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Abstract. The goal of the paper is twofold. On the one hand, we develop the first

term structure framework which takes stochastic discontinuities explicitly into account.

Stochastic discontinuities are a key feature in interest rate markets, as for example the

jumps of the term structures in correspondence to monetary policy meetings of the ECB

show. On the other hand, we provide a general analysis of multiple curve markets under

minimal assumptions in an extended HJM framework. In this setting, we characterize

absence of arbitrage by means of NAFLVR and provide a fundamental theorem of asset

pricing for multiple curve markets. The approach with stochastic discontinuities permits

to embed market models directly, thus unifying seemingly different modeling philoso-

phies. We also develop a new tractable class of models, based on affine semimartingales,

going beyond the classical requirement of stochastic continuity. Due to the generality of

the setting, the existing approaches in the literature can be embedded as special cases.

1. Introduction

This work aims at providing a general analysis of interest rate markets in the post-

crisis environment. These markets exhibit two key characteristics. The first one is the

presence of stochastic discontinuities, meaning jumps occurring at predetermined dates.

Indeed, a view on historical data of European reference interest rates (see Figure 1) shows

surprisingly regular jumps: many of the jumps occur in correspondence of monetary policy

meetings of the European Central Bank (ECB), and the latter take place at pre-scheduled

dates. This important feature, present in interest rate markets even before the crisis, has

been surprisingly neglected by existing stochastic models.

The second key characteristic is the co-existence of different yield curves associated to

different tenors. This phenomenon originated with the 2007-2009 financial crisis, when

the spreads between different yield curves reached their peak beyond 200 basis points.

Since then the spreads have remained on a non-negligible level, as shown in Figure 2.

This was accompanied by a rapid development of interest rate models, treating multiple

yield curves at different levels of generality and following different modeling paradigms.

The most important curves to be considered in the current economic environment are the

overnight indexed swap (OIS) rates and the interbank offered rates (abbreviated as Ibor,

such as Libor rates from the London interbank market) of various tenors. In the European

market these are respectively the Eonia-based OIS rates and the Euribor rates.
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Figure 1. Historical series of the Eonia rate, of the ECB deposit facility

rate, of the ECB marginal lending facility rate and of the ECB main refi-

nancing operations rate from January 1999 – June 2019. Source: European

Central Bank.

It is our aim to propose a general treatment of markets with multiple yield curves in the

light of stochastic discontinuities, meanwhile unifying the existing multiple curve modeling

approaches. The building blocks of this study are OIS zero-coupon bonds and forward rate

agreements (FRAs), which constitute the basic assets of a multiple yield curve market.

While OIS bonds are bonds bootstrapped from quoted OIS rates, a FRA is an over-the-

counter derivative consisting of an exchange of a payment based on a floating rate against

a payment based on a fixed rate. In particular, FRAs can be regarded as the fundamental

components of all interest rate derivatives written on Ibor rates.

The main goals and contributions of the present paper can be outlined as follows:

‚ A general description of a multiple curve financial market under minimal assump-

tions and a characterization of absence of arbitrage: we prove the equivalence

between no asymptotic free lunch with vanishing risk (NAFLVR) and the exis-

tence of an equivalent separating measure (Theorem 6.3). To this effect, we rely

on the theory of large financial markets and we extend to multiple curves and to

an infinite time horizon the main result of Cuchiero, Klein and Teichmann (2016).

To the best of our knowledge, this represents the first rigorous formulation of an

FTAP in the context of multiple curve financial markets.

‚ A general forward rate formulation of the term structure of FRAs and OIS bond

prices inspired by the seminal HJM approach of Heath et al. (1992), suitably

extended to allow for stochastic discontinuities: we derive a set of necessary and

sufficient conditions characterizing risk-neutral measures with respect to a general

numéraire process (Theorem 3.7). This framework unifies and generalizes the

existing approaches in the literature.
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Figure 2. Euribor - Eonia OIS Spread for different maturities (1 month

to 12 months) from January 2005 – September 2018. Source: Bloomberg

and European Central Bank.

‚ We study market models in general and, on the basis of minimal assumptions,

derive necessary and sufficient drift conditions in the presence of stochastic discon-

tinuities (Theorem 4.1). This approach covers modeling under forward measures

as a special case. Moreover, the generality of our forward rate formulation with

stochastic discontinuities enables us to directly embed market models.

‚ Finally, we propose a new class of model specifications, based on affine semi-

martingales as recently introduced in Keller-Ressel et al. (2018), going beyond

the classical requirement of stochastic continuity. We illustrate the potential for

practical applications by means of some simple examples.

1.1. The modeling framework. We briefly illustrate the ingredients of our modeling

framework, referring to the sections in the sequel for full details. First, forward rate

agreements are quoted in terms of forward rates. More precisely, the forward Ibor rate

Lpt, T, δq at time t ď T with tenor δ and settlement date T is given as the unique value of

the fixed rate which assigns the FRA value zero at inception t. This leads to the following

fundamental representation of FRA prices:

ΠFRApt, T, δ,Kq “ δ
`

Lpt, T, δq ´ K
˘

P pt, T ` δq, (1.1)

where P pt, T ` δq is the price at time t of an OIS zero-coupon bond with maturity T ` δ

and K is a fixed rate. Formula (1.1) implicitly defines the yield curves T ÞÑ Lpt, T, δq for

different tenors δ, thus explaining the terminology multiple yield curves. In the following,

we will simply call the associated markets multiple curve financial markets.

The forward rate formulation makes some additional assumptions on the yield curves.

More specifically, it corresponds to assuming that the right-hand side of (1.1) admits the

following representation:

ΠFRApt, T, δ,Kq “ Sδ
t e

´
ş

pt,T s fpt,u,δqηpduq ´ e
´

ş

pt,T`δs fpt,uqηpduqp1 ` δKq. (1.2)
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2010 2015/2016

Jan Apr Jul Oct Jan Jul Oct Jan Apr Jul
−0.4

−0.2

0.0

0.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

R
at

es
 (%

)

EONIA ECB deposit facility ECB marginal lending facility ECB main refinancing operations

End of maintenance period

Figure 3. Eonia and ECB rates from January 2010 – December 2010 (left

panel) and July 2015 – June 2016 (right panel). Source: European Central

Bank.

Here, fpt, T q denotes the OIS forward rate, so that P pt, T q “ e
´

ş

pt,T s fpt,uqηpduq
, while

fpt, T, δq is the δ-tenor forward rate and Sδ is a multiplicative spread. Note that the usual

HJM formulation is extended by considering a measure η containing atoms which by no-

arbitrage will be precisely related to the set of stochastic discontinuities in the dynamics

of the forward rates and the multiplicative spreads.

Representations (1.1) and (1.2) constitute two seemingly different starting points for

multiple curve modeling: market models and HJM models, respectively. In the following,

we shall derive no-arbitrage drift restrictions for both classes. Moreover, we will show that

the two classes can be analyzed in a unified setting.

1.2. Stochastic discontinuities in interest rate markets. One of the main novelties

of our approach consists in the presence of stochastic discontinuities, representing events

occurring at announced dates but with a possibly unanticipated informational content.

The importance of jumps at predetermined times is widely acknowledged in the financial

literature, see for example Merton (1974); Piazzesi (2001, 2005, 2010); Kim and Wright

(2014); Duffie and Lando (2001) (see also the introductory section of Keller-Ressel et al.

(2018)). However, to the best of our knowledge, stochastic discontinuities have never

been taken explicitly into account in stochastic models for the term structure of interest

rates. This feature is extremely relevant in financial markets. For instance, the Governing

Council (GC) of the European Central Bank (ECB) holds its monetary policy meetings

on a regular basis at predetermined dates, which are publicly available for about two years

ahead. At such dates the GC takes its monetary policy decisions and determines whether

the main ECB interest rates will change. In turn, these key interest rates are principal

determinants of the Eonia rate, as illustrated by Figure 1.

A closer inspection of Figure 1 reveals the presence of two different types of stochastic

discontinuities in the Eonia rate. On the one hand, there are structural jumps in cor-

respondence to monetary policy decisions. This type of discontinuity, to which we shall

refer as type I, is evidenced by a step-like jump of the Eonia rate in correspondence to

a new level of the ECB lending rate (see Figure 3, right panel). On the other hand,

there may be spiky jumps which are unrelated to the monetary policy and occur at the

end of the maintenance periods of banks’ deposits. Indeed, in the Eurosystem banks are
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required to hold deposits on accounts with their national central bank over fixed main-

tenance periods. Banks who fail to keep sufficient reserves during the period need to

borrow in the interbank market before the close of the maintenance period, thereby gen-

erating a temporary liquidity pressure in interbank lending which leads to a jump in the

Eonia rate (see, e.g., Beirne (2012) and Hernandis and Torró (2013)). This second type

of stochastic discontinuity, to which we shall refer as type II, is evidenced by the spikes

in the left panel of Figure 3. Our framework allows for the possibility of both type I and

type II stochastic discontinuities. In addition, by relaxing the classical assumption that

the term structure of bond prices is absolutely continuous with respect to the Lebesgue

measure (see equation (1.2)), we also allow for discontinuities in time-to-maturity at pre-

determined dates. In a credit risky setting, term structures with stochastic discontinuities

have been recently studied in Gehmlich and Schmidt (2018) and Fontana and Schmidt

(2018). Finally, besides stochastic discontinuities as described above, we also allow for

totally inaccessible jumps, representing events occurring as a surprise to the market and

generated by a general random measure with absolutely continuous compensator. Such

jumps have been already considered in several multiple curve models (see, e.g., Crépey

et al. (2012) and Cuchiero, Fontana and Gnoatto (2016)).

1.3. Overview of the existing literature. The literature on multiple curve models has

witnessed a tremendous growth over the last few years. Therefore, we only give an overview

of the contributions that are the most related to the present paper, referring to the vol-

ume of Bianchetti and Morini (2013) and the monographs Henrard (2014) and Grbac and

Runggaldier (2015) for further references and a guide on post-crisis interest rate markets.

The first paper discussing the modelling of multiple curves is Henrard (2007), where mul-

tiplicative spreads were introduced for the first time. Adopting a short rate approach,

an insightful empirical analysis has been conducted by Filipović and Trolle (2013), who

show that spreads can be decomposed into credit and liquidity components. The extended

HJM approach developed in Section 3 generalizes the framework of Cuchiero, Fontana and

Gnoatto (2016), who consider Itô semimartingales as driving processes and, therefore, do

not allow for stochastic discontinuities (see Remark 3.12 for a detailed comparison). HJM

models taking into account multiple curves have been proposed in Crépey et al. (2015) with

Lévy processes as drivers and in Moreni and Pallavicini (2014) in a Gaussian framework.

In the market model setup, the extension to multiple curves was pioneered by Mercurio

(2010) and further developed in Mercurio and Xie (2012). More recently, Grbac et al.

(2015) have developed an affine market model in a forward rate setting, which has been

further generalized by Cuchiero et al. (2019). All these models, both HJM and market

models, can be easily embedded in the general framework proposed in this paper.

1.4. Outline of the paper. In Section 2, we introduce the basic assets in a multiple curve

financial market. The general multi-curve framework inspired by the HJM philosophy,

extended to allow for stochastic discontinuities, is developed and fully characterized in

Section 3. In Section 4, we introduce and analyze general market models with multiple

curves. In Section 5, we propose a flexible class of multi-curve models based on affine

semimartingales, in a setup which allows for stochastic discontinuities. In Section 6, we

prove a version of the fundamental theorem of asset pricing for multiple curve financial

markets, by relying on the theory of large financial markets. Finally, the Appendix contains

a result on the embedding of market models into the extended HJM framework as well as

some technical results.
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2. A general analysis of multiple curve financial markets

In this section, we provide a general description of a multiple curve market under

minimal assumptions. We assume that the interbank offered rates (Ibor) are quoted for

a finite set of tenors D :“ tδ1, . . . , δmu, with 0 ă δ1 ă . . . ă δm. Typically, about seven

tenors, ranging from 1 day to 12 months, are available in the market. For a tenor δ P D,

the Ibor rate for the time interval rT, T ` δs fixed at time T is denoted by LpT, T, δq. For
0 ď t ď T ă `8, we denote by P pt, T q the price at date t of an OIS zero-coupon bond

with maturity T .

Definition 2.1. A forward rate agreement (FRA) with tenor δ, settlement date T , strike

K and unitary notional amount, is a contract in which a payment based on the Ibor rate

LpT, T, δq is exchanged against a payment based on the fixed rate K at maturity T ` δ.

The price of a FRA contract at date t ď T ` δ is denoted by ΠFRApt, T, δ,Kq and the

payoff at maturity T ` δ is given by

ΠFRApT ` δ, T, δ,Kq “ δLpT, T, δq ´ δK. (2.1)

The first addend in (2.1) is typically referred to as floating leg, while the second addend

is called fixed leg. We define the multiple curve financial market as follows.

Definition 2.2. The multiple curve financial market is the financial market containing

the following two sets of basic assets:

(i) OIS zero-coupon bonds, for all maturities T ě 0;

(ii) FRAs, for all tenors δ P D, all settlement dates T ě 0 and all strikes K P R.

We emphasize that, in the post-crisis environment, FRA contracts have to be considered

on top of OIS bonds as they cannot be perfectly replicated by the latter, due to the risks

implicit in interbank transactions.

We work under the standing assumption that FRA prices are determined by a linear

valuation functional. This assumption is standard in interest rate modeling and is also

coherent with the fact that we consider clean prices, i.e., prices which do not model explic-

itly counterparty and liquidity risk (the counterparty and liquidity risk of the interbank

market as a whole is of course present in Ibor rates, recall Figure 2). Clean prices are fun-

damental quantities in interest rate derivative valuation and they also form the basis for

the computation of XVA adjustments, see (Grbac and Runggaldier, 2015, Section 1.2.3)

and Brigo et al. (2018).

Recalling (2.1), the value of the fixed leg of a FRA at time t ď T ` δ is given by

δKP pt, T ` δq. Hence, we obtain that ΠFRApt, T, δ,Kq is an affine function of K.

Definition 2.3. The forward Ibor rate Lpt, T, δq at date t P r0, T s for tenor δ P D and

maturity T ą 0 is given by the unique value K such that ΠFRApt, T, δ,Kq “ 0.

Due to the affine property of FRA prices combined with the above definition, the

following fundamental representation immediately follows:

ΠFRApt, T, δ,Kq “ δ
`

Lpt, T, δq ´ K
˘

P pt, T ` δq, (2.2)

for t ď T , while of course ΠFRApt, T, δ,Kq “ δpLpT, T, δq ´KqP pt, T `δq for t P rT, T `δs.
Starting from this expression, under no additional assumptions, we can decompose the

value of the floating leg of the FRA into a multiplicative spread and a tenor-dependent

discount factor. Indeed, setting K̄pδq :“ 1 ` δK, we can write

ΠFRApt, T, δ,Kq “
`

1 ` δLpt, T, δq
˘

P pt, T ` δq ´ K̄pδqP pt, T ` δq
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“: Sδ
t P pt, T, δq ´ K̄pδqP pt, T ` δq, (2.3)

where Sδ
t represents a multiplicative spread and P pt, T, δq a discount factor satisfying

P pT, T, δq “ 1, for all T ě 0 and δ P D. More specifically, it holds that

Sδ
t “ P pt, t ` δq

`

1 ` δLpt, t, δq
˘

“
1 ` δLpt, t, δq
1 ` δF pt, t, δq

, (2.4)

where F pt, t, δq denotes the simply compounded OIS rate at date t for the period rt, t` δs.
The discount factor P pt, T, δq is therefore given by

P pt, T, δq “
P pt, T ` δq
P pt, t ` δq

1 ` δLpt, T, δq
1 ` δLpt, t, δq

.

