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ABSTRACT

We propose a data-driven secure wireless communication
scheme, in which the goal is to transmit a signal to a legit-
imate receiver with minimal distortion, while keeping some
information about the signal private from an eavesdropping
adversary. When the data distribution is known, the optimal
trade-off between the reconstruction quality at the legitimate
receiver and the leakage to the adversary can be characterised
in the information theoretic asymptotic limit. In this paper,
we assume that we do not know the data distribution, but
instead have access to a dataset, and we are interested in the
finite blocklength regime rather than the asymptotic limits.
We propose a data-driven adversarially trained deep joint
source-channel coding architecture, and demonstrate through
experiments with CIFAR-10 dataset that it is possible to
transmit to the legitimate receiver with minimal end-to-end
distortion while concealing information on the image class
from the adversary.

Index Terms— security, wiretap channel, convolutional
neural networks, generative adversarial networks

1. INTRODUCTION

Physical layer secrecy achieves information confidentiality by
exploiting an advantage for the legitimate channel with re-
spect to some eavesdropper. This approach to security is par-
ticularly interesting, since it does not rely on cryptographic
mechanisms, but only on physical characteristics of the chan-
nel, and provides security guarantees independent of the com-
putational power of the eavesdropper. The limits of physical
layer secrecy are characterized by the secrecy capacity, or the
more general trade-off between the communication rate and
the private message’s equivocation (secrecy) rate [1, 2, 4–6].

Here, we consider the more general setting studied in [3]
(see Fig. 1 for an illustration), where we consider the lossy
delivery of an information source (Uk) to the legitimate re-
ceiver, while limiting the information leakage to an adver-
sary. We will further generalize the model in [3], and as-
sume that the transmitter only wants to keep a certain sensitive
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Fig. 1: The wiretap channel model.

part of the information source (S) secure from the eavesdrop-
per. By considering independent and identically distributed
(i.i.d.) discrete memoryless source and channel distributions,
the fundamental trade-off between the best achievable distor-
tion at the legitimate receiver, and the leakage to the eaves-
dropper, measured by the equivocation rate, is characterized
in [3] in the asymptotic information theoretic regime. It is
shown that the optimal performance is achieved by a separa-
tion based scheme, where lossy compression of the source is
followed by an optimal wiretap channel code to transmit the
compressed bits. This formulation is attractive as it provides
theoretical and quantifiable security guarantees; however, its
application to practical systems is limited due to the idealistic
and perfectly known source and channel distributions, and the
result does not hold in practical finite blocklength regimes.

In this work, our goal is to study the trade-off between
the distortion achieved at the legitimate receiver and the leak-
age to an eavesdropper in a practical non-asymptotic regime.
Moreover, we will not assume the knowledge of the distribu-
tion of the underlying source and the sensitive part, but in-
stead follow a data-driven approach. Examples for the ap-
plication of this framework are abundant: an activity/ health
sensor can transmit user’s vital measurements to an access
point. Its goal would be to provide as accurate description of
the underlying signals as possible, while keeping some private
aspect of the data hidden from potential eavesdroppers (e.g.,
the identity of the user). Similarly, a surveillance drone may
want to transmit back images without revealing the locations
of critical infrastructures from eavesdroppers.

Data-driven approaches to wireless communications is
receiving increasing attention [13], including autoencoder-
based end-to-end design for channel coding [8], as well as
for joint source-channel coding (JSCC) [9]. Yet, to the best
our knowledge, the only prior work studying a similar data-



driven approach to wiretap channels is [10], where the authors
propose clustering of constellation points in an autoencoder
based communication scheme in order to achieve a trade-
off between the reliability at the legitimate receiver and the
eavesdropper. While [10] considers only the channel coding
problem, we are interested in the end-to-end performance,
and consider the sensitive information to be different from
the underlying source (yet correlated with it).

We consider a fully convolutional autoencoder architec-
ture to transmit Uk over the noisy channel. The autoencoder
pair, in addition to optimizing the end-to-end reconstruction
quality, also aims at preventing the leakage to the eavesdrop-
per, modeled through an adversarial neural network. Due to
the difficulty of estimating the mutual information, we use
a variational approximation [11], and train the autoencoder
with the combined objective of maximizing the reconstruction
quality at the legitimate receiver while minimizing the adver-
sarial loss. We apply our approach to secure image transmis-
sion, where the legitimate transmitter aims to share images
with the legitimate receiver over a wireless channel, while
the eavesdropper tries to classify them. Our results show
that the adversarially trained communication scheme allows
to achieve reasonable quality at the legitimate receiver, while
confusing the eavesdropper.

