x) ∈ Ω× [0, T ]× (0,+∞).

If E[
∫ T

0 (Zu/q
L
u )

p
p−1 dκu|G0]1−p ∈ L1(P), then, for every v > 0,

(4.3) πpwr(v) = v

1−
E
[∫ T

0 Z
p
p−1
u dκu

] 1−p
p

E

[
E
[∫ T

0 (Zu/qLu )
p
p−1 dκu

∣∣∣G0

]1−p
]1/p

 .
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In general, the utility indifference value of the additional information cannot be computed in an

explicit form for exponential preferences and, for k > 0, also for logarithmic and power preferences,

as can be seen from (3.4)-(3.6).4 However, in view of part (ii) of Theorem 4.2, formulae (4.2)-(4.3)

represent lower bounds for the logarithmic and power indifference values when k > 0.

Proposition 4.3 reveals several features of the value of informational arbitrage in the case of

CRRA utility functions. First, the relative indifference value πU,0(v)/v is constant. Furthermore:

• If
∫
E E[

∫ T
0 1{qxt =0}dκt]λ(dx) > 0, then πlog(v) and πpwr(v) are always strictly increasing

with respect to v. In other words, the value of informational arbitrage is strictly increasing

with respect to initial wealth, in line with the analysis of [LPS10].

• In the case of logarithmic utility, the indifference value πlog(v) is lower when preferences

are defined over intermediate consumption rather than terminal wealth only, confirming

some empirical findings of [LPS10]. This follows from the observation that

E
[∫ T

0
log(qLu )dκu

]
≤ E

[∫ T

0
log(qLT )dκu

]
= E

[
log(qLT )κT

]
,

as a consequence of Jensen’s inequality and the G-supermartingale property of 1/qL.

• Jensen’s inequality applied to the convex function x 7→ x log x implies that the term χG−χF

appearing in (4.2) is non-negative, with χG = χF if and only if E[κT |σ(L)] = E[κT ] a.s. In

turn, this means that if the additional information L has predictive power on κT , then the

indifference value πlog(v) is lower than in the case where L has no predictive power on κT .

Note that χG = χF if κT is deterministic, as in the case of utility from terminal wealth.

Remark 4.4. In the case of utility from terminal wealth (corresponding to dκu = δT (du)), it can be

easily verified that formulae (4.2)-(4.3) reduce to the expressions stated in [ABS03, Theorem 5.3]

whenever one of the equivalent conditions of the second part of Theorem 2.4 holds, i.e., whenever

the additional information does not lead to arbitrage in (Ω,G,P;S). For dκu = δT (du), formula

(4.2) reduces to πlog(v) = v(1 − exp(−E[log(qLT )])). In line with Theorem 4.2 (see also Remark

3.9), this confirms that the indifference value is always strictly positive if L generates arbitrage in

(Ω,G,P;S). The quantity πlog(v) can be expressed in terms of the Shannon information between

L and FT , which reduces to the entropy of L whenever L is a discrete FT -measurable random

variable. For a power utility function, the indifference value computed in formula (4.3) can be

expressed in terms of an f -divergence, along the lines of [Ank05, Chapter 12].

Universal results on the indifference value of additional information. In general, the

indifference value of the additional information depends on the stochastic utility field considered.

However, in some special cases (for instance, in Example 1.1), the indifference value is a universal

value, which does not depend on the preference structure. This situation is clarified by the next

theorem. We denote by U the class of all strictly increasing and concave deterministic utility

functions U : R+ → R ∪ {−∞}. In the statement of the following theorem, we denote by uH,k(v)

4In view of Corollary 3.8, a fully explicit representation of the utility indifference value for k 6= 0 can be obtained

when the random variable E[ZT /q
L
T |G0] is a.s. constant or, equivalently, when Q(qxT > 0) does not depend on x.
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the value function associated to problem (3.1) in the case of expected utility from consumption

only at date T (i.e., terminal wealth) with utility function U .

Theorem 4.5. Suppose that Q = P in Assumption 1 and that dκu = δT (du). Then, the following

three conditions are equivalent:

(i) it holds that P(qLT = q) = 1, for some constant q ≥ 1;

(ii) for every k ∈ R+ and v > 0, there exists a universal value πk(v) ∈ [0, v + k) such that

uG,k
(
v − πk(v)

)
= uF,k(v), for all U ∈ U ;

(iii) for every v > 0, there exists a universal value π0(v) ∈ [0, v) such that

uG,0
(
v − π0(v)

)
= uF,0(v), for all U ∈ U .