We shall sometimes refer to P p¨, T, δq as δ-tenor bonds. These bonds essentially span the

term structure, while Sδ accounts for the counterparty and liquidity risk in the interbank

market, which do not vanish as t Ñ T .

Remark 2.4 (The pre-crisis setting). In the classical single curve setup, the FRA price

is given by the textbook formula

ΠFRApt, T, δ,Kq “ P pt, T q ´ P pt, T ` δqK̄pδq.

The single curve setting can be recovered from our approach by setting Sδ ” 1 and

P pt, T, δq :“ P pt, T q, for all δ P D and 0 ď t ď T ă `8. This also highlights that, in a

single curve setup, FRA prices are fully determined by OIS bond prices.

Remark 2.5 (Foreign exchange analogy). Representation (2.3) allows for a natural inter-

pretation via a foreign exchange analogy, following some ideas going back to Bianchetti

(2010). Indeed, Ibor rates can be thought of as simply compounded rates in a foreign

economy, with the currency risk playing the role of the counterparty and liquidity risks

of interbank transactions. In this perspective, P pt, T, δq represents the price at date t (in

units of the foreign currency) of a foreign zero-coupon bond with maturity T , while Sδ
t

represents the spot exchange rate between the foreign and the domestic currencies. The

quantity Sδ
t P pt, T, δq appearing in (2.3) corresponds to the value at date t (in units of the

domestic currency) of a payment of one unit of the foreign currency at maturity T . In view

of Remark 2.4, the pre-crisis scenario assumes the absence of currency risk, in which case

Sδ
t P pt, T, δq “ P pt, T q. Related foreign exchange interpretations of multiplicative spreads

have been discussed in Cuchiero, Fontana and Gnoatto (2016), Nguyen and Seifried (2015)

and Macrina and Mahomed (2018).

With the additional assumption that OIS and δ-tenor bond prices are of HJM form, we

obtain our second fundamental representation (1.2). In the following, we will show that

such a representation allows for a precise characterization of arbitrage-free multiple curve

markets and leads to interesting specifications by means of affine semimartingales.

3. An extended HJM approach to term structure modeling

In this section, we present a general framework for modeling the term structures of

OIS bonds and FRA contracts, inspired by the seminal work Heath et al. (1992). We

work in an infinite time horizon (models with a finite time horizon T ă `8 can be

treated by stopping the relevant processes at T). As mentioned in the introduction, a

key feature of the proposed framework is that we allow for the presence of stochastic
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discontinuities, occurring in correspondence of a countable set of predetermined dates

pTnqnPN, with Tn`1 ą Tn, for every n P N, and limnÑ`8 Tn “ `8.

We assume that the stochastic basis pΩ,F ,F,Qq supports a d-dimensional Brownian

motion W “ pWtqtě0 and an integer-valued random measure µpdt, dxq on R` ˆ E, with

compensator νpdt, dxq “ λtpdxqdt, where λtpdxq is a kernel from pΩˆR`,Pq into pE,BEq,
with P denoting the predictable sigma-field on Ω ˆ R` and pE,BEq a Polish space with

its Borel sigma-field. We refer to Jacod and Shiryaev (2003) for all unexplained notions

related to stochastic calculus.

As a first ingredient, we assume that the numéraire process X0 “ pX0
t qtě0 is a strictly

positive semimartingale admitting the representation

X0 “ E
`

B ` H ¨ W ` L ˚ pµ ´ νq
˘

, (3.1)

whereH “ pHtqtě0 is an Rd-valued progressively measurable process s.t.
şT
0 }Hs}2ds ă `8

a.s. for all T ą 0 and L : ΩˆR`ˆE Ñ p´1,`8q is a PbBE-measurable function satisfying
şT
0

ş

EpL2pt, xq ^ |Lpt, xq|qλtpdxqdt ă `8 a.s. for all T ą 0. Note that, in view of (Jacod

and Shiryaev, 2003, Theorem II.1.33), the last condition is necessary and sufficient for the

well-posedness of the stochastic integral L ˚ pµ ´ νq. The process B “ pBtqtě0 is assumed

to be a finite variation process of the form

Bt “
ż t

0
rsds `

ÿ

nPN
∆BTn1tTnďtu, for all t ě 0, (3.2)

where r “ prtqtě0 is an adapted process satisfying
şT
0 |rs|ds ă `8 a.s. for all T ą 0

and ∆BTn is an FTn-measurable random variable taking values in p´1,`8q, for each

n P N. Note that this specification of X0 explicitly allows for jumps at times pTnqnPN, the

stochastic discontinuity points of X0. The assumption that limnÑ`8 Tn “ `8 ensures

that the summation in (3.2) involves only a finite number of terms, for every t ě 0.

Remark 3.1 (On the generality of the numéraire). Requiring only minimal assumptions

on the numéraire process enables us to unify different modeling approaches. Usually,

it is simply postulated that X0 “ expp
ş¨
0 r

OIS
s dsq, with rOIS representing the OIS short

rate. In the setting considered here, X0 can also be generated by a sequence of OIS bonds

rolled over at dates pTnqnPN, compare Definition 5 in Klein et al. (2016) for a precise notion.

This allows to avoid the unnecessary assumption of existence of a bank account. In market

models, the usual choice for X0 is the OIS-bond with the longest available maturity, see

Remark 4.2. Moreover, it is also possible to choose Q as the physical probability measure

and X0 as the growth-optimal portfolio. By this, we cover the benchmark approach to

term structure modeling (see Platen and Heath (2006) and Bruti-Liberati et al. (2010)).

It is important to note that X0 does not necessarily represent the price process of a traded

asset and can therefore represent a generic state-price density (see also Remark 3.11).

The reference probability measure Q is said to be a risk-neutral measure for the mul-

tiple curve financial market if the X0-discounted price process of every asset included in

Definition 2.2 is a Q-local martingale. One of our main goals consists in deriving necessary

and sufficient conditions for Q to be a risk-neutral measure. In Section 6, we will prove

a fundamental theorem characterizing absence of arbitrage in the sense of NAFLVR, for

which the existence of a risk-neutral measure is a sufficient condition (see Remark 6.4).

In view of representation (2.3), modeling a multiple curve financial market requires

the specification of multiplicative spreads Sδ as well as δ-tenor bond prices, for δ P D.
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The multiplicative spread process Sδ “ pSδ
t qtě0 is assumed to be a strictly positive semi-

martingale, for each δ P D. Similarly as in (3.1), we assume that Sδ admits the following

representation:

Sδ “ Sδ
0 E

`

Aδ ` Hδ ¨ W ` Lδ ˚ pµ ´ νq
˘

, (3.3)

for every δ P D, where Aδ, Hδ and Lδ satisfy the same requirements of the processes B,

H and L, respectively, appearing in (3.1). In line with (3.2), we furthermore assume that

Aδ
t “

ż t

0
αδ
sds `

ÿ

nPN
∆Aδ

Tn
1tTnďtu, for all t ě 0, (3.4)

where pαδ
t qtě0 is an adapted process satisfying

şT
0 |αδ

s|ds ă `8 a.s., for all δ P D and

T ą 0, and ∆Aδ
Tn

is an FTn-measurable random variable taking values in p´1,`8q, for
each n P N and δ P D.

We let P pt, T, 0q :“ P pt, T q, for all 0 ď t ď T ă `8. We assume that, for every T ě 0

and δ P D0 :“ D Y t0u, the δ-tenor bond price process pP pt, T, δqq0ďtďT is of the form

P pt, T, δq “ exp

ˆ

´
ż

pt,T s
fpt, u, δqηpduq

˙

, for all 0 ď t ď T, (3.5)

where

ηpduq “ du `
ÿ

nPN
δTnpduq. (3.6)

We shall use the convention that
ş

pT,T s fpT, u, δqηpduq “ 0, for every T P R` and δ P D0.

Note also that ηpr0, T sq ă `8, for every T ą 0. For every T P R` and δ P D0, we assume

that the forward rate process pfpt, T, δqq0ďtďT appearing in (3.5) satisfies

fpt, T, δq “fp0, T, δq `
ż t

0
aps, T, δqds ` V pt, T, δq `

ż t

0
bps, T, δqdWs

`
ż t

0

ż

E
gps, x, T, δq

`

µpds, dxq ´ νpds, dxq
˘

, for all 0 ď t ď T,

(3.7)

where V p¨, T, δq “ V pt, T, δq0ďtďT is a pure jump adapted process of the form

V pt, T, δq :“
ÿ

nPN
∆V pTn, T, δq1tTnďtu, for all 0 ď t ď T,

with ∆V pt, T, δq “ 0 for all 0 ď T ă t ă `8. Moreover, for all n P N, T P R` and δ P D0,

we also assume that
şT
0 |∆V pTn, u, δq|du ă `8.

Remark 3.2. (1) The above framework allows for a general modelling of both type

I and type II stochastic discontinuities (see Section 1.2), as we are going to illus-

trate by means of explicit examples in Section 5. Moreover, the dependence on

δ in equations (3.3)-(3.7) allows the discontinuities to have a different impact on

different yield curves. This is consistent with the typical market behavior, which

shows a dampening of the discontinuities over longer tenors.

(2) The discontinuity dates pTnqnPN play two distinct but equally important roles.

On the one hand, they represent stochastic discontinuities in the dynamics of

all relevant processes. On the other hand, they represent discontinuity points in

maturity of bond prices (see (3.5)). As shown in Theorem 3.7 below, absence of

arbitrage will imply a precise relation between these two roles.

Assumption 3.3. The following conditions hold a.s. for every δ P D0:
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(i) the initial forward curve T ÞÑ fp0, T, δq is F0 b BpR`q-measurable, real-valued and

satisfies
şT
0 |fp0, u, δq|du ă `8, for all T P R`;

(ii) the drift process ap¨, ¨, δq : Ω ˆ R2
` Ñ R is a real-valued progressively measurable

process, in the sense that the restriction ap¨, ¨, δq|r0,ts : Ω ˆ r0, ts ˆ R` Ñ R is Ft b
Bpr0, tsq b BpR`q-measurable, for every t P R`. It satisfies apt, T, δq “ 0, for all

0 ď T ă t ă `8, and
ż T

0

ż u

0
|aps, u, δq|ds ηpduq ă `8, for all T ą 0;

(iii) the volatility process bp¨, ¨, δq : ΩˆR2
` Ñ Rd is an Rd-valued progressively measurable

process, in the sense that the restriction bp¨, ¨, δq|r0,ts : Ω ˆ r0, ts ˆ R` Ñ Rd is

Ft b Bpr0, tsq b BpR`q-measurable, for every t P R`. It satisfies bpt, T, δq “ 0, for all

0 ď T ă t ă `8, and

d
ÿ

i“1

ż T

0

ˆ
ż u

0
|bips, u, δq|2ds

˙1{2

ηpduq ă `8, for all T ą 0;

(iv) the jump function gp¨, ¨, ¨, δq : ΩˆR` ˆEˆR` Ñ R is a P bBE bBpR`q-measurable

real-valued function satisfying gpt, x, T, δq “ 0 for all 0 ď T ă t ă `8 and x P E.

Moreover, it satisfies
ż T

0

ż

E

ż T

0
|gps, x, u, δq|2ηpduqνpds, dxq ă `8, for all T ą 0.

Assumption 3.3 implies that the integrals appearing in the forward rate equation (3.7)

are well-defined for η-a.e. T P R`. Moreover, the integrability requirements appearing in

conditions (ii)-(iv) of Assumption 3.3 ensure that we can apply ordinary and stochastic Fu-

bini theorems, in the versions of Veraar (2012) for the Brownian motion and (Björk et al.,

1997, Proposition A.2) for the compensated random measure. The mild measurability re-

quirement in conditions (ii)-(iii) holds if ap¨, ¨, δq and bp¨, ¨, δq are Prog bBpR`q-measurable,

for every δ P D0, with Prog denoting the progressive sigma-algebra on ΩˆR`, see (Veraar,

2012, Remark 2.1).

Remark 3.4 (Generality of the choice of a single measure η). There is no loss of generality

in taking a single measure η instead of different measures ηδ for each tenor δ P D0. Indeed,

dependence on the tenor can be embedded in our framework by suitably specifying each

forward rate fpt, T, δq in (3.7) and letting η “
ř

δPD0
ηδ.

For all 0 ď t ď T ă `8, δ P D0 and x P E, we set

āpt, T, δq :“
ż

rt,T s
apt, u, δqηpduq,

b̄pt, T, δq :“
ż

rt,T s
bpt, u, δqηpduq,

V̄ pt, T, δq :“
ż

rt,T s
∆V pt, u, δqηpduq,

ḡpt, x, T, δq :“
ż

rt,T s
gpt, x, u, δqηpduq.

As a first result, the following lemma (whose proof is postponed to Appendix A) gives

a semimartingale representation of the process P p¨, T, δq.
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Lemma 3.5. Suppose that Assumption 3.3 holds. Then, for every T P R` and δ P D0,

the process pP pt, T, δqq0ďtďT is a semimartingale and admits the representation

P pt, T, δq “ exp

ˆ

´
ż T

0
fp0, u, δqηpduq ´

ż t

0
āps, T, δqds ´

ÿ

nPN
V̄ pTn, T, δq1tTnďtu

´
ż t

0
b̄ps, T, δqdWs ´

ż t

0

ż

E
ḡps, x, T, δqpµpds, dxq ´ νpds, dxqq

`
ż t

0
fpu, u, δqηpduq

˙

, for all 0 ď t ď T.

(3.8)

The process pP pt, T, δqq0ďtďT admits an equivalent representation as a stochastic ex-

ponential. The following corollary is a direct consequence of Lemma 3.5 and (Jacod and

Shiryaev, 2003, Theorem II.8.10), using the fact that µptTnu ˆ Eq “ 0 a.s., for all n P N.

Corollary 3.6. Suppose that Assumption 3.3 holds. Then, for every T P R` and δ P D0,

the process P p¨, T, δq “ pP pt, T, δqq0ďtďT admits the representation

P p¨, T, δq “ E
ˆ

´
ż T

0
fp0, u, δqηpduq ´

ż ¨

0
āps, T, δqds `

1

2

ż ¨

0
}b̄ps, T, δq}2ds

´
ż ¨

0
b̄ps, T, δqdWs ´

ż ¨

0

ż

E
ḡps, x, T, δqpµpds, dxq ´ νpds, dxqq

`
ż ¨

0

ż

E
pe´ḡps,x,T,δq ´ 1 ` ḡps, x, T, δqqµpds, dxq `

ż ¨

0
fpu, u, δqdu

`
ÿ

nPN

`

e´V̄ pTn,T,δq`fpTn,Tn,δq ´ 1
˘

1rrTn,`8rr

˙

.