2. PROBLEM FORMULATION

Consider the communication scenario illustrated in Fig. 1:
(A)lice wants to reveal some information Uk to (B)ob over n
uses of a noisy communication channel. (E)ve eavesdrops the
channel, and receives a noisy version of the A’s signal through
another channel. The goal of A is to reveal Uk to B with mini-
mum distortion under a given distortion measure d(·, ·), while
preventing some sensitive information S, correlated with Uk

with pUk,S , leaking to E. Information leakage to E is mea-
sured by the mutual information I(S;Zn). Source Uk is en-
coded by A into a codeword Xn according to a mechanism
pXn|Uk . Note that we assume that A does not directly ob-
serve S. The codeword Xn is transmitted along the channel,
which is characterized by the joint conditional distribution

pY nZn|Xn(yn, zn|xn) =

n∏
i=1

pY Z|X(yi, zi|xi). (1)

Channel outputs Y n and Zn are received by B and E, respec-
tively. In order to obtain an estimate Ûk of Uk, B applies a
function fB .

We can formulate the optimization problem as

min
p
Xn|Uk ,fB

E[d(Uk, Ûk)] (2)

s.t. I(S;Zn) ≤ c,

S → Uk → Xn → Y n → Ûk

S → Uk → Xn → Zn → S̃

where c > 0 is the secrecy constraint. Estimating the mu-
tual information I(S;Zn) is known to be challenging; hence,
we will use a variational lower bound commonly employed
[11, 12], and write the optimization problem in (2) in the un-
constrained form as follows:

min
p
Xn|Uk ,fB

max
qS|Zn

{E[d(Uk, Ûk)] + αE[log qS|Zn ]}, (3)

where α ≥ 0 is the parameter regulating the privacy-
distortion trade-off, and and qS|Zn can be considered as
the estimated distribution of S at the adversary based on its
observation Zn.

The problem in (3) is a minimax game between the A and
B pair, and E. While E wants to maximize the leakage, mea-
sured by the negative log-loss term, by choosing the posterior
distribution qS|Zn , A and B jointly decide on the encoding and
decoding functions, pXn|Uk and fB respectively, to minimize
a weighted sum of the distortion and the leakage.

To solve the optimization problem in 3, we will realize all
three components to be optimized as neural networks. The
autoencoder pair at A and B will be parametrized by θA and
θB , respectively, while E’s network will be parametrized by
θE . Then the loss function to be minimized is

LM (θA, θB , θE) = E[d(Uk, Ûk)] + αE[log qθE (S|Zn)].
(4)

Following the standard approach in GANs, these network
parameters will be optimized by iteratively training them:
each joint training step of the autoencoder pair (θA, θB) will
be followed by a training step of θE by the eavesdropper.

3. IMPLEMENTATION

While the above formulation is generic, and can be applied
to any type of information source and wiretap channel, and
any distortion measure at the legitimate receiver, in the rest
of the paper we will focus on secure transmission of images
over an additive white Gaussian noise (AWGN) wiretap chan-
nel. We impose an average power constraint on the length n
transmitted codewords. More specifically, we fix the power
constraint to 1, i.e., 1

n

∑
i=1 x

2
i ≤ 1, but allow different noise

variances, and hence SNR values, at the legitimate receiver
and the eavesdropper, which will be denoted by ΛB and ΛE ,
respectively. We use the peak SNR (PSNR) as the distor-
tion measure at the legitimate receiver, defined as PSNR ,
1

k

∑k
i=1 10 log10

(
2552

(ui − ûi)2

)
.

For the autoencoder (θA, θB) that represent the legitimate
JSCC encoder and decoder pair, we employed the network
structure described in [9], consisting of five convolutional
neural network layers. We will fix the bandwidth ratio be-
tween the available channel bandwidth n and the input image
size k as n/k = 1/6.

The adversary’s network θE , as illustrated in Fig. 2, con-
sists of a predictor that takes as input the vector Zn of n real
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Fig. 2: The architecture of the network employed by the ad-
versary. The number written above each layer is the number
of components in the output.

valued channel outputs, and applies first a dense layer with
rectified linear unit (ReLU) activation, followed by another
dense layer with softmax activation. Finally, although that is
not part of the network itself, we add a final stage where a
guess is taken as the argmax of the distribution, so that we
can assess the effectiveness of the adversary network by mea-
suring its accuracy, i.e., that fraction of correct guesses.

Ideally, the termination condition of the iterative training
procedure should be attaining a predetermined convergence
margin, but we decided to fix the number of epochs in ad-
vance, and average the results across several trials.

