
algorithms

Article

A Survey of Low-Rank Updates of Preconditioners
for Sequences of Symmetric Linear Systems

Luca Bergamaschi

Department of Civil Environmental and Architectural Engineering, University of Padua, 35100 Padua, Italy;
luca.bergamaschi@unipd.it

Received: 28 February 2020; Accepted: 19 April 2020; Published: 21 April 2020
����������
�������

Abstract: The aim of this survey is to review some recent developments in devising efficient
preconditioners for sequences of symmetric positive definite (SPD) linear systems Akxk = bk,
k = 1, . . . arising in many scientific applications, such as discretization of transient Partial Differential
Equations (PDEs), solution of eigenvalue problems, (Inexact) Newton methods applied to nonlinear
systems, rational Krylov methods for computing a function of a matrix. In this paper, we will analyze
a number of techniques of updating a given initial preconditioner by a low-rank matrix with the aim
of improving the clustering of eigenvalues around 1, in order to speed-up the convergence of the
Preconditioned Conjugate Gradient (PCG) method. We will also review some techniques to efficiently
approximate the linearly independent vectors which constitute the low-rank corrections and whose
choice is crucial for the effectiveness of the approach. Numerical results on real-life applications
show that the performance of a given iterative solver can be very much enhanced by the use of
low-rank updates.

Keywords: preconditioners; conjugate gradient method; sparse matrices; low-rank updates

1. Introduction

The solution of sequences of large and sparse linear systems Akxk = bk, k = 1, . . ., is a
problem arising in many realistic applications including time-dependent solution of Partial Differential
Equations (PDEs), computation of a part of the spectrum of large matrices, solution to nonlinear
systems by the Newton methods and its variants, evaluation of a matrix function on a vector, by
rational Krylov methods. The large size and sparsity of the matrices involved make iterative methods
as the preeminent solution methods for these systems and therefore call for robust preconditioners.
Standard—full purpose—preconditioners for SPD matrices, such as the Incomplete Cholesky (IC)
factorization or approximate inverses [1,2], as well as Multigrid Methods [3] are aimed at clustering
eigenvalues of the preconditioned matrices around one.

In this paper, we will analyze a number of techniques of updating a given IC preconditioner
(which we denote as P0 in the sequel) by a low-rank matrix with the aim of further improving this
clustering. The most popular low-rank strategies are aimed at removing the smallest eigenvalues
(deflation, see e.g., References [4–7] for the nonsymmetric case) or at shifting them towards the middle
of the spectrum. The low-rank correction is based on a (small) number of linearly independent
vectors whose choice is crucial for the effectiveness of the approach. In many cases these vectors
are approximations of eigenvectors corresponding to the smallest eigenvalues of the preconditioned
matrix P0 A [8,9].

We will also review some techniques to efficiently approximate these vectors when incorporated
within a sequence of linear systems all possibly having constant (or slightly changing) coefficient
matrices. Numerical results concerning sequences arising from discretization of linear/nonlinear PDEs

Algorithms 2020, 13, 100; doi:10.3390/a13040100 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-8273-9674
http://dx.doi.org/10.3390/a13040100
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/4/100?type=check_update&version=2

Algorithms 2020, 13, 100 2 of 19

and iterative solution of eigenvalue problems show that the performance of a given iterative solver
can be very much enhanced by the use of low-rank updates.

The issue of updating (not necessarily by a low-rank matrix) a given preconditioner for
solving sequences of linear systems has been considered by many authors, among which I would
mention Reference [10,11], in which the authors modify a given LU factorization to precondition many
systems in the sequence, and the work related to the solution of sequences of shifted linear systems,
namely systems with matrices of the form Ak = A0 + αk I. Among the others we mention the works in
Reference [12,13] and also Reference [7] when Ak is nonsymmetric.

The synopsis of the paper is as follows: In Section 2 we will discuss various low-rank updates,
namely, the deflation technique, the tuning strategy, described in an original fashion on the basis of a
revisited secant condition; and the spectral preconditioners. In Section 3 we will be concerned with the
computational complexity of the low-rank updates. Section 4 discusses the choice of the vectors which
form the low-rank matrices while Section 5 will address the issue to cheaply assessing some of the
leftmost eigenpairs of the coefficient matrix. In Section 6 we will give some hint on the possibility
of extending these techniques to sequences of nonsymmetric linear systems. Section 7 is devoted to
reporting some, partly new, numerical experiments in the framework of discretization of transient
PDES and solution to eigenvalue problems. The conclusions are drawn in Section 8.

Notation. Throughout the paper we use the Euclidean norm for vectors and the induced spectral
norm for matrices.

2. Low-Rank Updates

2.1. Deflation

The idea to use deflation to accelerate the Conjugate Gradient (CG) method goes back to the
middle of the 1980s. The most cited article on this subject is a paper by Nicolaides [4] who developed a
deflated Conjugate Gradient method based on a three-term recurrence. Other similar formulations
are presented in Reference [14,15]. Some years later in Reference [6] a deflated Generalized Minimal
Residual (GMRES) method was proposed by using an augmented basis. Rigorous bounds on the
eigenvalues of the deflated-preconditioned matrices are given in Reference [16]. We finally mention a
recent interesting survey on deflation methods in Reference [17].