(3.9)

We are now in a position to state the central result of this section, which provides

necessary and sufficient conditions for the reference probability measure Q to be a risk-

neutral measure with respect to the numéraire X0. We recall that a random variable ξ

on pΩ,F ,Qq is said to be sigma-integrable with respect to a sigma-field G Ď F if there

exists a sequence of measurable sets pΩnqnPN Ď G increasing to Ω such that ξ 1Ωn P L1pQq
for every n P N, see (He et al., 1992, Definition 1.15). A random variable ξ is sigma-finite

with respect to G if and only if the generalized conditional expectation EQrξ|G s is a.s.

finite. For convenience of notation, we let α0
t :“ 0, H0

t :“ 0, L0pt, xq :“ 0 and ∆A0
Tn

:“ 0

for all n P N, t P R` and x P E, so that S0 :“ EpA0 ` H0 ¨ W ` L0 ˚ pµ ´ νqq ” 1.

Theorem 3.7. Suppose that Assumption 3.3 holds. Then Q is a risk-neutral measure

with respect to the numéraire X0 if and only if, for every δ P D0,
ż T

0

ż

E

ˇ

ˇ

ˇ

1 ` Lδps, xq
1 ` Lps, xq

e´ḡps,x,T,δq `Lps, xq´Lδps, xq` ḡps, x, T, δq´1
ˇ

ˇ

ˇ
λspdxqds ă `8 (3.10)

a.s. for every T P R` and, for every n P N and T ě Tn, the random variable

1 ` ∆Aδ
Tn

1 ` ∆BTn

e
´

ş

pTn,T s ∆V pTn,u,δqηpduq
(3.11)

is sigma-integrable with respect to FTn´, and the following four conditions hold a.s.:

(i) for a.e. t P R`, it holds that

rt ´ αδ
t “ fpt, t, δq ´ HJ

t H
δ
t ` }Ht}

2 `
ż

E

Lpt, xq
1 ` Lpt, xq

`

Lpt, xq ´ Lδpt, xq
˘

λtpdxq;
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(ii) for every T P R` and for a.e. t P r0, T s, it holds that

āpt, T, δq “
1

2
}b̄pt, T, δq}2 ` b̄pt, T, δqJ`

Ht ´ Hδ
t

˘

`
ż

E

ˆ

1 ` Lδpt, xq
1 ` Lpt, xq

`

e´ḡpt,x,T,δq ´ 1
˘

` ḡpt, x, T, δq

˙

λtpdxq;

(iii) for every n P N, it holds that

EQ

«

1 ` ∆Aδ
Tn

1 ` ∆BTn

ˇ

ˇ

ˇ

ˇ

FTn´

ff

“ e´fpTn´,Tn,δq;

(iv) for every n P N and T ě Tn, it holds that

EQ

«

1 ` ∆Aδ
Tn

1 ` ∆BTn

´

e
´

ş

pTn,T s ∆V pTn,u,δqηpduq ´ 1
¯

ˇ

ˇ

ˇ

ˇ

FTn´

ff

“ 0.

Remark 3.8. By considering separately the cases δ “ 0 and δ P D, we can obtain a more

explicit statement of condition (i) of Theorem 3.7, which is equivalent to the validity of

the following two conditions, for every δ P D and a.e. t P R`:

rt “ fpt, t, 0q ` }Ht}
2 `

ż

E

L2pt, xq
1 ` Lpt, xq

λtpdxq; (3.12)

αδ
t “ fpt, t, 0q ´ fpt, t, δq ` HJ

t H
δ
t `

ż

E

Lδpt, xqLpt, xq
1 ` Lpt, xq

λtpdxq. (3.13)

The conditions of the above theorem together with Remark 3.8 admit the following

natural interpretation. First, for δ “ 0 condition (i) requires that the drift rate rt of the

numéraire process X0 equals the short end of the instantaneous yield fpt, t, 0q on OIS

bonds, plus two additional terms accounting for the volatility of the numéraire process

itself.1 For δ ‰ 0, condition (i) requires that, at the short end, the instantaneous yield

αδ
t ` fpt, t, δq on the floating leg of a FRA equals the instantaneous yield fpt, t, 0q plus a

risk premium determined by the covariation between the numéraire process X0 and the

multiplicative spread process Sδ.

Second, condition (ii) is a generalization of the well-known HJM drift condition. In

particular, if D “ H and the numéraire does not have local martingale components, then

condition (ii) reduces to the drift restriction established in (Björk et al., 1997, Proposition

5.3) for single-curve jump-diffusion models.

Finally, conditions (iii) and (iv) are new and specific to our setting with stochastic

discontinuities. Together, they correspond to excluding the possibility that, at some pre-

determined date Tn, discounted assets exhibit jumps whose size can be predicted on the

basis of the information contained in FTn´. Indeed, such a possibility would violate

absence of arbitrage (compare with Fontana et al. (2019)).

Proof of Theorem 3.7. Recall that P pt, T, 0q “ P pt, T q, for all 0 ď t ď T ă `8. By

definition, Q is a risk-neutral measure with respect to the numéraire X0 if and only

if the processes P p¨, T q{X0 and ΠFRAp¨, T, δ,Kq{X0 are Q-local martingales, for every

T P R`, δ P D and K P R. In view of representation (2.3) and using the notational

convention introduced above, this holds if and only if the process SδP p¨, T, δq{X0 is a Q-

local martingale, for every T P R` and δ P D0. An application of Corollary A.1 together

1Note that, at the present level of generality, the rate rt does not represent a riskless rate of return.
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with Corollary 3.6 and equations (3.1)-(3.4) yields

SδP p¨, T, δq
X0

“ Sδ
0P p0, T, δq E

ˆ
ż ¨

0
kspT, δqds ` Kp1qpT, δq ` Kp2qpT, δq ` MpT, δq

˙

,

(3.14)

where pktpT, δqq0ďtďT is an adapted process given by

ktpT, δq :“ αδ
t ´ rt ´ āpt, T, δq `

1

2
}b̄pt, T, δq}2 ` fpt, t, δq

` b̄pt, T, δqJ`

Ht ´ Hδ
t

˘

´ HJ
t H

δ
t ` }Ht}

2,

pKp1q
t pT, δqq0ďtďT is a pure jump finite variation process given by

K
p1q
t pT, δq :“

ż t

0

ż

E

`

e´ḡps,x,T,δq ´ 1 ` ḡps, x, T, δq
˘

µpds, dxq

`
ż ¨

0

ż

E

Lps, xq
1 ` Lps, xq

´

´ Lδps, xq ´
`

e´ḡps,x,T,δq ´ 1
˘

` Lps, xq
¯

µpds, dxq

`
ż ¨

0

ż

E

Lδps, xq
1 ` Lps, xq

`

e´ḡps,x,T,δq ´ 1
˘

µpds, dxq

“
ż t

0

ż

E

ˆ

1 ` Lδps, xq
1 ` Lps, xq

e´ḡps,x,T,δq ` Lps, xq ´ Lδps, xq ` ḡps, x, T, δq ´ 1

˙

µpds, dxq,

and pKp2q
t pT, δqq0ďtďT is a pure jump finite variation process given by

K
p2q
t pT, δq :“

ÿ

nPN
1tTnďtu

´ ∆Aδ
Tn

1 ` ∆BTn

`
1

1 ` ∆BTn

pe´V̄ pTn,T,δq`fpTn,Tn,δq ´ 1q

´
∆BTn

1 ` ∆BTn

`
∆Aδ

Tn

1 ` ∆BTn

pe´V̄ pTn,T,δq`fpTn,Tn,δq ´ 1q
¯

“
ÿ

nPN
1tTnďtu

˜

1 ` ∆Aδ
Tn

1 ` ∆BTn

e
´

ş

pTn,T s ∆V pTn,u,δqηpduq`fpTn´,Tn,δq ´ 1

¸

,

where in the last equality we made use of (3.7) together with the definition of the process

V̄ . The process MpT, δq “ pMtpT, δqq0ďtďT appearing in (3.14) is the local martingale

MtpT, δq :“
ż t

0

`

Hδ
s ´ Hs ´ b̄ps, T, δq

˘

dWs

`
ż t

0

ż

E

`

Lδps, xq ´ Lps, xq ´ ḡps, x, T, δq
˘

pµpds, dxq ´ νpds, dxqq.

Note that the set t∆Kp1qpT, δq ‰ 0u
Ş

t∆Kp2qpT, δq ‰ 0u is evanescent for every T P R`

and δ P D0, as a consequence of the fact that µptTnu ˆ Eq “ 0 a.s. for every n P N.
Suppose that SδP p¨, T, δq{X0 is a Q-local martingale, for every T P R` and δ P D0.

In this case, (3.14) implies that the finite variation process
ş¨
0 kspT, δqds ` Kp1qpT, δq `

Kp2qpT, δq is also a Q-local martingale. By (Jacod and Shiryaev, 2003, Lemma I.3.11),

this implies that the pure jump finite variation process Kp1qpT, δq `Kp2qpT, δq is of locally

integrable variation. Since the two processesKp1qpT, δq andKp2qpT, δq do not have common

jumps, it holds that |∆KpiqpT, δq| ď |∆Kp1qpT, δq ` ∆Kp2qpT, δq|, for i “ 1, 2. As a

consequence of this fact, both processes Kp1qpT, δq and Kp2qpT, δq are of locally integrable

variation. Noting that Kp2qpT, δq “
ř

nPN∆K
p2q
Tn

pT, δq1rrTn,`8rr, (He et al., 1992, Theorem
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5.29) implies that, for every n P N, the random variable ∆K
p2q
Tn

pT, δq is sigma-integrable

with respect to FTn´. This is equivalent to the sigma-integrability of

1 ` ∆Aδ
Tn

1 ` ∆BTn

e
´

ş

pTn,T s ∆V pTn,u,δqηpduq`fpTn´,Tn,δq
(3.15)

with respect to FTn´. Since fpTn´, Tn, δq is FTn´-measurable, the sigma-integrability of

(3.15) with respect to FTn´ can be equivalently stated as the sigma-integrability of (3.11)

with respect to FTn´. Moreover, the fact that Kp1qpT, δq is of locally integrable variation

is equivalent to the a.s. finiteness of the integral
ż T

0

ż

E

ˇ

ˇ

ˇ

1 ` Lδps, xq
1 ` Lps, xq

e´ḡps,x,T,δq ` Lps, xq ´ Lδps, xq ` ḡps, x, T, δq ´ 1
ˇ

ˇ

ˇ
λspdxqds,

thus proving the integrability conditions (3.10)-(3.11).

Having established that the two processes Kp1qpT, δq and Kp2qpT, δq are of locally inte-

grable variation, we can take their compensators (dual predictable projections), see (Jacod

and Shiryaev, 2003, Theorem I.3.18). This leads to

SδP p¨, T, δq
X0

“ Sδ
0P p0, T, δq E

ˆ
ż ¨

0
k̂spT, δqds ` pKp2qpT, δq ` M 1pT, δq

˙

, (3.16)

where

M 1pT, δq :“ MpT, δq`Kp1qpT, δq`Kp2qpT, δq´
ż ¨

0
pk̂spT, δq´kspT, δqqds´ pKp2qpT, δq (3.17)

is a local martingale, pk̂tpT, δqq0ďtďT is an adapted process given by

k̂tpT, δq “ ktpT, δq

`
ż

E

ˆ

1 ` Lδpt, xq
1 ` Lpt, xq

e´ḡpt,x,T,δq ` Lpt, xq ´ Lδpt, xq ` ḡpt, x, T, δq ´ 1

˙

λtpdxq

(3.18)

and, in view of (He et al., 1992, Theorem 5.29), pKp2qpT, δq is a pure jump finite variation

predictable process given by

pKp2qpT, δq “
ÿ

nPN

˜

efpTn´,Tn,δqEQ

«

1 ` ∆Aδ
Tn

1 ` ∆BTn

e
´

ş

pTn,T s ∆V pTn,u,δqηpduq
ˇ

ˇ

ˇ

ˇ

FTn´

ff

´ 1

¸

1rrTn,`8rr.

(3.19)

If SδP p¨, T, δq{X0 is a Q-local martingale, then by (3.16) the process
ş¨
0 k̂spT, δqds `

pKp2qpT, δq must be null (up to an evanescent set), being a predictable local martingale

of finite variation, see (Jacod and Shiryaev, 2003, Corollary I.3.16). In particular, analyz-

ing separately its absolutely continuous and discontinuous parts, this holds if and only if

k̂tpT, δq “ 0 outside of a set of pQ b dtq-measure zero and ∆ pK
p2q
Tn

pT, δq “ 0 a.s. for every

n P N. Let us first consider the absolutely continuous part:

0 “ k̂tpT, δq

“ αδ
t ´ rt ´ āpt, T, δq `

1

2
}b̄pt, T, δq}2 ` fpt, t, δq

` b̄pt, T, δqJ`

Ht ´ Hδ
t

˘

´ HJ
t H

δ
t ` }Ht}

2

`
ż

E

ˆ

1 ` Lδpt, xq
1 ` Lpt, xq

e´ḡpt,x,T,δq ` Lpt, xq ´ Lδpt, xq ` ḡpt, x, T, δq ´ 1

˙

λtpdxq.
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The integral appearing in the last line is a.s. finite for a.e. t P r0, T s as a consequence of

(3.10). Taking T “ t leads to the requirement

rt ´ αδ
t “ fpt, t, δq ´ HJ

t H
δ
t ` }Ht}

2 `
ż

E

Lpt, xq
1 ` Lpt, xq

`

Lpt, xq ´ Lδpt, xq
˘

λtpdxq,

for a.e. t P R`, which gives condition (i) in the statement of the theorem. In turn,

inserting this last condition into the equation k̂tpT, δq “ 0 directly leads to condition (ii)

in the statement of the theorem. Considering then the pure jump part, the condition

∆ pK
p2q
Tn

pT, δq “ 0 a.s., for all n P N, leads to the requirement

EQ

«

1 ` ∆Aδ
Tn

1 ` ∆BTn

e
´

ş

pTn,T s ∆V pTn,u,δqηpduq
ˇ

ˇ

ˇ

ˇ

FTn´

ff

“ e´fpTn´,Tn,δq a.s. for all n P N. (3.20)

Condition (iii) in the statement of the theorem is obtained by taking T “ Tn, while

condition (iv) follows by inserting condition (iii) into (3.20).

Conversely, if the integrability conditions (3.10)-(3.11) are satisfied then the finite vari-

ation processes Kp1qpT, δq and Kp2qpT, δq appearing in (3.14) are of locally integrable vari-

ation. One can therefore take their compensators and obtain representation (3.16). It

is then easy to verify that, if the four conditions (i)-(iv) hold, then the processes k̂pT, δq
and pKp2qpT, δq appearing in (3.16) are null, up to an evanescent set. This proves the local

martingale property of SδP p¨, T, δq{X0, for every T P R` and δ P D0. □

Remark 3.9. We want to emphasize that the foreign exchange analogy introduced in

Remark 2.5 carries over to the conditions established in Theorem 3.7. In particular, in

the special case where Ht “ Lpt, xq “ 0, for all pt, xq P R` ˆ E, it can be easily verified

that conditions (i)-(ii) reduce exactly to the HJM conditions established in Koval (2005)

in the context of multi-currency HJM semimartingale models.

3.1. The OIS bank account as numéraire. In HJM models, the numéraire is usually

chosen as the OIS bank account expp
ş¨
0 r

OIS
s dsq, with rOIS denoting the OIS short rate.