4. LIKELIHOOD EQUALIZATION

Minimizing E[log qS|Zn ] means minimizing the value of the
adversary’s estimated likelihood corresponding to the correct
value of S. When the iterative adversarial training approach
is taken, the function E[log qS|Zn ] can be easily minimized by
the legitimate autoencoder pair by performing a permutation
of the encoding scheme. Suppose, for instance, we switch
the codewords xn1 and xn2 corresponding to two different real-
izations of the input sequence: the adversary likelihood esti-
mation can be easily brought down without any impact on the
decoding distortion. Nonetheless, the permutation can be eas-
ily recovered by the adversary in its own training phase, again
increasing the leakage. This leads to the saw-tooth behaviour
which is shown in Fig. 3.

We therefore consider a different approach, which we
call likelihood equalization. The main idea behind likelihood
equalization is to get the likelihood estimation of the adver-
sary as close as possible to a uniform distribution, rather than
minimizing the likelihood related to the correct prediction,
in order to make their prediction unreliable. We hence em-
ployed a new objective function for security, which consists
of the cross-entropy between a uniform distribution p̄ and
the likelihood estimation qS|Zn , i.e., H(p̄, qS|Zn). As can
be seen in Fig. 3, the latter approach yields a more stable
behaviour. The former likelihood minimization approach will
be referred to as the naive approach.
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Fig. 3: Stability comparison between the naive approach and
the likelihood equalization approach, with α = 1, ΛB = 10
dB and ΛE = 5 dB.

Table 1: Parameters used for training

Parameter Symbol Value
Iterations in Phase 1 N1 30000
Iterations in Phase 2 N2 30000
Number of epochs Nepoch 40
Main network iterations NM 500
Adversary network iterations NE 2000
Main receiver SNR ΛB 10 dB
Adversary SNR ΛE 5 dB
Learning rate η 10−4

Size of training batch mbatch 32
Size of test set mtest 10000

5. RESULTS

We applied our solution to the CIFAR-10 dataset, which con-
sists of Ni = 60000 (50000 for training and 10000 for test)
coloured images of size 32 × 32 pixels, divided into k = 10
classes. We first fixed the SNR of the channels and trained
the adversarial network with different values of the trade-off
parameter α. We measured the level of privacy using the ac-
curacy of the adversary predictions, i.e., the fraction of im-
ages whose class was correctly identified, while measured the
quality of the reconstructed images via PSNR.

The results in Fig. 4 show that the approach can provide
either good quality in the transmission, when α is small, or
high privacy, when α is large. Observe that 1/k = 0.1 rep-
resents an ideal lower bound to the adversary accuracy as it
corresponds to uniform guess, independent of the actual trans-
mitted image. The PSNR and accuracy curves show a similar
behaviour. Hence, we fixed α = 1, which is a value that
provides low accuracy without compromising the PSNR, and
saved the weights of the network trained with ΛB = 10 dB
and ΛE = 5 dB.
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Fig. 4: Steady-state PSNR and adversarial accuracy vs the
tradeoff parameter α, with ΛB = 10 dB and ΛE = 5 dB.

We then tested the adversarial network by varying the
actual SNR of the adversary channel ΛE , with respect to a
fixed training value Λ̂E . Fig. 5 shows that the accuracy of
the adversary predictor drops significantly when the SNR is
brought below the training value, and is even moderately re-
duced when the SNR is higher. The parameters employed in
the training phase are reported on Table 1.

6. CONCLUSIONS

We have developed a neural network-based framework to
learn coding schemes to achieve security over a noisy wiretap
channel. We have adopted an adversarial formulation that
leads to the solution of a minimax game where a legitimate
autoencoder network and an adversary network compete. We
have tested our approach for secure transmission of images
from the CIFAR-10 dataset.

The network is able to guarantee a privacy-distortion
trade-off, which becomes more advantageous when the dis-
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Fig. 5: Accuracy of the adversary with varying ΛE performed
after training with α = 1, ΛB = 10 dB and Λ̂E = 5 dB.

Fig. 6: Examples of images transmitted by A (above) and re-
constructed by B (below) using the likelihood equalization ap-
proach, with α = 1, ΛB = 10 dB and ΛE = 5 dB.

turbance in the adversary channel is increased. We have first
adopted a naive approach, which aims at maximizing the
adversary’s cross-entropy, but also considered a more stable
approach which aims to take the adversary softmax output
close to a uniform distribution.

Future work will include random encoding functions as
opposed to the deterministic approach used here. We will also
consider other types of objective functions at the legitimate
receiver which may allow further secrecy if this is not aligned
with eavesdropper’s objective.
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