In those cases, for every U ∈ U , k ∈ R+ and v > 0, the indifference value πk(v) is always given by

(4.4) πk(v) = (v + k)

(
1− 1

q

)
and the optimal wealth process V G = (V G

t )t∈[0,T ] in problem (3.1) for H = G is always given by

(4.5) V G
t = (v + k)

qLt
qLT
− k, for all t ∈ [0, T ].

Proof. Note first that Jensen’s inequality and the assumption that S ∈ Mloc(P,F) imply that

uF,k(v) = U(v), for every utility function U ∈ U .

(i)⇒(ii): Let U be an arbitrary element of U , k ∈ R+ and v > 0. Consider the consumption process

cG = (cGt )t∈[0,T ] given by cGt = v1{t=T}, for t ∈ [0, T ]. Since dκu = δT (du) and P(qLT = q) = 1,

with q ≥ 1, Lemma 3.3 implies that cG ∈ CG,k((v + k)/q − k). As a consequence, we have that

uG,k((v + k)/q − k) ≥ E
[
U(cGT )

]
= U(v), for every v > 0.

On the other hand, for any consumption process c ∈ CG,k((v + k)/q − k), it holds that

E
[
U(cT )

]
≤ U

(
E[cT ]

)
= U

(
q E
[
cT /q

L
T

])
≤ U

(
q((v + k)/q − k + k − k/q)

)
= U(v),

where the two inequalities follow respectively from Jensen’s inequality and from Lemma 3.3, since

Q = P and dκu = δT (du). We have thus shown that uG,k((v + k)/q − k) = U(v) = uF,k(v), for

every U ∈ U , thus proving that (ii) holds, with the indifference value πk(v) being given as in (4.4).

(ii)⇒(iii): This implication trivially follows by taking k = 0 in (ii).

(iii)⇒(i): Consider the utility functions U1(x) = log(x) and U2(x) = xp/p, for p ∈ (0, 1). For

H ∈ {F,G} and i ∈ {1, 2}, denote by uH,0i (v) the value function of the corresponding expected

utility maximization problem (3.1), for v > 0 and k = 0. Suppose that, for every v > 0, there

exists a value π0(v) such that uG,0i (v−π0(v)) = uF,0i (v) = Ui(v), for i ∈ {1, 2} and all p ∈ (0, 1). In

particular, this implies that uG,0i (v − π0(v)) < +∞, for i ∈ {1, 2}, and π0(v) = πlog(v) = πpwr(v),

for all p ∈ (0, 1), using the notation introduced in Proposition 4.3. The assumptions of Proposition

4.3 are therefore satisfied and, in view of formulae (4.2)-(4.3), it holds that

exp
(
E
[
log(qLT )

])
= E

[
E
[
(qLT )

p
1−p

∣∣∣G0

]1−p
]1/p

,



THE VALUE OF INFORMATIONAL ARBITRAGE 17

for all p ∈ (0, 1). By Jensen’s inequality, it holds that exp(E[log(qLT )]) ≤ E[qLT ]. On the other hand,

the function x 7→ x1/(1−p) is convex and, again by Jensen’s inequality,

E
[
E
[
(qLT )

p
1−p

∣∣∣G0

]1−p
]1/p

≥ E
[
E
[
(qLT )p

∣∣G0

]]1/p
= E

[
(qLT )p

]1/p
.

We have thus shown that

E
[
(qLT )p

]1/p ≤ E
[
E
[
(qLT )

p
1−p

∣∣∣G0

]1−p
]1/p

≤ E[qLT ]

and E[(qLT )p]1/p < +∞, for all p ∈ (0, 1). Therefore, E[E[(qLT )
p

1−p |G0]1−p]1/p converges to E[qLT ] as

p→ 1. In turn, this implies that

v
(

1− e−E[log(qLT )]
)

= πlog(v) = πpwr(v) = v

(
1− E

[
E
[
(qLT )

p
1−p

∣∣∣G0

]1−p
]−1/p

)
→ v

(
1− 1

E[qLT ]

)
as p→ 1. As a consequence, it holds that E[log(qLT )] = log(E[qLT ]). Since the function x 7→ log(x) is

strictly concave, this implies that there exists a strictly positive constant q such that P(qLT = q) = 1.

The fact that q ≥ 1 follows since E[1/qLT ] ≤ 1, by the supermartingale property of 1/qL on (Ω,G,P).