In this context, an application of Theorem 3.7 enables us to characterize all equivalent

local martingale measures (ELMMs, see Section 6) with respect to the OIS bank account

numéraire. To this effect, let Q1 be a probability measure on pΩ,F q equivalent to Q and

denote by Z 1 its density process, i.e., Z 1
t “ dQ1|Ft{dQ|Ft , for all t ě 0. We denote the

expectation with respect to Q1 by EQ1
and assume that

Z 1 “ E
ˆ

´ θ ¨ W ´ ψ ˚ pµ ´ νq ´
ÿ

nPN
Yn1rrTn,`8rr

˙

, (3.21)

for an Rd-valued progressively measurable process θ “ pθtqtě0 satisfying
şT
0 }θs}2ds ă `8

a.s. for all T ą 0, a P b BE-measurable function ψ : Ω ˆ R` ˆ E Ñ p´8,`1q satisfying
şT
0

ş

Ep|ψps, xq|^ψ2ps, xqqλspdxqds ă `8 a.s. for all T ą 0, and a family pYnqnPN of random

variables taking values in p´8,`1q such that Yn is FTn-measurable and EQrYn|FTn´s “ 0,

for all n P N.

Corollary 3.10. Suppose that Assumption 3.3 holds. Let Q1 be a probability measure on

pΩ,F q equivalent to Q, with density process Z 1 given in (3.21). Assume furthermore that
şT
0

ş

tψps,xqPr0,1su ψ
2ps, xq{p1 ´ ψps, xqqλspdxqds ă `8 a.s. for all T ą 0. Then, Q1 is an
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ELMM with respect to the numéraire expp
ş¨
0 r

OIS
s dsq if and only if, for every δ P D0,

ż T

0

ż

E

ˇ

ˇ

ˇ

`

1´ψps, xq
˘`

p1`Lδps, xqqe´ḡps,x,T,δq ´ 1
˘

´Lδps, xq ` ḡps, x, T, δq
ˇ

ˇ

ˇ
λspdxqds ă `8

(3.22)

a.s. for every T P R` and, for every n P N and T ě Tn, the random variable
`

1 ` ∆Aδ
Tn

˘

e
´

ş

pTn,T s ∆V pTn,u,δqηpduq

is sigma-integrable under Q1 with respect to FTn´, and the following conditions hold a.s.:

(i) for a.e. t P R`, it holds that

rOIS
t “ fpt, t, 0q,

αδ
t “ fpt, t, 0q ´ fpt, t, δq ` θJ

t H
δ
t `

ż

E
ψpt, xqLδpt, xqλtpdxq;

(ii) for every T P R` and for a.e. t P r0, T s, it holds that

āpt, T, δq “
1

2
}b̄pt, T, δq}2 ` b̄pt, T, δqJ`

θt ´ Hδ
t

˘

`
ż

E

´

`

1 ´ ψpt, xq
˘`

1 ` Lδpt, xq
˘`

e´ḡpt,x,T,δq ´ 1
˘

` ḡpt, x, T, δq
¯

λtpdxq;

(iii) for every n P N, it holds that

EQ1“

∆Aδ
Tn

ˇ

ˇFTn´
‰

“ e´fpTn´,Tn,δq ´ 1;

(iv) for every n P N and T ě Tn, it holds that

EQ1
”

p1 ` ∆Aδ
Tn

q
´

e
´

ş

pTn,T s ∆V pTn,u,δqηpduq ´ 1
¯ˇ

ˇ

ˇ
FTn´

ı

“ 0.

Proof. By Bayes’ formula, Q1 is an ELMM if and only if Z 1SδP p¨, T, δqe´
ş¨
0 r

OIS
s ds is a local

martingale under Q, for every T P R` and δ P D0. The result therefore follows by applying

Theorem 3.7 with respect to the numéraire X0 :“ e
ş¨
0 r

OIS
s ds{Z 1. By applying Lemma A.1,

we obtain that

X0 “ E
ˆ

ż ¨

0

´

rOIS
s ` }θs}2 `

ż

E

ψ2ps, xq
1 ´ ψps, xq

λspdxq
¯

ds ` θ ¨ W `
ψ

1 ´ ψ
˚ pµ ´ νq

`
ÿ

nPN

Yn
1 ´ Yn

1rrTn,`8rr

˙

.

Note that
şT
0

ş

E ψ2ps, xq{p1 ´ ψps, xqqλspdxqds ă `8 a.s., as a consequence of the as-

sumption that
şT
0

ş

tψps,xqPr0,1su ψ
2ps, xq{p1 ´ ψps, xqqλspdxqds ă `8 a.s. together with the

elementary inequality x2{p1 ´ xq ď |x| ^ x2, for x ď 0. The process X0 is of the form

(3.1)-(3.2) with rt “ rOIS
t ` }θt}2 `

ş

E ψ2pt, xq{p1 ´ ψpt, xqqλtpdxq, H “ θ, L “ ψ{p1 ´ ψq

and ∆BTn “ Yn{p1 ´ Ynq. Since
şT
0

ş

E ψ2ps, xq{p1 ´ ψps, xqqλspdxqds ă `8 a.s., for all

T ą 0, it can be easily checked that condition (3.22) is equivalent to condition (3.10). The

corollary then follows from Theorem 3.7 noting that, for any FTn-measurable random

variable ξ which is sigma-integrable under Q1 with respect to FTn´, it holds that

EQ1
rξ|FTn´s “

EQrZ 1
Tn
ξ|FTn´s

Z 1
Tn´

“ EQrp1 ´ Ynqξ|FTn´s “ EQ
„

ξ

1 ` ∆BTn

ˇ

ˇ

ˇ
FTn´

ȷ

,

where we have used the fact that Z 1
Tn

“ Z 1
Tn´p1 ´ Ynq, for every n P N. □
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Remark 3.11. The proof of Corollary 3.10 permits to obtain a characterization of all

equivalent local martingale deflators for the multiple curve financial market, i.e., all strictly

positive Q-local martingales Z of the form (3.21) such that ZSδP p¨, T, δqe´
ş¨
0 r

OIS
s ds is a

Q-local martingale, for every T P R` and δ P D0.

Remark 3.12. The HJM framework of Cuchiero, Fontana and Gnoatto (2016) can be

recovered as a special case with no stochastic discontinuities, setting ηpduq “ du in (3.6),

taking the OIS bank account as numéraire and a jump measure µ generated by a given Itô

semimartingale. Cuchiero, Fontana and Gnoatto (2016) show that most of the existing

multiple curve models can be embedded in their framework, which a fortiori implies that

they can be easily embedded in our framework.

4. General market models

In this section, we consider market models and develop a general arbitrage-free frame-

work for modeling Ibor rates. As we are going to show later in Appendix B, market models

can be embedded into the extended HJM framework considered in Section 3, in the spirit

of Brace et al. (1997). This is possible due to the fact that the measure ηpduq in the

term structure equation (3.5) may contain atoms, unlike in traditional HJM approaches.

However, it turns out to be simpler to directly study market models as follows.

For each δ P D, let T δ “ tT δ
0 , . . . , T

δ
Nδu be the set of settlement dates of traded FRA

contracts associated to tenor δ, with T δ
0 “ T0 and T δ

Nδ “ T ˚, for some 0 ď T0 ă T ˚ ă `8,

for all δ P D. We consider an equidistant tenor structure, i.e. T δ
i ´ T δ

i´1 “ δ, for all

i “ 1, . . . , N δ and δ P D. Let us also define T :“
Ť

δPD T δ, corresponding to the set of all

traded FRAs. The starting point of our approach is representation (1.1):

ΠFRApt, T, δ,Kq “ δ
`

Lpt, T, δq ´ K
˘

P pt, T ` δq, (4.1)

for δ P D, T P T δ, t P r0, T s and K P R. In line with Definition 2.2, we assume that the

financial market contains FRA contracts for all δ P D, T P T δ and K P R as well as OIS

zero-coupon bonds for all maturities T P T 0 :“ T
Ť

tT ˚ ` δi : i “ 1, . . . ,mu.2

Let pΩ,F ,F,Qq be a filtered probability space supporting a d-dimensional Brownian

motion W and a random measure µ, as described in Section 3. We assume that, for every

δ P D and T P T δ, the forward Ibor rate Lp¨, T, δq “ pLpt, T, δqq0ďtďT satisfies

Lpt, T, δq “Lp0, T, δq `
ż t

0
aLps, T, δqds `

ÿ

nPN
∆LpTn, T, δq1tTnďtu

`
ż t

0
bLps, T, δqdWs `

ż t

0

ż

E
gLps, x, T, δq

`

µpds, dxq ´ νpds, dxq
˘

.

(4.2)

In the above equation, aLp¨, T, δq “ paLpt, T, δqq0ďtďT is a real-valued adapted process

satisfying
şT
0 |aLps, T, δq|ds ă `8 a.s., bLp¨, T, δq “ pbLpt, T, δqq0ďtďT is a progressively

measurable Rd-valued process satisfying
şT
0 }bLps, T, δq}2ds ă `8 a.s., p∆LpTn, T, δqqnPN

is a family of random variables such that ∆LpTn, T, δq is FTn-measurable, for each n P N,
and gLp¨, ¨, T, δq : Ω ˆ r0, T s ˆ E Ñ R is a P b BE-measurable function that satisfies
şT
0

ş

EpgLps, x, T, δqq2 ^|gLps, x, T, δq|qλspdxqds ă `8 a.s. The dates pTnqnPN represent the

stochastic discontinuities occurring in the market. We furthermore assume that OIS bond

2Note that we need to consider an extended set of maturities for OIS bonds since the payoff of a FRA

contract with settlement date T and tenor δ takes place at date T ` δ.
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prices are of the form (3.5) for δ “ 0, for all T P T 0, with the associated forward rates

fpt, T, 0q being as in (3.7).

The main goal of this section consists in deriving necessary and sufficient conditions for

a reference probability measure Q to be a risk-neutral measure with respect to a general

numéraireX0 of the form (3.1) for the financial market where FRA contracts and OIS zero-

coupon bonds are traded (see Definition 2.2), and FRA prices are modeled via (4.1)-(4.2)

for the discrete set T of settlement dates. We recall that

b̄pt, T ` δ, 0q “
ż

rt,T`δs
bpt, u, 0qηpduq,

ḡpt, x, T ` δ, 0q “
ż

rt,T`δs
gpt, x, u, 0qηpduq.

Theorem 4.1. Suppose that Assumption 3.3 holds for δ “ 0 and for all T P T 0. Then Q
is a risk-neutral measure with respect to the numéraire X0 if and only if all the conditions

of Theorem 3.7 are satisfied for δ “ 0 and for all T P T 0, and, for every δ P D,
ż T

0

ż

E

ˇ

ˇ

ˇ
gLps, x, T, δq

˜

e´ḡps,x,T`δ,0q

1 ` Lps, xq
´ 1

¸

ˇ

ˇ

ˇ
λspdxqds ă `8 (4.3)

a.s. for all T P T δ, and, for each n P N and T δ Q T ě Tn, the random variable

∆LpTn, T, δq
1 ` ∆BTn

e
´

ş

pTn,T`δs ∆V pTn,u,0qηpduq
(4.4)

is sigma-integrable with respect to FTn´, and the following two conditions hold a.s.:

(i) for all T P T δ and a.e. t P r0, T s, it holds that

aLpt, T, δq “bLpt, T, δqJpHt ` b̄pt, T ` δ, 0qq

´
ż

E
gLpt, x, T, δq

˜

e´ḡpt,x,T`δ,0q

1 ` Lpt, xq
´ 1

¸

λtpdxq;

(ii) for all n P N and T δ Q T ě Tn, it holds that

EQ
”∆LpTn, T, δq

1 ` ∆BTn

e
´

ş

pTn,T`δs ∆V pTn,u,0qηpduq
ˇ

ˇ

ˇ

ˇ

FTn´

ı

“ 0.

Condition (i) of Theorem 4.1 is a drift restriction for the forward Ibor rate process. In

the context of a continuum of traded maturities, as in the case of Theorem 3.7, this condi-

tion can be separated into a condition on the short end and an HJM-type drift condition

(see conditions (i) and (ii) in Theorem 3.7). Condition (ii), similarly to conditions (iii)-

(iv) of Theorem 3.7, corresponds to requiring that, for each n P N, the size of the jumps

occurring at date Tn in FRA prices cannot be predicted on the basis of the information

contained in FTn´.

Proof. In view of representation (4.1), Q is a risk-neutral measure with respect toX0 if and

only if P p¨, T q{X0 is a Q-local martingale, for every T P T 0, and Lp¨, T, δqP p¨, T ` δq{X0

is a Q-local martingale, for every δ P D and T P T δ. Considering first the OIS bonds,

Theorem 3.7 implies that P p¨, T q{X0 is a Q-local martingale, for every T P T 0, if and

only if conditions (3.10)-(3.11) as well as conditions (i)-(iv) of Theorem 3.7 are satisfied

for δ “ 0 and for all T P T 0. Under these conditions, equation (3.16) for δ “ 0 gives that

for every T P T 0

P p¨, T q
X0

“ P p0, T q E
`

M 1pT, 0q
˘

, (4.5)
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where the local martingale M 1pT, 0q is given by

M 1pT, 0q “ Kp2qpT, 0q ´
ż ¨

0

`

Hs ` b̄ps, T, 0q
˘

dWs

`
ż ¨

0

ż

E

˜

e´ḡps,x,T,0q

1 ` Lps, xq
´ 1

¸

`

µpds, dxq ´ νpds, dxq
˘

,

as follows from equation (3.17), with

Kp2qpT, 0q “
ÿ

nPN

˜

e
´

ş

pTn,T s ∆V pTn,u,0qηpduq`fpTn´,Tn,0q

1 ` ∆BTn

´ 1

¸

1rrTn,`8rr.

By relying on (4.2) and (4.5), we can compute

d

ˆ

Lpt, T, δq
P pt, T ` δq

X0
t

˙

“
P pt´, T ` δq

X0
t´

ˆ

dLpt, T, δq ` Lpt´, T, δqdM 1
tpT ` δ, 0q ` d

“

Lp¨, T, δq,M 1pT ` δ, 0q
‰

t

˙

“
P pt´, T ` δq

X0
t´

ˆ

M2
t pT, δq ` jtpT, δqdt ` dJ

p1q
t pT, δq ` dJ

p2q
t pT, δq

˙

, (4.6)

where M2pT, δq “ pM2
t pT, δqq0ďtďT is a local martingale given by

M2
t pT, δq :“

ż t

0
Lps´, T, δqdM 1

spT ` δ, 0q `
ż t

0
bLps, T, δqdWs

`
ż t

0

ż

E
gLps, x, T, δq

`

µpds, dxq ´ νpds, dxq
˘

,

jpT, δq “ pjtpT, δqq0ďtďT is an adapted real-valued process given by

jtpT, δq “ aLpt, T, δq ´ bLpt, T, δqJ`

Ht ` b̄pt, T ` δ, 0q
˘

,

J p1qpT, δq “ pJ p1q
t pT, δqq0ďtďT is a finite variation pure jump adapted process given by

J
p1q
t pT, δq “

ż t

0

ż

E
gLps, x, T, δq

˜

e´ḡps,x,T`δ,0q

1 ` Lps, xq
´ 1

¸

µpds, dxq,

and J p2qpT, δq “ pJ p2q
t pT, δqq0ďtďT is a finite variation pure jump adapted process given by

J
p2q
t pT, δq “

ÿ

nPN
1tTnďtu

∆LpTn, T, δq
1 ` ∆BTn

e
´

ş

pTn,T`δs ∆V pTn,u,0qηpduq`fpTn´,Tn,0q
.

If Lp¨, T, δqP p¨, T ` δq{X0 is a local martingale, for every δ P D and T P T δ, then equation

(4.6) implies that the processes J p1qpT, δq and J p2qpT, δq are of locally integrable variation.

Similarly as in the proof of Theorem 3.7, this implies the validity of conditions (4.3)-

(4.4), in view of (He et al., 1992, Theorem 5.29). Let us then denote by pJ piqpT, δq the

compensator of J piqpT, δq, for i P t1, 2u, δ P D and T P T δ. We have that

pJ p1qpT, δq “
ż ¨

0

ż

E
gLps, x, T, δq

˜

e´ḡps,x,T`δ,0q

1 ` Lps, xq
´ 1

¸

λspdxqds,

pJ p2qpT, δq “
ÿ

nPN
efpTn´,Tn,0qEQ

„

∆LpTn, T, δq
1 ` ∆BTn

e
´

ş

pTn,T`δs ∆V pTn,u,0qηpduq
ˇ

ˇ

ˇ

ˇ

FTn´

ȷ

1rrTn,`8rr.
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The local martingale property of Lp¨, T, δqP p¨, T ` δq{X0 together with equation (4.6)

implies that the predictable finite variation process
ż ¨

0
jspT, δqds ` pJ p1qpT, δq ` pJ p2qpT, δq (4.7)

is null (up to an evanescent set), for every δ P D and T P T δ. Considering separately

the absolutely continuous and discontinuous parts, this implies the validity of conditions

(i)-(ii) in the statement of the theorem.

Conversely, by Theorem 3.7, if conditions (3.10)-(3.11) as well as conditions (i)-(iv)

of Theorem 3.7 are satisfied for δ “ 0 and for all T P T 0, then P p¨, T q{X0 is a Q-

local martingale, for all T P T 0. Furthermore, if conditions (4.3)-(4.4) are satisfied and

conditions (i)-(ii) of the theorem hold, then the process given in (4.7) is null. In turn, by

equation (4.6), this implies that Lp¨, T, δqP p¨, T ` δq{X0 is a Q-local martingale, for every

δ P D and T P T δ, thus proving that Q is a risk-neutral measure with respect to X0. □

Remark 4.2 (Terminal bond as numéraire). In market models, the numéraire is usually

chosen as the OIS zero-coupon bond with the longest available maturity T ˚. In addition,

the reference probability measureQ is the associated T ˚-forward measure, see (Musiela and

Rutkowski, 1997, Section 12.4). Exploiting the generality of the process X0, this setting

can be easily accommodated within our framework. Indeed, if
şT˚

0

ş

E |e´ḡps,x,T˚,0q ´ 1 `
ḡps, x, T ˚, 0q|λspdxqds ă `8 a.s., Corollary 3.6 shows that X0 “ P p¨, T ˚q{P p0, T ˚q holds

as long as the processes appearing in (3.1)-(3.2) are specified as

Ht “ ´b̄pt, T ˚, 0q,

Lpt, xq “ e´ḡpt,x,T˚,0q ´ 1,

∆BTn “ e
´

ş

pTn,T˚s ∆V pTn,u,0qηpduq`fpTn´,Tn,0q ´ 1,

rt “ fpt, t, 0q ´ āpt, T ˚, 0q `
1

2
}b̄pt, T ˚, 0q}2

`
ż

E

`

e´ḡpt,x,T˚,0q ´ 1 ` ḡpt, x, T ˚, 0q
˘

λtpdxq.

With this specification, a direct application of Theorem 4.1 yields necessary and sufficient

conditions for Q to be a risk-neutral measure with respect to the terminal OIS bond as

numéraire.

4.1. Martingale modeling. Typically, market models start directly from the assumption

that each Ibor rate Lp¨, T, δq is a martingale under the pT ` δq-forward measure QT`δ

associated to the numéraire P p¨, T `δq. In our context, this assumption is generalized into

a local martingale requirement under the pT ` δq-forward measure, whenever the latter

is well-defined. More specifically, suppose that P p¨, T ` δq{X0 is a true martingale and

define the pT ` δq-forward measure by dQT`δ|FT`δ
:“ pP p0, T ` δqX0

T`δq´1dQ|FT`δ
. As

a consequence of Girsanov’s theorem (see (Jacod and Shiryaev, 2003, Theorem III.3.24))

and equation (4.5), the forward Ibor rate Lp¨, T, δq satisfies under the measure QT`δ

Lpt, T, δq “Lp0, T, δq `
ż t

0
aL,T`δps, T, δqds `

ÿ

nPN
∆LpTn, T, δq1tTnďtu

`
ż t

0
bLps, T, δqdW T`δ

s `
ż t

0

ż

E
gLps, x, T, δq

`

µpds, dxq ´ νT`δpds, dxq
˘

,

(4.8)
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for some adapted real-valued process aL,T`δp¨, T, δq, where W T`δ is a QT`δ-Brownian

motion defined byW T`δ :“ W `
ş¨
0pHs`b̄ps, T `δ, 0qqds and the compensator νT`δpds, dxq

of the random measure µpds, dxq under QT`δ is given by

νT`δpds, dxq “
e´ḡps,x,T`δ,0q

1 ` Lps, xq
λspdxqds.

In this context, Theorem 4.1 leads to the following proposition, which provides a charac-

terization of the local martingale property of forward Ibor rates under forward measures.

Proposition 4.3. Suppose that Assumption 3.3 holds for δ “ 0 and for all T P T 0.

Assume furthermore that P p¨, T q{X0 is a true Q-martingale, for every T P T 0. Then the

following are equivalent:

(i) Q is a risk-neutral measure;

(ii) Lp¨, T, δq is a local martingale under QT`δ, for every δ P D and T P T δ;

(iii) for every δ P D and T P T δ, it holds that

aL,T`δpt, T, δq “ 0,

outside a subset of Ω ˆ r0, T s of pQ b dtq-measure zero, and, for every n P N and

T δ Q T ě Tn, the random variable ∆LpTn, T, δq satisfies

EQT`δ
r∆LpTn, T, δq|FTn´s “ 0 a.s.

Proof. Under these assumptions, Q is a risk-neutral measure if and only if Lp¨, T, δqP p0, T`
δq{X0 is a local martingale under Q, for every δ P D and T P T δ. The equivalence

piq ô piiq then follows from the conditional version of Bayes’ rule (see (Jacod and Shiryaev,

2003, Proposition III.3.8)), while the equivalence piiq ô piiiq is a direct consequence of

equation (4.8) together with (He et al., 1992, Theorem 5.29). □

5. Affine specifications

One of the most successful classes of processes in term-structure modeling is the class of

affine processes. This class combines a great flexibility in capturing the important features

of interest rate markets with a remarkable analytical tractability, see e.g. Duffie and Kan

(1996); Duffie et al. (2003), as well as Filipović (2009) for a textbook account. In the

existing literature, affine processes are by definition stochastically continuous and, there-

fore, do not allow for jumps occurring at predetermined dates. In view of our modeling

objectives, we need a suitable generalization of the notion of affine process. To this effect,

Keller-Ressel et al. (2018) have recently introduced affine semimartingales by dropping

the requirement of stochastic continuity. Related results on affine processes with stochas-

tic discontinuities in credit risk may be found in Gehmlich and Schmidt (2018). In the

present section, we aim at showing how the class of affine semimartingales leads to flexible

and tractable multiple curve models with stochastic discontinuities.

We consider a countable set pTnqnPN of discontinuity dates, with Tn`1 ą Tn, for every

n P N, and limnÑ`8 Tn “ `8. We assume that the filtered probability space pΩ,F ,F,Qq
supports a d-dimensional special semimartingale X “ pXtqtě0 which is further assumed

to be an affine semimartingale in the sense of Keller-Ressel et al. (2018) and to admit the

canonical decomposition

X “ X0 ` BX ` Xc ` x ˚ pµX ´ νXq, (5.1)
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where BX is a finite variation predictable process, Xc is a continuous local martingale

with quadratic variation CX and µX ´ νX is the compensated jump measure of X. Let

BX,c be the continuous part of BX and νX,c the continuous part of the random measure

νX , in the sense of (Jacod and Shiryaev, 2003, § II.1.23). In view of (Keller-Ressel et al.,

2018, Theorem 3.2), it holds under weak additional assumptions that

BX,c
t pωq “

ż t

0

`

β0psq `
d

ÿ

i“1

Xi
s´pωqβipsq

˘

ds,

CX
t pωq “

ż t

0

`

α0psq `
d

ÿ

i“1

Xi
s´pωqαipsq

˘

ds,

νX,cpω, dt, dxq “
´

µ0pt, dxq `
d

ÿ

i“1

Xi
t´pωqµipt, dxq

¯

dt,

ż

Rd

´

exu,xy ´ 1
¯

νXpω, ttu, dxq “

˜

exp
´

γ0pt, uq `
d

ÿ

i“1

xXi
t´pωq, γipt, uqy

¯

´ 1

¸

.

(5.2)

In (5.2), we have that βi : R` Ñ Rd and αi : R` Ñ Rdˆd, for i “ 0, 1, . . . , d, γ0 : R`ˆCd Ñ
C´ and γi : R` ˆ Cd Ñ Cd, for i “ 1, . . . , d. For all i “ 0, 1, . . . , d, µipt, dxq is a Borel

measure on Rdzt0u such that
ş

Rdzt0up1 ` |x|2qµipt, dxq ă `8, for all t P R`. Finally, we

assume that νXpttu,Rdq vanishes a.s. outside the set of stochastic discontinuities pTnqnPN.

We use the affine semimartingale X as the driving process of a multiple curve model, as

presented in Section 3. In particular, we focus here on modeling the δ-tenor bond prices

P pt, T, δq and the multiplicative spreads Sδ
t in such a way that the resulting model is affine

in the sense of the following definition, which extends the approach of (Keller-Ressel et al.,

2018, Section 5.3).

Definition 5.1. The multiple curve model is said to be affine if

fpt, T, δq “ fp0, T, δq `
ż t

0
ϕps, T, δqdXs, for all δ P D0 (5.3)

Sδ
t “ Sδ

0 exp

ˆ
ż t

0
ψδ
sdXs

˙

, for all δ P D, (5.4)

for all 0 ď t ď T ă `8, where ϕ : Ω ˆ R2
` ˆ D0 Ñ Rd and ψδ : Ω ˆ R` ˆ D Ñ Rd are

predictable processes such that, for every i “ 1, . . . , d and T P R`,

ψδ P LpXq and

ż T

0
|ψδ

t ||dBX,c
t | ă `8 a.s., for all δ P D,

and, for all δ P D0,
ˆ

ż T

0
|ϕip¨, u, δq|2ηpduq

˙1{2

P LpXiq and

ż T

0

ż T

0
|ϕpt, u, δq|ηpduq|dBX,c

t | ă `8 a.s.,

with LpXq denoting the set of Rd-valued predictable processes which are integrable in

the semimartingale sense with respect to X, and similarly for LpXiq. The measure η is

specified as in equation (3.6).

For all 0 ď t ď T ă `8 and δ P D0, let us also define

ϕ̄pt, T, δq :“
ż

rt,T s
ϕpt, u, δqηpduq.
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We furthermore assume that
şT
0 epψδ

t qJx1tpψδ
t qJxą1uν

X,cpdt, dxq ă `8 a.s., for all T P R`,

which ensures that Sδ is a special semimartingale (see (Jacod and Shiryaev, 2003, Propo-

sition II.8.26)). To complete the specification of the model, we suppose that the numéraire

X0 takes the following form:

X0
t “ exp

´

ż t

0
rsds `

ÿ

nPN
ψJ
Tn
∆XTn1tTnďtu

¯

, for all t ě 0, (5.5)

where prtqtě0 is an adapted real-valued process satisfying
şT
0 |rt|dt ă `8 a.s., for T P R`,

and ψTn is a d-dimensional FTn´-measurable random vector, for n P N.
We aim at characterizing when Q is a risk-neutral measure for an affine multiple curve

model. By Remark 3.8, we clearly see that a necessary condition is that

rt “ fpt, t, 0q, for a.e. t ě 0. (5.6)

Under the present assumptions and in the spirit of Theorem 3.7, the following proposi-

tion provides sufficient conditions for Q to be a risk-neutral measure for the affine multiple

curve model introduced above. For convenience of notation we let ψ0
t :“ 0 for all t P R`

and S0
0 :“ 1, so that S0 :“ S0

0 expp
ş¨
0 ψ

0
sdXsq ” 1.

Proposition 5.2. Consider an affine multiple curve model as in Definition 5.1 and sat-

isfying (5.6) and assume furthermore that

ż T

0

ż

Rdzt0u

ˇ

ˇ

ˇ
epψδ

sqJx
`

e´ϕ̄ps,T,δqJx ´ 1
˘

` ϕ̄ps, T, δqJx
ˇ

ˇ

ˇ
νX,cpds, dxq ă `8 a.s. (5.7)

for every δ P D0 and T P R`. Then Q is a risk-neutral measure with respect to the

numéraire X0 given as in (5.5) if the following three conditions hold a.s. for every δ P D0:

(i) for a.e. t P R`, it holds that

rt ´ fpt, t, δq “ pψδ
t qJ

´

β0ptq `
d

ÿ

i“1

Xi
t´βiptq

¯

`
1

2
pψδ

t qJ
´

α0ptq `
d

ÿ

i“1

Xi
t´αiptq

¯

ψδ
t

`
ż

Rdzt0u

´

epψδ
t qJx ´ 1 ´ pψδ

t qJx
¯

ˆ

µ0pt, dxq `
d

ÿ

i“1

Xi
t´µipt, dxq

˙

;

(ii) for every T P R`, a.e. t P r0, T s and for every i “ 0, 1, . . . , d, it holds that

ϕ̄pt, T, δqJβiptq “ ϕ̄pt, T, δqJαiptq
´1

2
ϕ̄pt, T, δq ´ ψδ

t

¯

`
ż

Rdzt0u

´

epψδ
t qJx

´

e´ϕ̄pt,T,δqJx ´ 1
¯

` ϕ̄pt, T, δqJx
¯

µipt, dxq; (5.8)

(iii) for every n P N and T ě Tn, it holds that

γ0

´

Tn,ψ
δ
Tn

´ ψTn ´
ż

pTn,T s
ϕpTn, u, δqηpduq

¯

`
d

ÿ

i“1

A

Xi
Tn´, γi

´

Tn,ψ
δ
Tn

´ ψTn ´
ż

pTn,T s
ϕpTn, u, δqηpduq

¯E

“ ´fpTn´, Tn, δq.
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Proof. As a preliminary, note that our integrability assumptions ensure that ψδ ¨X and Sδ

are special semimartingales, for every δ P D0. Hence, (Jacod and Shiryaev, 2003, Theorem

II.8.10) implies that the process Sδ admits a stochastic exponential representation of the

form (3.3)-(3.4), with

αδ
t “ pψδ

t qJ
´

β0ptq `
d

ÿ

i“1

Xi
t´βiptq

¯

`
1

2
pψδ

t qJ
´

α0ptq `
d

ÿ

i“1

Xi
t´αiptq

¯

ψδ
t

`
ż

Rdzt0u

´

epψδ
t qJx ´ 1 ´ pψδ

t qJx
¯

ˆ

µ0pt, dxq `
d

ÿ

i“1

Xi
t´µipt, dxq

˙

,

∆Aδ
Tn

“ epψδ
Tn

qJ∆XTn ´ 1, for all n P N,

and Lδpt, xq “ pepψδ
t qJx ´ 1q1Jcptq, for all pt, xq P R` ˆ Rdzt0u, where we define the set

Jc :“ R`z
Ť

nPNtTnu. Due to the specification (5.5) of X0, condition (i) of Theorem

3.7 reduces to the condition aδt “ fpt, t, 0q ´ fpt, t, δq, for a.e. t P R` and δ P D (see also

equation (3.13) in Remark 3.8), from which condition (i) directly follows. The integrability

conditions appearing in Definition 5.1 enable us to apply the stochastic Fubini theorem

in the version of (Protter, 2004, Theorem IV.65) and, moreover, ensure that ϕp¨, T, δq ¨ X
is a special semimartingale, for every δ P D0 and T P R`. This permits to obtain a

representation of P pt, T, δq in the form of Lemma 3.5, namely:

P pt, T, δq “ exp

ˆ

´
ż T

0
fp0, u, δqηpduq ´

ż t

0
ϕ̄ps, T, δqdBX,c

s ´
ÿ

nPN
ϕ̄pTn, T, δqJ∆XTn1tTnďtu

´
ż t

0
ϕ̄ps, T, δqdXc

s ´
ż t

0

ż

Rdzt0u
ϕ̄ps, T, δqJx1JcpsqpµXpds, dxq ´νXpds, dxqq

`
ż t

0
fpu, u, δqηpduq

˙

.