It remains to show that the wealth process V G = (V G
t )t∈[0,T ] associated to the optimal con-

sumption plan cG constructed in the first part of the proof is given as in (4.5). This follows since,

by optimality, it holds that (V G + k)/qL ∈M(P,G). �

In the setting of the above theorem, the optimal strategy for an informed agent is given by a

multiple of the process φ ∈ L(S,G) appearing in the stochastic integral representation qL = 1+φ·S.

Under the conditions of Theorem 4.5, the constant payoff v = v − πk(v) + (v + k − πk(v))(φ · S)T

dominates according to the second order stochastic dominance criterion all possible outcomes of

admissible portfolios for an informed agent.

Remark 4.6. The random variable qLT is always deterministic whenever L is an FT -measurable

discrete random variable with uniform distribution on a finite set E, so that P(L = x) = 1/|E| for

all x ∈ E, while the entropy of the random variable L is given by log(|E|). In this case, it holds

that qxT = 1{L=x}|E|, for all x ∈ E, so that qLT = |E|. This is also the case of Example 1.1, as we

shall explain in detail in Section 5.1.

Remark 4.7. If there are no arbitrage opportunities in (Ω,G,P;S), then the only case in which

condition (i) of Theorem 4.5 holds is when the random variable L is independent of FT . In this

case, it will never be attractive to buy the informational content of the random variable L, simply

because the latter does not provide any useful information on the financial market.

The assumptions of Theorem 4.5 cannot be easily relaxed. Indeed, if dκu = δT (du) but Q 6= P,

then condition (i) does not suffice to ensure the existence of a universal indifference value, as can be

shown by a simple modification of the example given in Section 5.1. Similarly, even if Q = P, in the

presence of intermediate consumption the utility indifference value can depend on the preference

structure even if qLT is deterministic (apart from the trivial case where L is independent of FT ).

Under the same assumptions of Theorem 4.5, we can establish some universal bounds for the

indifference value of informational arbitrage, as shown in the following proposition.
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Proposition 4.8. Suppose that Q = P in Assumption 1 and that dκu = δT (du). Assume fur-

thermore that there exist two strictly positive constants qmin and qmax with qmin ≤ qmax such that

P(qLT ∈ [qmin, qmax]) = 1. Then, for every utility function U ∈ U , k ∈ R+ and v > 0, it holds that

(4.6) (v + k)

(
1− 1

qmin

)+

≤ πU,k(v) ≤ (v + k)

(
1− 1

qmax

)
.

Proof. Similarly as in the proof of Theorem 4.5, it holds that uF,k(v) = U(v), for every U ∈ U .

The consumption process cG = (cGt )t∈[0,T ] defined by cGt = v1{t=T}, for t ∈ [0, T ], belongs to

CG,k((v + k)/qmin − k). Indeed, under the present assumptions it holds that E[(v + k)/qLT |G0] ≤
(v + k)/qmin a.s. Therefore, for all k ∈ R+ and v > 0, we have that

uF,k(v) = U(v) = E[U(cGT )] ≤ uG,k((v + k)/qmin − k),

which implies that v − πU,k(v) ≤ (v + k)/qmin − k, thus proving the first inequality in (4.6).

Consider then an arbitrary consumption process c = (ct)t∈[0,T ] ∈ CG,k((v + k)/qmax − k). By

Jensen’s inequality, it holds that

E[U(cT )] ≤ U(E[cT ]) ≤ U
(
qmax E

[
cT

qLT

])
≤ U(v) = uF,k(v),

where the third inequality follows from Lemma 3.3. By the arbitrariness of c, this implies that

uG,k((v + k)/qmax − k) ≤ uF,k(v), thus showing that v − πU,k(v) ≥ (v + k)/qmax − k. �

5. Examples

In this section, we illustrate some of the main concepts and results in the context of three

examples. The first example (Section 5.1) consists of a generalization of Example 1.1. The second

example (Section 5.2) considers a two-dimensional discontinuous financial market. In these two

examples, the random variable L is discrete. In the third example (Section 5.3) we consider a

continuous random variable L generating informational arbitrage.

5.1. One-dimensional geometric Brownian motion. LetW = (Wt)t∈[0,T ] be a one-dimensional

Brownian motion on the filtered probability space (Ω,A,F,P), where F = (Ft)t∈[0,T ] is the P-

augmentation of the natural filtration of W . We consider a financial market where a single risky

asset is traded, with discounted price process S = (St)t∈[0,T ] satisfying

(5.1) dSt = St σt dWt, S0 > 0,

where σ = (σt)t∈[0,T ] is a strictly positive F-predictable process such that
∫ T

0 σ2
t dt < +∞ a.s.