In view of the affine structure (5.2) and comparing with representation (3.8), it holds that

āpt, T, δq “ ϕ̄pt, T, δqJ
´

β0ptq `
d

ÿ

i“1

Xi
t´βiptq

¯

,

}b̄pt, T, δq}2 “ ϕ̄pt, T, δqJ
´

α0ptq `
d

ÿ

i“1

Xi
t´αiptq

¯

ϕ̄pt, T, δq,

b̄pt, T, δqJHδ
t “ ϕ̄pt, T, δqJ

´

α0ptq `
d

ÿ

i“1

Xi
t´αiptq

¯

ψδ
t ,

and ḡpt, x, T, δq “ ϕ̄pt, T, δqJx1Jcptq, for all 0 ď t ď T ă `8, δ P D0 and x P Rdzt0u.
Therefore, in the present setting condition (ii) of Theorem 3.7 takes the form

ϕ̄pt, T, δqJ
ˆ

β0ptq `
d

ÿ

i“1

Xi
t´βiptq

˙

“ ϕ̄pt, T, δqJ
ˆ

α0ptq `
d

ÿ

i“1

Xi
t´αiptq

˙ ˆ

1

2
ϕ̄pt, T, δq ´ ψδ

t

˙

`
ż

Rdzt0u

´

epψδ
t qJx

`

e´ϕ̄pt,T,δqJx ´ 1
˘

` ϕ̄pt, T, δqJx
¯ ´

µ0pt, dxq `
d

ÿ

i“1

Xi
t´µipt, dxq

¯

.

(5.9)
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It is clear that condition (ii) of the proposition is sufficient for (5.9) to hold, for every

T P R` and a.e. t P r0, T s. In the present setting, conditions (iii)-(iv) of Theorem 3.7 can

be together rewritten as follows, for every δ P D0, n P N and T ě Tn:

e´fpTn´,Tn,δq “ EQ

«

1 ` ∆Aδ
Tn

1 ` ∆BTn

e
´

ş

pTn,T s ϕpTn,u,δqJ∆XTn ηpduq
ˇ

ˇ

ˇ

ˇ

FTn´

ff

“ EQ

«

exp

˜

ˆ

ψδ
Tn

´ ψTn ´
ż

pTn,T s
ϕpTn, u, δqηpduq

˙J

∆XTn

¸

ˇ

ˇ

ˇ

ˇ

FTn´

ff

,

from which condition (iii) of the proposition follows by making use of (5.2). Finally, in

the present setting the integrability condition (3.10) appearing in Theorem 3.7 reduces to

condition (5.7). In view of Theorem 3.7, we conclude that Q is a risk-neutral with respect

to the numéraire X0. □

Remark 5.3. Condition (ii) is only sufficient for the necessary condition (5.9) - only if

the coordinates of Xi are linearly independent, this condition is also necessary.

The following examples illustrate the conditions of Proposition 5.2.

Example 5.4 (A single-curve Vasiček-specification). As a first example we study a classi-

cal single-curve (i.e. D “ H) model without jumps, driven by a one-dimensional Gaussian

Ornstein-Uhlenbeck process. Consider ξ as the solution of

dξt “ κpθ ´ ξtqdt ` σdWt,

where W is a Brownian motion and κ, θ,σ are positive constants. As driving process

in (5.3) we choose the three-dimensional affine process Xt “ pt,
şt
0 ξsds, ξtq

J, t ě 0.

The coefficients in the affine semimartingale representation (5.2) are time-homogeneous,

i.e. αiptq “ αi and βiptq “ βi, i “ 0, . . . , 3, given by

β0 “

¨

˝

1

0

κθ

˛

‚, β1 “

¨

˝

0

0

0

˛

‚, β2 “

¨

˝

0

0

0

˛

‚, β3 “

¨

˝

0

1

´κ

˛

‚, α0 “

¨

˝

0 0 0

0 0 0

0 0 σ2

˛

‚,

and α1 “ α2 “ α3 “ 0. The drift condition (5.8) implies

ϕ̄1pt, T, 0q “
σ2

2

`

ϕ̄3pt, T, 0q
˘2

´ κθϕ̄3pt, T, 0q,

ϕ̄2pt, T, 0q “ κϕ̄3pt, T, 0q.
(5.10)

We are free to specify ϕ3pt, T, 0q and choose

ϕ̄3pt, T, 0q “
1

κ

´

1 ´ e´κpT´tq
¯

. (5.11)

This in turn implies that

ϕ1pt, T, 0q “
σ2

κ

´

e´κpT´tq ´ e´2κpT´tq
¯

´ κθe´κpT´tq,

ϕ2pt, T, 0q “ κe´κpT´tq,

ϕ3pt, T, 0q “ e´κpT´tq.

It is now straightforward to verify that this indeed corresponds to the Vasiček model, see

Section 10.3.2.1 Filipović (2009). Note that this also implies fpt, t, 0q “ ξt. Choosing

rt “ fpt, t, 0q leads to the numéraire X0 “ expp
ş¨
0 fps, s, 0qdsq. Hence, all conditions
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in Proposition 5.2 are satisfied and the model is free of arbitrage. An extension to the

multi-curve setting is presented in the following Example 5.6.

Example 5.5 (A single-curve Vasiček-specification with discontinuity). As a next step,

we extend the previous example by introducing a discontinuity at time 1. Our goal is to

provide a simple, illustrative example with jump size depending on the driving process ξ

and we therefore remain in the single-curve framework.

We assume that there is a multiplicative jump in the numéraire at time T1 “ 1 de-

pending on exppaξ1 ` 󰂃q, where a P R and 󰂃 „ N p0, b2q is an independent normally

distributed random variable with variance b2. As driving process in (5.3) we consider the

five-dimensional affine process

Xt “
´

ż t

0
ηpdsq,

ż t

0
ξsds, ξt,1ttě1uξ1,1ttě1u󰂃q

¯J
,

where ηpdsq “ ds ` δ1pdsq. The size of the jump in the numéraire is specified by

ψJ
t ∆Xt “ 1tt“1upaξ1 ` 󰂃q,

which can be achieved by ψJ
1 “ p0, 0, 0, a, 1q. The coefficients in the affine semimartingale

representation (5.2) αi, βi, i “ 0, . . . , 3 are as in Example 5.4, with zeros in the additional

rows and columns. In addition we have that β4 “ β5 “ 0 and α4 “ α5 “ 0. Moreover,
ż

exu,xyνXpttu, dxq “ 1tt“1u exp
´

u1 ` u4X
3
1 `

u25b
2

2

¯

, u P R5.

Finally, we choose for t ď T

ϕ3pt, T, 0q “

$

’

’

&

’

’

%

0 for t “ 1 ď T,

ae´κp1´tq for t ă 1 “ T,

e´κpT´tq otherwise,

ϕ1p1, 1, 0q “ b2{2, ϕ4pt, T, 0q “ p1 ´ aq1tt“T“1u, and ϕ5pt, T, 0q “ 0. ϕ1pt, T, 0q for pt, T q ‰
p1, 1q and ϕ2pt, T, 0q for t ď T can be derived from ϕ3pt, T, 0q as in the previous example

by means of the drift condition (5.8). Condition (iii) is the interesting condition for this

example. This condition is equivalent to

aX3
1 ´

b2

2
“ fp1´, 1, 0q, (5.12)

which can be satisfied by choosing fp0, 1, 0q “ ´b2{2. Equation (5.12) together with the

specification of ϕipt, T, 0q for i “ 1, . . . , 5 ensures that fpt, t, 0q “ ξt. Choosing rt “
fpt, t, 0q we obtain that the model is free of arbitrage and the term structure is fully

specified: indeed, we recover for 1 ď t ď T and 0 ď t ď T ă 1 the bond pricing formula

from the previous example

P pt, T, 0q “ exp
´

´ ApT ´ t, 0q ´ BpT ´ t, 0qX3
t

¯

,

while, for 0 ď t ă 1 ď T ,

P pt, T, 0q “ exp
´

´ApT´1, 0q´Ap1´t,´BpT´1, 0q´aq´Bp1´t,´BpT´1, 0q´aqX3
t `b2{2

¯

.

The coefficients Apτ, uq and Bpτ, uq are the well-known solutions of the Riccati equations,

such that

EQre´
şτ
0 ξsds`uξτ s “ e´Apτ,uq´Bpτ,uqξ0 ,
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see Section 10.3.2.1 and Corollary 10.2 in Filipović (2009) for details and explicit formulae.

The example presented here extends Example 6.15 from Keller-Ressel et al. (2018) to a

fully specified term-structure model.

Example 5.6 (A simple multi-curve Vasiček-specification). We extend Example 5.4 to

the multi-curve setting and consider D “ tδu. For simplicity, we choose as driving diffusive

part a two-dimensional Gaussian Ornstein-Uhlenbeck process:

dξit “ κipθi ´ ξitqdt ` σidW
i
t , i “ 1, 2,

where pW 1,W 2qJ is a two-dimensional Brownian motion with correlation ρ. The driving

process X in (5.3) is specified as

Xt “
´

t,

ż t

0
ξ1sds, ξ

1
t ,

ż t

0
ξ2sds, ξ

2
t

¯J
.

The coefficients αi and βi, i “ 0, . . . , 5 are time-homogeneous and obtained similarly as in

Example 5.4 from (5.2). Note that here

α0 “

¨

˚

˚

˚

˚

˚

˝

0 0 0 0 0

0 0 0 0 0

0 0 σ2
1 0 ρσ1σ2

0 0 0 0 0

0 0 ρσ1σ2 0 σ2
2

˛

‹

‹

‹

‹

‹

‚

.

The coefficients ϕ1pt, T, 0q, . . . ,ϕ3pt, T, 0q are chosen as in Example 5.4, while ϕ4pt, T, 0q “
ϕ5pt, T, 0q “ 0. We note that again fpt, t, 0q “ ξ1t and set rt “ fpt, t, 0q. Moreover, we

choose ϕ2pt, T, δq “ ϕ3pt, T, δq “ 0 and

ϕ̄5pt, T, δq “
1

κ2

´

1 ´ e´κ2pT´tq
¯

.

Now, choose pψδ
t qJ “ p0, 1, 0,´1, 0q, so that ϕ1pt, T, δq and ϕ4pt, T, δq can be calculated

from ϕ̄5pt, T, δq by means of the drift condition (5.8). At this stage, the model is fully

specified. It is not difficult to verify that we are in the affine framework computed in detail

in (Brigo and Mercurio, 2001, Chapter 4.2), where explicit expressions for bond prices may

be found. Moreover, we obtain fpt, t, δq “ ξ2t “ X5
t and condition (ii) (and (iii), trivially)

from Proposition 5.2 is satisfied. Condition (i) also holds: in this regard, note that

pψδ
t qJ

´

β0 `
5

ÿ

i“1

Xi
tβi

¯

“ pψδ
t qJ

¨

˚

˚

˚

˚

˚

˝

1

X3
t

κ1θ1 ´ κ1X
3
t

X5
t

κ2θ2 ´ κ2X
5
t

˛

‹

‹

‹

‹

‹

‚

“ fpt, t, 0q ´ fpt, t, δq.

Since all conditions of Proposition 5.2 are now satisfied, the model is free of arbitrage.

Example 5.7 (A multi-curve Vasiček-specification with discontinuities). We extend the

previous example by allowing for discontinuities, which can be of type I as well as of type

II (see Section 1.2) and can have a different impact on the OIS and on the Ibor curves.

As in Example 5.6, we consider a two-dimensional Gaussian Ornstein-Uhlenbeck process:

dξit “ κipθi ´ ξitqdt ` σidW
i
t , i “ 1, 2.
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The driving process X in (5.3) is enlarged as follows:

Xt “
´

ż t

0
ηpdsq,

ż t

0
ξ1sds, ξ

1
t ,

ż t

0
ξ2sds, ξ

2
t ,

ż t

0
Jsds, Jt

¯J
,

where the process J is defined as

Jt “
ÿ

Tiďt

󰂃ie
´κ3pt´Tiq, t ě 0,

for some κ3 ě 0. A large value of κ3 corresponds to a high speed of mean-reversion in J

and generates a spiky behavior, corresponding to discontinuities of type II (recall Figure

3). On the contrary, a small value of κ3 generates long-lasting jumps, which are in line with

discontinuities of type I. For simplicity, the random variables p󰂃iqiě1 are i.i.d. standard

normal, independent of ξ1 and ξ2. The set of stochastic discontinuities is described by the

time points pTnqnPN and the measure ηpduq is defined as in (3.6). The coefficients αi and

βi are time-homogeneous, i.e. αiptq “ αi and βiptq “ βi for i “ 0, ..., 7, and

β0 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

0

κ1θ1
0

κ2θ2
0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, β3 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0

1

´κ1
0

0

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, β5 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0

0

0

1

´κ2
0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, β7 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0

0

0

0

0

1

´κ3

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

β1 “ β2 “ β4 “ β6 “ 0,

α0 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 σ2
1 0 ρσ1σ2 0 0

0 0 0 0 0 0 0

0 0 ρσ1σ2 0 σ2
2 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

and αi “ 0 for i “ 1, ..., 7. Moreover,
ż

R7

exu,xyνXpttu, dxq “
ÿ

nPN
1tt“Tnu exp

´

u1 `
u27
2

¯

, u P R7,

so that

γ0pTn, uq “ u1 `
u27
2
, u P R7

and γjpTn, uq “ 0 for j “ 1, . . . 7 and n P N.
We assume that jumps in the numéraire and in the spread occur at the stochastic

discontinuities pTnqnPN and are specified by

ψJ
t ∆Xt “

ÿ

nPN
1tt“Tnuc󰂃n, pψδ

t qJ∆Xt “
ÿ

nPN
1tt“Tnua󰂃n,

which can be achieved by choosing

ψJ
t “ p0, 0, 0, 0, 0, 0, cq and pψδ

t qJ “ p0, 0, 0, 1, 0, 0, aq.

From this specification, it follows that the spread is given by Sδ
t “ Sδ

0 expp
şt
0 ξ

2
sds`aJtq. In

line with Remark 3.2, the parameters c and a control the different impact of the stochastic
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discontinuities on the numéraire (and, hence, on the OIS curve) and on the spread (and,
hence, on the Ibor curve). The functions ϕipt, T, 0q for i “ 1, ..., 7 and t ď T are chosen as

ϕ1pt, T, 0q “

$

’

’

’

’

’

&

’

’

’

’

’

%

´θ1κ1e
´κ1pT´tq ´ σ2

1

κ1

´

e´2κ1pT´tq ´ e´κ1pT´tq
¯

, for t, T R tTn : n P Nu,

ce´κ3pT´tq ´ 1
κ3

´

e´2κ3pT´tq ´ e´κ3pT´tq
¯

, for t P tTn : n P Nu S T,

c2{2, for t “ T P tTn : n P Nu,

0, otherwise,

ϕ3pt, T, 0q “ ϕ3pt, T, δq “

#

e´κ1pT´tq, for t, T R tTn : n P Nu,

0, otherwise,

ϕ6pt, T, 0q “

#

κ3e
´κ3pT´tq, for t, T R tTn : n P Nu,

0, otherwise,

ϕ7pt, T, 0q “

#

e´κ3pT´tq, for T R tTn : n P Nu,

0, otherwise,

ϕ2pt, T, 0q “ ϕ2pt, T, δq “ κ1ϕ3pt, T, 0q and ϕ4pt, T, 0q “ ϕ5pt, T, 0q “ 0. For ϕpt, T, δq we
choose

ϕ1pt, T, δq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´ θ1κ1e
´κ1pT´tq ´

σ2
1

κ1

´

e´2κ1pT´tq ´ e´κ1pT´tq
¯

` θ2κ2e
´κ2pT´tq ´

σ2
2

κ2

´

e´2κ2pT´tq ´ e´κ2pT´tq
¯

`
ρσ1σ2

κ1κ2

´

´ κ1e
´κ1pT´tq ´ κ2e

´κ2pT´tq

` pκ1 ` κ2qe´pκ1`κ2qpT´tq
¯

,

for t, T R tTn : n P Nu,

p1 ` aκ3q
κ3

´

p1 ` cκ3qe´κ3pT´tq ´ p1 ` aκ3qe´2κ3pT´tq
¯

, for t P tTn : n P Nu S T,

1
2 pa ´ cq2, for t “ T P tTn : n P Nu,

0, otherwise,

ϕ5pt, T, δq “

#

´e´κ2pT´tq, for t, T R tTn : n P Nu,

0, otherwise,

ϕ6pt, T, δq “

#

κ3p1 ` aκ3qe´κ3pT´tq, for t, T R tTn : n P Nu,

0, otherwise,

ϕ7pt, T, δq “

#

p1 ` aκ3qe´κ3pT´tq, for T R tTn : n P Nu,

0, otherwise,

and ϕ4pt, T, δq “ κ2ϕ5pt, T, δq. With this specification, it can be easily checked that

condition (ii) of Proposition 5.2 is satisfied. Furthermore, it can be verified that

fpt, t, 0q “ ξ1t ` Jt and fpt, t, δq “ ξ1t ´ ξ2t ` p1 ` aκ3qJt.
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Therefore, condition (i) of Proposition 5.2 is satisfied by setting rt “ ξ1t ` Jt. By choosing

fp0, Tn, 0q “ ´c2{2 and fp0, Tn, δq “ ´1
2pa´cq2 and calculating for every n P N and T ě Tn

ż

pTn,T s
ϕ1pTn, u, 0qηpduq “ ´

c

κ3
pe´κ3pT´Tnq ´ 1q `

1

2κ23
pe´κ3pT´Tnq ´ 1q2,

ż

pTn,T s
ϕ7pTn, u, 0qηpduq “ ´

1

κ3
pe´κ3pT´Tnq ´ 1q,

ż

pTn,T s
ϕ1pTn, u, δqηpduq “

pa ´ cqp1 ` aκ3q
κ3

pe´κ3pT´Tnq ´ 1q

`
p1 ` aκ3q2

2κ23
pe´κ3pT´Tnq ´ 1q2,

ż

pTn,T s
ϕ7pTn, u, δqηpduq “ ´

p1 ` aκ3q
κ3

pe´κ3pT´Tnq ´ 1q,

we can see that condition (iii)

´fpTn´, Tn, 0q “ ´
ż

pTn,T s
ϕ1pTn, u, 0qηpduq `

1

2

˜

´c ´
ż

pTn,T s
ϕ7pTn, u, 0qηpduq

¸2

´fpTn´, Tn, δq “ ´
ż

pTn,T s
ϕ1pTn, u, δqηpduq `

1

2

˜

a ´ c ´
ż

pTn,T s
ϕ7pTn, u, δqηpduq

¸2

is satisfied for every n P N and T ě Tn. We can conclude that the term structure is fully

specified and, by Proposition 5.2, the model is free of arbitrage.

6. An FTAP for multiple curve financial markets

In this section, we characterize absence of arbitrage in a multiple curve financial market.

At the present level of generality, this represents the first rigorous analysis of absence of

arbitrage in post-crisis fixed-income markets.

As introduced in Definition 2.2, a multiple curve financial market is a large financial

market containing uncountably many securities. An economically convincing notion of

no-arbitrage for large financial markets has been introduced in Cuchiero, Klein and Teich-

mann (2016) under the name of no asymptotic free lunch with vanishing risk (NAFLVR),

generalizing the classic requirement of NFLVR for finite-dimensional markets (see Delbaen

and Schachermayer (1994); Cuchiero and Teichmann (2014)). In this section, we extend

the main result of Cuchiero, Klein and Teichmann (2016) to an infinite time horizon and

apply it to a general multiple curve financial market.

Let pΩ,F ,F,Pq be a filtered probability space satisfying the usual conditions of right-

continuity and P-completeness, with F :“
Ž

tě0 Ft. Let us recall that a process Z “
pZtqtě0 is said to be a semimartingale up to infinity if there exists a process Z “ pZtqtPr0,1s

satisfying Zt “ Zt{p1´tq, for all t ă 1, and such that Z is a semimartingale with respect to

the filtration F “ pF tqtPr0,1s defined by

F t “

#

F t
1´t

, for t ă 1,

F , for t “ 1,

see (Cherny and Shiryaev, 2005, Definition 2.1). We denote by S the space of real-valued

semimartingales up to infinity equipped with the Emery topology, see Stricker (1981). For

a set C Ă S, we denote by C
S
its closure with respect to the Emery topology.
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We denote by I :“ R` ˆ D0 ˆ R the parameter space characterizing the traded assets

included in Definition 2.2. For notational convenience we represent OIS zero-coupon bonds

by setting ΠFRApt, T, 0,Kq :“ P pt ^ T, T q, for all pt, T q P R2
` and K P R. We also set

ΠFRApt, T, δ,Kq “ ΠFRApT ` δ, T, δ,Kq for all δ P D, K P R and t ě T ` δ.

We assume that discounting takes place with respect to a general numéraireX0, which is

a strictly positive adapted process with X0
0 “ 1. For n P N, we denote by In the family of

all subsets A Ă I containing n elements. For each A “ ppT1, δ1,K1q, . . . , pTn, δn,Knqq P In,

we define SA “ pS1, . . . , Snq by

Si :“ pX0q´1ΠFRAp¨, Ti, δi,Kiq, for i “ 1, . . . , n.

For each A P In, n P N, we assume that SA is a semimartingale on pΩ,F,Pq and denote

by L8pSAq the set of all R|A|-valued predictable processes θ “ pθ1, . . . , θ|A|q which are

integrable up to infinity with respect to SA, in the sense of (Cherny and Shiryaev, 2005,

Definition 4.1). We assume that trading occurs in a self-financing way and say that a

process θ P L8pSAq is a 1-admissible trading strategy if θ0 “ 0 and pθ ¨ SAqt ě ´1 a.s.

for all t ě 0. The set XA
1 of wealth processes generated by 1-admissible trading strategies

with respect to SA is defined as

XA
1 :“

󲷤

θ ¨ SA : θ P L8pSAq and θ is 1-admissible
(

Ă S. (6.1)

The set of wealth processes generated by trading in at most n arbitrary assets is given by

X n
1 “

Ť

APIn XA
1 . By allowing to trade in arbitrary finitely many assets and letting the

number of assets increase to infinity, we arrive at generalized portfolio wealth processes.

The corresponding set of 1-admissible wealth processes is given by X1 :“
Ť

nPNX n
1

S
, so

that all admissible generalized portfolio wealth processes in the multiple curve financial

market are finally given by

X :“
ď

λą0

λX1.

Remark 6.1 (FRA with fixed arbitrary strike). The set X can be equivalently described

as the set of all admissible generalized portfolio wealth processes which can be constructed

in the financial market consisting of the following two subsets of assets:

(i) OIS zero-coupon bonds, for all maturities T P R`,

(ii) FRAs, for all tenors δ P D, all settlement dates T P R` and strike K 1,

for some fixed K 1 P R. This follows from our standing assumption of linear valuation of

FRAs together with the associativity of the stochastic integral.

Since each elementX P X is a semimartingale up to infinity, the limitX8 exists pathwise

and is finite. We can therefore define K0 :“ tX8 : X P X u and C :“ pK0 ´L0
`q XL8, the

convex cone of bounded claims super-replicable with zero initial capital. We are now in a

position to formulate the following crucial definition.

Definition 6.2. We say that the multiple curve financial market satisfies NAFLVR if

C
Ş

L8
` “ t0u,

where C denotes the norm closure in L8 of the set C.

The following result provides a general formulation of the fundamental theorem of asset

pricing for multiple curve financial markets.
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Theorem 6.3. The multiple curve financial market satisfies NAFLVR if and only if there

exists an equivalent separating measure Q, i.e., a probability measure Q „ P on pΩ,F q
such that EQrX8s ď 0 for all X P X .

Proof. We divide the proof into several steps, with the goal of reducing our general multiple

curve market to the setting considered in Cuchiero, Klein and Teichmann (2016).

1) In view of Remark 6.1, it suffices to consider FRA contracts with fixed strike K “ 0,

for all tenors δ P D and settlement dates T P R`. Consequently, the parameter space

I “ R` ˆ D0 ˆ R can be reduced to I 1 :“ R` ˆ t0, 1, . . . ,mu, which can be further

transformed into a subset of R` via I 1 Q pT, iq ÞÑ i ` T {p1 ` T q P r0,m ` 1q “: J .

2) Without loss of generality, we can assume that pX0q´1ΠFRAp¨, T, δ, 0q is a semimartin-

gale up to infinity, for every T P R` and δ P D0. Indeed, let n P N and A P J n. Similarly

as in the proof of (Cherny and Shiryaev, 2005, Theorem 5.5), for each i “ 1, . . . , n, there

exists a deterministic function Ki ą 0 such that pKiq´1 P LpSiq and Y i :“ pKiq´1 ¨Si P S.
Setting Y A “ p1, Y 1, . . . , Y nq, the associativity of the stochastic integral together with

(Cherny and Shiryaev, 2005, Theorem 4.2) allows to prove that

XA
1 “

󲷤

φ ¨ Y A : φ P L8pY Aq,φ0 “ 0 and pφ ¨ Y Aqt ě ´1 a.s. for all t ě 0
(

.

Henceforth, we shall assume that SA P S, for all A P J n and n P N.
3) For t P r0, 1q and u P r0,`8q, let αptq :“ t{p1´tq and βpuq :“ u{p1`uq. The functions

α and β are two inverse isomorphisms between r0, 1q and r0,`8q and can be extended

to r0, 1s and r0,`8s. For A P J n, n P N, let us define the process S
A

“ pS
A
t qtPr0,1s

by S
A
t :“ SA

αptq, for all t P r0, 1s. Since SA P S, the process S
A

is a semimartingale on

pΩ,F,Pq. Let θ P L8pSAq. We define the process θ “ pθtqtPr0,1s by θt :“ θαptq, for all

t ă 1, and θ1 :“ 0. As in the proof of (Cherny and Shiryaev, 2005, Theorem 4.2), it holds

that θ P LpS
A

q. Moreover, for all t P r0, 1s, it can be shown that

pθ ¨ S
A

qt “ pθ ¨ SAqαptq. (6.2)

Conversely, if θ P LpS
A

q, then the process θ “ pθtqtě0 defined by θt :“ θβptq, for t ě 0,

belongs to L8pSAq and it holds that

pθ ¨ SAqt “ pθ ¨ S
A

qβptq, (6.3)

for all t ě 0. Furthermore, pθ ¨ SAq8 “ pθ ¨ S
A

q1 holds if θ1 “ 0.

4) In view of step 3), we can consider an equivalent financial market indexed over r0, 1s
in the filtration F. To this effect, for each A P J n, n P N, let us define

XA
1 :“

󲷤

θ ¨ S
A
: θ P LpS

A
q, θ0 “ θ1 “ 0 and pθ ¨ S

A
qt ě ´1 a.s. for all t P r0, 1s

(

and the sets

X n
1 :“

ď

APIn

XA
1 , X 1 :“

ď

nPN
X n

1

S
, X :“

ď

λą0

λX 1

and K0 :“ tX1 : X P X u, where the closure in the definition of X 1 is taken in the

semimartingale topology on the filtration F. Let pXkqkPN Ď
Ť

nPNX n
1 be a sequence

converging to X in the topology of S (on the filtration F). By definition, for each k P N,
there exists a set Ak such that Xk “ θk ¨SAk for some 1-admissible strategy θk P L8pSAkq.

In view of (6.2), it holds that Xk
αptq “ pθ

k
¨ S

Akqt “: X
k
t , for all t P r0, 1s. Since the

topology of S is stable with respect to changes of time (see (Stricker, 1981, Proposition

1.3)), the sequence pX
k
qkPN converges in the semimartingale topology (on the filtration
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F) to X “ Xαp¨q P X 1. This implies that K0 Ď K0. An analogous argument allows to

show the converse inclusion, thus proving that K0 “ K0. In view of Definition 6.2, this

implies that NAFLVR holds for the original financial market if and only if it holds for the

equivalent financial market indexed over r0, 1s on the filtration F.
5) It remains to show that, for every A P J n, n P N, the set XA

1 satisfies the requirements

of (Cuchiero, Klein and Teichmann, 2016, Definition 2.1). First, XA
1 is convex and, by

definition, each element X P XA
1 starts at 0 and is uniformly bounded from below by ´1.

Second, let X
1
, X

2
P XA

1 and two bounded F-predictable processes H1, H2 ě 0 such that

H1H2 “ 0. By definition, there exist θ
1
and θ

2
such that X

i
“ θ

i
¨ S

A
, for i “ 1, 2. If

Z :“ H1 ¨ X
1

` H2 ¨ X
2

ě ´1, then Z “ pH1θ
1

` H2θ
2
q ¨ S

A
P XA

1 , so that the required

concatenation property holds. Moreover, XA1

Ă XA2

if A1 Ă A2. The theorem finally

follows from (Cuchiero, Klein and Teichmann, 2016, Theorem 3.2). □
Remark 6.4. An equivalent local martingale measure (ELMM) is a probability measure

Q „ P on pΩ,F q such that pX0q´1ΠFRAp¨, T, δ,Kq is a Q-local martingale, for all T P R`,

δ P D0 and K P R. Under additional conditions (namely of locally bounded discounted

price processes), it can be shown that NAFLVR is equivalent to the existence of an ELMM.