According to the notation introduced in Section 2.1, the tuple (Ω,F,P;S) represents the ordinary

financial market and Assumption 1 is satisfied with Q = P.

Similarly as in [PK96, Example 4.6] (see also [AI05, Example 2.12]), we suppose that the addi-

tional information is generated by the random variable L := 1{WT≥c}, where c is a constant such

that P(WT ≥ c) = r ∈ (0, 1). In this setting, E = {0, 1} and the unconditional law of L is given
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by λ({0}) = 1− r and λ({1}) = r. Since L is discrete, Assumption 2 is automatically satisfied. In

particular, it holds that

q0
t =

P(L = 0|Ft)
P(L = 0)

=
1

1− r
Φ

(
c−Wt√
T − t

)
, q1

t =
P(L = 1|Ft)
P(L = 1)

=
1

r
Φ

(
Wt − c√
T − t

)
,

for all t ∈ [0, T ), where Φ(x) :=
∫ x
−∞

1√
2π
e−z

2/2 dz. For t = T , we have

q0
T =

1

1− r
1{WT<c}, q1

T =
1

r
1{WT≥c}.

Since q0 and q1 have continuous paths, Assumption 3 is satisfied. Moreover, it holds that

qLT =
1

1− r
1{WT<c} +

1

r
1{WT≥c}.

In view of Theorem 2.4, NUPBR holds in the informed financial market (Ω,G,P;S) and 1/qL

is the associated ELMD. However, since E[1/qLT ] < 1, the additional information leads to arbitrage

and NFLVR does not hold. The boundedness of qLT ensures that the assumptions of Proposition

4.3 are satisfied and, therefore, we can compute explicitly the indifference value of informational

arbitrage. For simplicity of presentation, let us consider the problem of maximizing expected utility

of terminal wealth (i.e., dκu = δT (du)) for k = 0. In this case, for every v > 0, it holds that

πlog(v) = v
(
1− (1− r)1−rrr

)
and πpwr(v) = v

(
1−

(
(1− r)1−p + r1−p)−1/p

)
.

Observe that πpwr(v) is increasing with respect to p, meaning that the indifference value of informa-

tional arbitrage is decreasing with respect to risk aversion. The indifference value of informational

arbitrage in the case of exponential utility with risk aversion α > 0 is given by the unique solution

π = πexp(v) to the following equation:

e−αv = (1− r)e−
α

1−r (v−π) + re−
α
r

(v−π).

Note also that, in the context of the present example, for every strictly increasing and concave

utility function U : R+ → R ∪ {−∞} and for every k ∈ R+, the indifference value of informational

arbitrage πU,k(v) satisfies the following bounds, as a consequence of Proposition 4.8:

min{r, 1− r} ≤ πU,k(v)

v + k
≤ max{r, 1− r}, for all v > 0.

Analysis of Example 1.1. If c = 0 (and, hence, r = 1/2), the random variable qLT reduces to the

constant qLT = 2. In this case, in line with the result of Theorem 4.5 (see also Remark 4.6), the

value of informational arbitrage for k = 0 is equal to the universal value π(v) = v/2. In view of

formula (4.5), the corresponding optimal wealth process V G = (V G
t )t∈[0,T ] is given by

V G
t = v

qLt
qLT

= v

(
Φ

(
−Wt√
T − t

)
1{WT<0} + Φ

(
Wt√
T − t

)
1{WT≥0}

)
,

for all t ∈ [0, T ]. An application of Itô’s formula yields that the optimal strategy ϑG = (ϑGt )t∈[0,T ]

for the informed agent is given by

(5.2) ϑGt =
(
1{WT≥0} − 1{WT<0}

) v

σtSt

1√
2π(T − t)

exp

(
− W 2

t

2(T − t)

)
, for all t ∈ [0, T ),
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regardless of the utility function being considered. In particular, the strategy ϑG is an arbitrage

strategy for an informed agent. Indeed, it holds that (ϑG ·S)t = V G
t −v/2 > −v/2, for all t ∈ [0, T ],

and (ϑG · S)T = v/2 > 0. This shows that, by acquiring the additional information L at price

π(v) = v/2 and following the strategy ϑG, an informed agent can achieve exactly terminal wealth

v, which also corresponds to the optimal terminal wealth for an ordinary agent.

5.2. Two-dimensional geometric Poisson process. LetN1 = (N1
t )t∈[0,T ] andN2 = (N2

t )t∈[0,T ]

be two independent Poisson processes with common intensity 1 on a filtered probability space

(Ω,A,F,P), where F = (Ft)t∈[0,T ] is the P-augmentation of the natural filtration of (N1, N2). We

consider two risky assets, with discounted price processes S1 = (S1
t )t∈[0,T ] and S2 = (S2

t )t∈[0,T ]

satisfying

dSit = Sit−(dN i
t − dt), Si0 > 0,

with explicit solutions Sit = Si0 e
−t 2N

i
t , for i ∈ {1, 2} and t ∈ [0, T ]. The tuple (Ω,F,P; (S1, S2))

represents the ordinary financial market. Since (S1, S2) has the martingale representation property

on (Ω,F,P), Assumption 1 is satisfied with Q = P.

Let us define the process N = (Nt)t∈[0,T ] by Nt := N1
t −N2

t , for all t ∈ [0, T ]. We suppose that

L := NT , corresponding to the observation of the ratio S1
T /S

2
T . The distribution of L is given by

P(L = x) = e−2TI|x|(2T ) = e−2T
∑
k∈N

T 2k+|x|

k!(k + |x|)!
, for all x ∈ Z,

where I|x|(2T ) denotes the modified Bessel function of the first kind. Since L is discrete, Assump-

tion 2 is automatically satisfied and it can be computed that

qxt =
P(L = x|Ft)
P(L = x)

=

∑
k∈N e

−(T−t) (T−t)k
k! e−(T−t) (T−t)k+x−Nt

(k+x−Nt)! 1{k+x−Nt≥0}∑
k∈N e

−2T T 2k+|x|

k!(k+|x|)!

,

for all x ∈ Z and t ∈ [0, T ), see [CRT18, Example 3.3]. For t = T , we have that

qxT =
1{L=x}

P(L = x)
=

1{L=x}

e−2T
∑

k∈N
T 2k+|x|

k!(k+|x|)!

, for all x ∈ Z.

Note that qxt > 0, for all t ∈ [0, T ). Moreover, qx never jumps to zero, due to the quasi-left-

continuity of the filtration F. Assumption 3 is therefore satisfied and the informed financial market

(Ω,G,P;S) satisfies NUPBR (see Theorem 2.4). The additional information L generates arbitrage

opportunities for an informed agent, since E[1/qLT ] =
∑

x∈Z P(L = x)2 < 1.

The indifference value of informational arbitrage can be explicitly computed in the case of

logarithmic and power utility functions by Proposition 4.3 (for dκu = δT (du) and k = 0):

πlog(v) = v

(
1− exp

(
−
∑
x∈Z

P(L = x) logP(L = x)

))
,

πpwr(v) = v

1− E

(∑
x∈Z

1{L=x}P(L = x)p/(p−1)

)1−p
−1/p

 = v

1−

(∑
x∈Z

P(L = x)1−p

)−1/p
 ,
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for every v > 0. In particular, note that in the case of a logarithmic utility function the value of

informational arbitrage is determined by the entropy of the random variable L (see Remark 3.9).

In the case of an exponential utility function with risk aversion α > 0, the indifference value is

given by the unique solution π = πexp(v) to the following equation:

e−αv = E
[

exp
(
−αqLT (v − π)

)]
=
∑
x∈Z

P(L = x)e
−α(v−π)P(L=x) .

5.3. Informational arbitrage induced by a continuous random variable. We now present

an example of a filtration initially enlarged with respect to a continuous random variable L satis-

fying the absolute continuity relation of Assumption 2 and generating arbitrage opportunities.

Let W = (Wt)t∈[0,T ] be a one-dimensional Brownian motion on (Ω,A,F,P), where F = (Ft)t∈[0,T ]

is the P-augmentation of the natural filtration of W . Let U be a random variable with uniform

distribution on [0, 1], independent of W , and let A = FT ∨ σ(U). We consider a financial market

with a single risky asset, with discounted price process S = (St)t∈[0,T ] given as in (5.1). The tuple

(Ω,F,P;S) represents the ordinary financial market and Assumption 1 is satisfied with Q = P.