In general, one cannot replace in Theorem 6.3 a separating measure with an ELMM, as

shown by an explicit counterexample in Cuchiero, Klein and Teichmann (2016). However,

as a consequence of Fatou’s lemma, the existence of an ELMM always represents a sufficient

condition for NAFLVR. In particular, an ELMM corresponds to a risk-neutral measure,

which has been precisely characterized in the previous sections of the paper.

Remark 6.5. Absence of arbitrage in large financial markets has also been studied by

Kabanov and Kramkov (1998). Differently from their approach, we work on a fixed prob-

ability space pΩ,F ,F,Pq and not on a sequence of probability spaces. On the other hand,

we allow for uncountably many traded assets (see Definition 2.2). Kabanov and Kramkov

(1998) characterize absence of arbitrage in the sense of no asymptotic arbitrage of the first

kind (NAA1), which is a weaker requirement than NAFLVR, see (Cuchiero, Klein and

Teichmann, 2016, Section 4).

Appendix A. Technical results

The following technical result on ratios and products of stochastic exponentials easily

follows from Yor’s formula, see (Jacod and Shiryaev, 2003, § II.8.19).

Corollary A.1. For any semimartingales X, Y and Z with ∆Z ą ´1, it holds that

EpXqEpY q
EpZq

“ E
´

X ` Y ´ Z ` xXc, Y cy ´ xY c, Zcy ´ xXc, Zcy ` xZc, Zcy

`
ÿ

0ăsď¨

ˆ

∆Zsp´∆Xs ´ ∆Ys ` ∆Zsq ` ∆Xs∆Ys
1 ` ∆Zs

˙

¯

.

Proof of Lemma 3.5. Due to Assumption 3.3 it can be verified by means of Minkowski’s

integral inequality and Hölder’s inequality that the stochastic integrals appearing in (3.8)

are well-defined, for every T P R` and δ P D0.

Let F pt, T, δq :“
ş

pt,T s fpt, u, δqηpduq, for all 0 ď t ď T ă `8. For t ă T , equation (3.7)

implies that

F pt, T, δq “
ż

pt,T s

ˆ

fp0, u, δq `
ż t

0
aps, u, δqds ` V pt, u, δq `

ż t

0
bps, u, δqdWs
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`
ż t

0

ż

E
gps, x, u, δqpµpds, dxq ´ νpds, dxqq

˙

ηpduq

“
ż T

0
fp0, u, δqηpduq `

ż T

0

ż t

0
aps, u, δqdsηpduq `

ż T

0
V pt, u, δqηpduq

`
ż T

0

ż t

0
bps, u, δqdWsηpduq `

ż T

0

ż t

0

ż

E
gps, x, u, δqpµpds, dxq ´ νpds, dxqqηpduq

´
ż t

0
fp0, u, δqηpduq ´

ż t

0

ż u

0
aps, u, δqdsηpduq ´

ż t

0
V pu, u, δqηpduq

´
ż t

0

ż u

0
bps, u, δqdWsηpduq ´

ż t

0

ż u

0

ż

E
gps, x, u, δqpµpds, dxq ´ νpds, dxqqηpduq.

Due to Assumption 3.3, we can apply ordinary and stochastic Fubini theorems, in the

version of (Veraar, 2012, Theorem 2.2) for the stochastic integral with respect to W and

in the version of (Björk et al., 1997, Proposition A.2) for the stochastic integral with

respect to the compensated random measure µ ´ ν. We therefore obtain

F pt, T, δq “
ż T

0
fp0, u, δqηpduq `

ż t

0

ż

rs,T s
aps, u, δqηpduqds `

ż T

0
V pt, u, δqηpduq

`
ż t

0

ż

rs,T s
bps, u, δqηpduqdWs

`
ż t

0

ż

E

ż

rs,T s
gps, x, u, δqηpduqpµpds, dxq ´ νpds, dxqq ´

ż t

0
fpu, u, δqηpduq

“
ż T

0
fp0, u, δqηpduq `

ż t

0
āps, T, δqds `

ÿ

nPN
V̄ pTn, T, δq1tTnďtu

`
ż t

0
b̄ps, T, δqdWs

`
ż t

0

ż

E
ḡps, x, T, δqpµpds, dxq ´ νpds, dxqq ´

ż t

0
fpu, u, δqηpduq

“: Gpt, T, δq.
(A.1)

In (A.1), the finiteness of the integral term
ş¨
0 fpu, u, δqηpduq follows by Assumption 3.3

together with an analogous application of ordinary and stochastic Fubini theorems.

To complete the proof, it remains to establish (3.8) for t “ T P R`. To this effect,

it suffices to show that ∆GpT, T, δq “ ∆F pT, T, δq for all T P R`, where ∆GpT, T, δq :“
GpT, T, δq ´ GpT´, T, δq, and similarly for ∆F pT, T, δq. By (Jacod and Shiryaev, 2003,

Proposition II.1.17), the fact that νptT u, Eq “ 0 implies that QpµptT u, Eq ‰ 0q “ 0, for

every T P R`. Therefore, it holds that Qp∆GpT, T, δq ‰ 0q ą 0 only if T “ Tn, for some

n P N. For T “ T1, equations (A.1) and (3.7) together imply that

∆GpT1, T1, δq “ V̄ pT1, T1, δq ´ fpT1, T1, δq “ ´fpT1´, T1, δq

“ ´F pT1´, T1, δq “ ∆F pT1, T1, δq,

where the last equality follows from the convention F pT1, T1, δq “ 0. By induction over

n, the same reasoning allows to show that ∆GpTn, Tn, δq “ ∆F pTn, Tn, δq, for all n P N.
Finally, the semimartingale property of pP pt, T, δqq0ďtďT follows from (A.1). □
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Appendix B. Embedding of market models into the HJM framework

The general market model considered in Section 4, as specified by equation (4.2), can be

embedded into the extended HJM framework of Section 3. For simplicity of presentation,

let us consider a market model for a single tenor (i.e., D “ tδu) and suppose that the

forward Ibor rate Lp¨, T, δq is given by (4.2), for all T P T δ “ tT1, . . . , TNu, with Ti`1´Ti “
δ for all i “ 1, . . . , N ´1. Always for simplicity, let us assume that there is a fixed number

N ` 1 of discontinuity dates, coinciding with the set of dates T 0 :“ T δ
Ť

tTN`1u, with
TN`1 :“ TN ` δ. We say that tLp¨, T, δq : T P T δu can be embedded into an extended HJM

model if there exists a sigma-finite measure η on R`, a spread process Sδ and a family of

forward rates tfp¨, T, δq : T P T δu such that

Lpt, T, δq “
1

δ

ˆ

Sδ
t

P pt, T, δq
P pt, T ` δq

´ 1

˙

, for all 0 ď t ď T P T δ, (B.1)

where P pt, T, δq is given by (3.5), for all 0 ď t ď T P T δ. In other words, in view of

equation (2.3), the HJM model generates the same forward Ibor rates as the original

market model, for every date T P T δ.

We remark that, since a market model involves OIS bonds only for maturities T 0 “
tT1, . . . , TN`1u, there is no loss of generality in taking the measure η in (3.5) as a purely

atomic measure:

ηpduq “
N`1
ÿ

i“1

δTipduq. (B.2)

More specifically, if OIS bonds for maturities T 0 are defined through (3.5) via a generic

measure of the form (3.6), then there always exists a measure η as in (B.2) generating the

same bond prices, up to a suitable choice of the forward rate process.

The following proposition explicitly shows how a general market model can be embedded

into an HJM model. For t P r0, TN s, we define iptq :“ mintj P t1, . . . , Nu : Tj ě tu, so
that Tiptq is the smallest T P T δ such that T ě t.

Proposition B.1. Suppose that all the conditions of Theorem 4.1 are satisfied, with re-

spect to the measure η given in (B.2), and assume furthermore that Lpt, T, δq ą ´1{δ
a.s. for all t P r0, T s and T P T δ. Then, under the above assumptions, the market model

tLp¨, T, δq : T P T δu can be embedded into an HJM model by choosing

(i) a family of forward rates tfp¨, T, δq : T P T δu with initial values

fp0, Ti, δq “ fp0, Ti`1, 0q ´ log

ˆ

1 ` δLp0, Ti, δq
1 ` δLp0, Ti´1, δq

˙

, for i “ 1, . . . , N,

and satisfying (3.7) where, for all i “ 1, . . . , N , the volatility process bp¨, Ti, δq,
the jump function gp¨, ¨, Ti, δq and the random variables p∆V pTn, Ti, δqqn“1,...,N are

respectively given by

bpt, Ti, δq “

$

&

%

bpt, Ti, 0q ` bpt, Ti`1, 0q ´ δ bLpt,Ti,δq
1`δLpt´,Ti,δq , if i “ iptq,

bpt, Ti`1, 0q ´ δ
´

bLpt,Ti,δq
1`δLpt´,Ti,δq ´ bLpt,Ti´1,δq

1`δLpt´,Ti´1,δq

¯

, if i ą iptq,

gpt, x, Ti, δq “

$

’

’

&

’

’

%

gpt, x, Ti, 0q ` gpt, x, Ti`1, 0q ´ log
´

1 ` δgLpt,x,Ti,δq
1`δLpt´,Ti,δq

¯

, if i “ iptq,

gpt, x, Ti`1, 0q ´ log

˜

1` δgLpt,x,Ti,δq
1`δLpt´,Ti,δq

1`
δgLpt,x,Ti´1,δq
1`δLpt´,Ti´1,δq

¸

, if i ą iptq,
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∆V pTn, Ti, δq “ ∆V pTn, Ti`1, 0q ´ log

¨

˝

1`δLpTn,Ti,δq
1`δLpTn´,Ti,δq
1`δLpTn,Ti´1,δq
1`δLpTn´,Ti´1,δq

˛

‚, for i ě n ` 1,

and the process ap¨, Ti, δq is determined by condition (ii) of Theorem 3.7;

(ii) a spread process Sδ with initial value Sδ
0 “

`

1 ` δLp0, 0, δq
˘

P p0, δq and satisfying

(3.3)-(3.4), where the processes αδ, Hδ, the function Lδ and the random variables

p∆Aδ
Tn

qn“1,...,N are respectively given by

αδ
t “ 0, Hδ

t “ 0, Lδpt, xq “ 0,

∆Aδ
Tn

“

ˆ

1 ` δLpTn, Tn, δq
1 ` δLpTn´, Tn, δq

˙

efpTn´,Tn,0q´fpTn´,Tn,δq´∆V pTn,Tn`1,0q ´ 1.

Moreover, the resulting HJM model satisfies all the conditions of Theorem 3.7.

Proof. Since the proof involves rather lengthy computations, we shall only provide a sketch.

For T P T δ, by Theorem 4.1 and the assumption Lpt, T, δq ą ´1{δ a.s. for all t P r0, T s,
the process p1 ` δLp¨, T, δqqP p¨, T ` δq{X0 is a strictly positive Q-local martingale, so

that Lpt´, T, δq ą ´1{δ a.s. for all t P r0, T s and T P T δ. Let us define the process

Y pT, δq “ pYtpT, δqq0ďtďT by YtpT, δq :“ Sδ
t P pt, T, δq{P pt, T ` δq. An application of Corol-

lary A.1, together with equation (3.3) and Corollary 3.6, enables us to obtain a stochastic

exponential representation and a semimartingale decomposition of the process Y pT, δq.
For the spread process Sδ given in (3.3), we start by imposing Hδ “ 0 and Lδ “ 0. We

then proceed to determine the processes describing the forward rates tfp¨, T, δq : T P T δu
satisfying (3.7). In view of (B.1), for each T P T δ, we determine the process bp¨, T, δq by

matching the Brownian part of Y pT, δq with the Brownian part of δLp¨, T, δq, while the

jump function gp¨, ¨, T, δq is obtained in a similar way by matching the totally inaccessible

jumps of Y pT, δq with the totally inaccessible jumps of δLp¨, T, δq. The drift process

ap¨, T, δq is then univocally determined by imposing condition (ii) of Theorem 3.7. As a

next step, for each n “ 1, . . . , N , the random variable ∆Aδ
Tn

appearing in (3.3)-(3.4) is

determined by requiring that

∆YTnpTn, δq “ δ∆LpTn, Tn, δq. (B.3)

Then, for each n “ 1, . . . , N ´1 and T P tTn`1, . . . , TNu, the random variable ∆V pTn, T, δq
is determined by requiring that

∆YTnpT, δq “ δ∆LpTn, T, δq, (B.4)

while ∆V pTn, T, δq :“ 0 for T ď Tn. Note that ∆V pTn, TN`1, δq “ 0 for δ ‰ 0 and

n “ 1, . . . , N ` 1. At this stage, the forward rates tfp¨, T, δq : T P T δu are completely

specified. With this specification of processes, it can be verified that conditions (4.3) and

(4.4) respectively imply that conditions (3.10) and (3.11) of Theorem 3.7 are satisfied,

using the fact that Assumption 3.3 as well as conditions (3.10)-(3.11) are satisfied for

δ “ 0 and T P T 0 by assumption. Moreover, it can be checked that, if condition (ii)

of Theorem 4.1 is satisfied, then the random variables ∆Aδ
Tn

and ∆V pTn, T, δq resulting

from (B.3)-(B.4) satisfy conditions (iii)-(iv) of Theorem 3.7, for every n P N and T P T δ.

It remains to specify the process αδ appearing in (3.4). To this effect, an inspection of

Lemma 3.5 and Corollary 3.6 reveals that, since the measure η is purely atomic, the terms

fpt, t, δq and fpt, t, 0q do not appear in condition (i) of Theorem 3.7 and in condition (3.12),

respectively. Since (3.12) holds by assumption, αδ “ 0 follows by imposing condition (i)
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of Theorem 3.7. We have thus obtained that the two processes

`

1 ` δLp¨, T, δq
˘P p¨, T ` δq

X0
and

SδP p¨, T, δq
X0

are two local martingales starting from the same initial values, with the same continuous

local martingale parts and with identical jumps. By (Jacod and Shiryaev, 2003, Theorem

I.4.18 and Corollary I.4.19), we conclude that (B.1) holds for all 0 ď t ď T P T δ. □

We want to point out that the specification described in Proposition B.1 is not the

unique HJM model which allows to embed a given market model tLp¨, T, δq : T P T δu.
Indeed, bpt, Tiptq, δq and Hδ

t can be arbitrarily specified as long as they satisfy

bpt, Tiptq, δq ´ Hδ
t “ bpt, Tiptq, 0q ` bpt, Tiptq`1, 0q ´ δ

bLpt, Tiptq, δq

1 ` δLpt´, Tiptq, δq
,

together with suitable integrability requirements. An analogous degree of freedom exists

concerning the specification of the functions gpt, x, Tiptq, δq and Lδpt, xq. Note also that

the random variable ∆Aδ
Tn

given in Proposition B.1 can be equivalently expressed as

∆Aδ
Tn

“
1 ` δLpTn, Tn, δq

1 ` δLpTn´1, Tn´1, δq
P pTn, Tn`1q
P pTn´1, Tnq

´ 1, for n “ 1, . . . , N.
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