We define the random variable L by

L :=
W ∗T

2(1 +W ∗T )
+

U

1 +W ∗T
,

where W ∗T := supt∈[0,T ]Wt. The random variable L takes values in [0, 1] and its conditional law

νT with respect to FT is a uniform distribution on [a(W ∗T ), b(W ∗T )], where a(y) := y/(2 + 2y) and

b(y) := (2 + y)/(2 + 2y), for y ∈ R+. The unconditional law λ of L can be computed as

λ([0, x]) = P(L ≤ x) = E
[
f(x,W ∗T )

]
=

√
2

πT

∫ +∞

0
f(x, z) e−

z2

2T dz,

for x ∈ [0, 1], where f(x, z) := (z(x− 1/2) + x)+ ∧ 1, for all (x, z) ∈ [0, 1]× R+.

Defining γ(x) := 2x/(1− 2x) for x ∈ [0, 1/2) and γ(x) := (2− 2x)/(2x− 1) for x ∈ (1/2, 1], the

conditional density qxT of νT with respect to λ can be computed as

qxT = 1{W ∗T≤γ(x)}
1 +W ∗T(

2Φ
(
γ(x)√
T

)
− 1
)

+
√

2T
π

(
1− e−

γ(x)2

2T

) ,
for all x 6= 1/2, and, for x = 1/2,

qxT =
1 +W ∗T

1 +
√

2T
π

.

Therefore, we have that

qLT =
1 +W ∗T(

2Φ
(
γ(L)√
T

)
− 1
)

+
√

2T
π

(
1− e−

γ(L)2

2T

) a.s., with γ(L) =
1 +W ∗T
|1− 2U |

− 1.

In this example, νt � λ holds a.s. for all t ∈ [0, T ], so that Assumption 2 is satisfied. However,

νt and λ fail to be equivalent, for every t ∈ (0, T ]. This simply follows from the observation that

νt is null outside of the interval [a(W ∗t ), b(W ∗t )], together with the fact that the process (W ∗t )t∈[0,T ]

is increasing and the functions a(·) and b(·) are increasing and decreasing, respectively. Moreover,
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the continuity of the filtration F implies that Assumption 3 is satisfied. In view of Theorem 2.4,

the informed financial market (Ω,G,P;S) satisfies NUPBR, but arbitrage opportunities do exist.

6. Conclusions

In this paper, we have presented a general study of the value of informational arbitrage, in

the context of a semimartingale model of a complete financial market with additional initial in-

formation. In our analysis, the assumption of market completeness is used to obtain necessary

and sufficient conditions for the validity of NUPBR and NFLVR in the informed financial market

(Ω,G,P;S). Furthermore, in the case of typical utility functions, market completeness leads to

explicit solutions, which reveal interesting features of the value of informational arbitrage.

The value of informational arbitrage can be studied in general incomplete markets. In particular,

the existence and uniqueness result of Theorem 4.2 still holds in incomplete markets, as long as

the optimal investment-consumption problem in G is well-posed. More precisely, if the primal and

dual value functions in G are finite and (Ω,G,P;S) satisfies NUPBR (but not necessarily NFLVR),

then the results of [CCFM17] imply that the value function is sufficiently regular to prove existence

and uniqueness of the value of informational arbitrage. However, except for specific models, one

cannot obtain an explicit description of the value of informational arbitrage. Furthermore, in

general incomplete markets, there does not exist a simple criterion for determining whether the

additional information generates arbitrage in G (compare with Theorem 2.4).

Appendix A. Proofs of the results stated in Section 3

Proof of Lemma 3.3. Let (ϑ, c) ∈ AH,k(v). For simplicity of notation, we denote V := V v+k,ϑ,c,

C :=
∫ ·

0 cu dκu and C̃ :=
∫ ·

0 Z
H
u dCu. By integration by parts, we have that, for all t ∈ [0, T ],

ZH
t Vt + C̃t = ZH

t

(
v + k + (ϑ · S)t

)
− ZH

t Ct +

∫ t

0
ZH
u dCu = ZH

t

(
v + k + (ϑ · S)t

)
− (C− · ZH)t.

Since ZH ∈Mloc(P,H) and ZHS ∈Mloc(P,H), this implies that ZHV + C̃ is a sigma-martingale

on (Ω,H,P) (see, e.g., [Fon15, Lemma 4.2]). Being non-negative, it is also a supermartingale.

Therefore, since V v,ϑ,c
T ≥ 0 a.s., it holds that

v + k ≥ E
[
ZH
T VT + C̃T

∣∣H0

]
≥ E

[
kZH

T + C̃T
∣∣H0

]
,

so that E[C̃T |H0] ≤ v + k(1 − E[ZH
T |H0]) a.s. Conversely, let C :=

∫ ·
0 cu dκu and suppose that

E[
∫ T

0 ZH
u dCu|H0] ≤ v + k(1− E[ZH

T |H0]) a.s. Consider the process V̂ = (V̂t)t∈[0,T ] defined by

V̂t := v + ZH
t Ct −

∫ t

0
ZH
u dCu + E

[ ∫ T

0
ZH
u dCu

∣∣∣∣Ht]− E
[ ∫ T

0
ZH
u dCu

∣∣∣∣H0

]
+ k

(
1− E[ZH

T |H0] + E[ZH
T |Ht]− ZH

t

)
,

for all t ∈ [0, T ]. The process V̂ is well-defined as an element of Mloc(P,H). As a consequence of

Assumption 1 (and of Proposition 2.3, in the case H = G), there exists ψ ∈ L(S,H) such that

V̂t = ZH
t

(
v + (ψ · S)t

)
a.s. for all t ∈ [0, T ].
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The process V v+k,ψ,c = (V v+k,ψ,c
t )t∈[0,T ] associated to the pair (ψ, c) satisfies

ZH
t V

v+k,ψ,c
t +

∫ t

0
ZH
u dCu = v + k + E

[ ∫ T

0
ZH
u dCu

∣∣∣∣Ht]− E
[ ∫ T

0
ZH
u dCu

∣∣∣∣H0

]
+ k

(
E[ZH

T |Ht]− E[ZH
T |H0]

)
a.s. for all t ∈ [0, T ].

By construction, it holds that ZH
t V

v+k,ψ,c
t ≥ 0 a.s. and ZH

T V
v,ψ,c
T ≥ 0 a.s., for all t ∈ [0, T ]. This

shows that (ψ, c) ∈ AH,k(v), thus proving that c ∈ CH,k(v). �

Proof of Proposition 3.5. Under the present assumptions, the process cH = (cHt )t∈[0,T ] satisfies

E[
∫ T

0 ZH
u c

H
u dκu|H0] = v+ k(1−E[ZH

T |H0]) a.s., so that cH ∈ CH,k(v) by Lemma 3.3. Consider an

arbitrary consumption process c ∈ CH,k(v). By Fenchel-Legendre duality (see, e.g., [KS98, Lemma

3.4.3]), the definitions of the stochastic field I and of the process cH imply that

U(t, cHt )− ΛH,k(v)ZH
t c

H
t ≥ U(t, ct)− ΛH,k(v)ZH

t ct, for all t ∈ [0, T ].

Therefore, it holds that

E
[∫ T

0
U(u, cHu ) dκu

∣∣∣∣H0

]
≥ E

[∫ T

0
U(u, cu) dκu

∣∣∣∣H0

]
+ ΛH,k(v)E

[∫ T

0
ZH
u c

H
u dκu

∣∣∣∣H0

]
− ΛH,k(v)E

[∫ T

0
ZH
u cu dκu

∣∣∣∣H0

]
≥ E

[∫ T

0
U(u, cu) dκu

∣∣∣∣H0

]
,

where the last inequality follows from the fact that, in view of Lemma 3.3,

E
[∫ T

0
ZH
u c

H
u dκu

∣∣∣∣H0

]
= v + k

(
1− E[ZH

T |H0]
)
≥ E

[∫ T

0
ZH
u cu dκu

∣∣∣∣H0

]
a.s.

The result of the proposition then follows by the arbitrariness of c ∈ CH,k(v). �

Proof of Corollary 3.8. In view of Proposition 3.5, in order to compute uH,k(v) it suffices to find

the H0-measurable random variable ΛH,k(v) satisfying equation (3.3).

(i): If U(ω, t, x) = log(x), then I(ω, t, y) = 1/y, for all (ω, t, y) ∈ Ω× [0, T ]× (0,+∞). Therefore,

equation (3.3) can be explicitly solved and it holds that ΛH,k(v) = E[κT |H0]/(v+k(1−E[ZH
T |H0])).

By Proposition 3.5, the optimal solution cH = (cHt )t∈[0,T ] is then given by

cHt =
1

ΛH,k(v)ZH
t

=
v + k(1− E[ZH

T |H0])

ZH
t E[κT |H0]

, for all t ∈ [0, T ].

Under the integrability assumption stated in the corollary, the optimal expected utility uH,k(v) as

given by (3.4) can be obtained by means of a straightforward computation.

(ii): If U(ω, t, x) = xp/p, then I(ω, t, y) = y1/(p−1), for all (ω, t, y) ∈ Ω × [0, T ] × (0,+∞). By

Proposition 3.5, the H0-measurable random variable ΛH,k(v) must solve

E
[ ∫ T

0
(ZH

u )
p
p−1
(
ΛH,k(v)

) 1
p−1 dκu

∣∣∣∣H0

]
= v + k

(
1− E[ZH

T |H0]
)
.
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Therefore, if E[
∫ T

0 (ZH
u )p/(p−1) dκu|H0] < +∞ a.s., then we have that

ΛH,k(v) =
(
v + k(1− E[ZH

T |H0])
)p−1 E

[∫ T

0
(ZH

u )
p
p−1 dκu

∣∣∣∣H0

]1−p

.

By Proposition 3.5, the corresponding optimal consumption process cH = (cHt )t∈[0,T ] is given by

cHt = (ΛH,k(v)ZH
t )1/(p−1), for all t ∈ [0, T ]. If E[

∫ T
0 (ZH

u )p/(p−1) dκu|H0]1−p ∈ L1(P), then the

optimal expected utility uH,k(v) is finite and can be explicitly computed as in (3.5).

(iii): We first show that equation (3.7) admits an a.s. unique solution, for every v > vHk . Arguing

similarly as in [MW12, Theorem 3.2], define the H0-measurable function g : Ω× (0,+∞)→ R+ by

g(λ) :=
1

α
E

[∫ T

0
ZH
u

(
log

(
α

λZH
u

))+

dκu

∣∣∣∣H0

]
, for λ ∈ (0,+∞).

Note that g is well-defined, since

g(λ) =
1

α
E
[∫ T

0
ZH
u log

(
α

λZH
u

)
1{ZH

u ≤α/λ} dκu

∣∣∣∣H0

]
≤ E[κT |H0]

λ
< +∞ a.s.

Clearly, g is a decreasing function. Furthermore, dominated convergence implies that g is continu-

ous. Again by dominated convergence, it holds that limλ→+∞ g(λ) = 0 a.s. and a straightforward

application of Fatou’s lemma yields that limλ↓0 g(λ) = +∞ a.s. Moreover, for all 0 < λ′ < λ < +∞,

it holds that g(λ′) > g(λ) a.s. on {g(λ) > 0}. Indeed, arguing by contradiction, if the H0-

measurable set Gλ,λ′ := {g(λ) = g(λ′), g(λ) > 0} has strictly positive probability, then

E

[∫ T

0
ZH
u

((
log

(
α

λ′ZH
u

))+

−
(

log

(
α

λZH
u

))+
)

dκu

∣∣∣∣H0

]
= 0 on Gλ,λ′ .

However, since log(α/(λ′ZH
u )) > log(α/(λZH

u )) for all u ∈ [0, T ], this contradicts the assumption

that g(λ) > 0. In view of these observations, v + k(1 − E[ZH
T |G0](ω)) ∈ {g(λ)(ω) : λ ∈ (0,+∞)}

for a.a. ω ∈ Ω. Therefore, by [Ben70, Lemma 1], equation (3.7) admits a unique strictly positive

H0-measurable solution ΛH,k(v), for every v > vHk . If U(ω, t, x) = −e−αx, it holds that I(ω, t, y) =

(1/α)(log(α/y))+, for all y ∈ (0,+∞). By Proposition 3.5, the optimal consumption process

cH = (cHt )t∈[0,T ] is given by cHt = 1
α(log( α

ΛH,k(v)ZH
t

))+, for all t ∈ [0, T ], thus proving (3.6). �
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Grossissements de Filtrations: Exemples et Applications, volume 1118 of Lecture Notes in Mathematics,

pages 15–35. Springer, Berlin - Heidelberg, 1985.

[Jeu80] T. Jeulin. Semi-martingales et Grossissement d’une Filtration, volume 833 of Lecture Notes in Mathe-

matics. Springer, Berlin, 1980.

[JS03] J. Jacod and A.N. Shiryaev. Limit Theorems for Stochastic Processes. Springer, Berlin, 2nd edition, 2003.
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45(2):109–133, 1978.

[SY98] C. Stricker and J.A. Yan. Some remarks on the optional decomposition theorem. In J. Azéma, M. Émery,
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