We will follow here the formulation of the Deflated-CG algorithm developed in Reference [5].
Given a full column rank n× p matrix W =

[
w1 . . . wp

]
the A-orthogonal projector H is defined as

H = I −W(WT AW)−1WT A, (1)

which maintains the CG residuals orthogonal to the subspace spanned by {w1, . . . , wp}, provided that
also r0 satisfies WTr0 = 0. The Deflated-CG algorithm is described in Algorithm 1.

Note that this algorithm is mathematically equivalent to the PCG method with preconditioner
P = HP0HT since

rT
k zk = rT

k P0rk = rT
k HP0HTrk,

being WTrk = 0 and therefore HTrk = rk. P is only symmetric positive semidefinite, however PCG
could not breakdown as stated in the following result ([5], Theorem 4.2).

Algorithms 2020, 13, 100 3 of 19

Algorithm 1 Deflated CG.

Choose an n× p full column rank matrix W. Compute Π = WT AW.
Choose x̃0; Set r0 = b− Ax0 and x0 = x̃0 + WΠ−1WTr0.
Compute z0 = P0r0;
Set k = 0, p0 = z0 −WΠ−1WT Az0
ρ0 = rT

0 z0
REPEAT UNTIL CONVERGENCE

αk =
ρk

pT
k Apk

xk+1 = xk + αkpk
rk+1 = rk − αk Apk
k = k + 1
zk = P0rk
ρk = rT

k zk

βk =
ρk

ρk−1
pk+1 = βkpk + zk −WΠ−1WT Azk

END REPEAT.

Theorem 1. Let A be an SPD matrix and W an n × p matrix with full column rank. The Deflated-CG
algorithm applied to the linear system Ax = b will not break down at any step. The approximate solution x(k) is
the unique minimizer of ‖x(k) − x(∗)‖A over the affine space x0 + span(W,Kk(r0)).

The action of this deflated preconditioner is to put some of the eigenvalues of the preconditioner
matrix to zero in fact:

PAW = HP0HT AW = 0,

that is, all p columns of W are eigenvectors of PA corresponding to the zero eigenvalue. Deflated CG
guarantees that (at least in infinite precision arithmetic) all residuals satisfy WTrk = 0. If the columns
of W are (approximate) eigenvectors of P0 A corresponding to the smallest eigenvalues, then these
eigenvalues are removed from the spectrum of PA with obvious decrease of the condition number.

2.2. Tuning

The adjective tuned associated with a preconditioner was introduced in Reference [18] in the
framework of iterative eigensolvers. In our context we redefine it in the following way:

Definition 1. Given a preconditioner P0 and a vector w, a tuned preconditioner for matrix A is a matrix
P ≡ M−1 obtained by correcting P0 by a rank one or rank two matrix depending on A and w and satisfying

PAw = w (Mw = Aw). (2)

In this way matrix M agrees with A in the direction w and also the preconditioned matrix
has the eigenvalue 1 corresponding to the eigenvector w. This definition can be easily extended to
multiple vectors:

Definition 2. Given a preconditioner P0 and an n × p matrix W with full column rank, a block tuned
preconditioner for matrix A is a matrix P obtained by correcting P0 by a low-rank matrix depending on A and
W and satisfying

PAW = W. (3)

Algorithms 2020, 13, 100 4 of 19

In Reference [19], the following single-vector tuned preconditioned for SPD linear systems was
proposed (here M0 = LLT ≈ A and P = M−1 is computed by the Sherman-Morrison formula).

u = (A−M0)w z = P0u = P0 Aw−w (4)

M = M0 +
uuT

uTw
P = P0 −

zzT

zT Aw
(5)

It is easily checked that PAw = P0 Aw− z = w.

Digression

This tuned preconditioner, as many others, has however an older derivation. Let us now consider
the solution of a nonlinear system of equations

F(x) = 0, F : Rn → Rn

by the Newton method

F′(xk)sk = −F(xk) (6)

xk+1 = xk + sk.

Quasi-Newton methods construct a sequence of approximations of the Jacobians Bk ≈ F′(xk).
Each Bk is defined by a low-rank update of the previous matrix in the sequence Bk−1. Such sequences
are also used to correct a given initial preconditioner to accelerate the iterative solution of systems
like (6) [20–24].

Among those Quasi-Newton methods we recall three of the most commonly used one (note that
yk = F(xk+1)− F(xk)):

Broyden’s method: Bk+1 = Bk +
(yk − Bksk)sT

k
sT

k sk

SR1 (Symmetric Rank-1): Bk+1 = Bk +
(yk − Bksk)(yk − Bksk)

T

(yk − Bksk)Tsk
BFGS (Named after Broyden, Fletcher, Goldfarb and Shanno, who all discovered the same formula

independently in 1970, by different approaches) update: Bk+1 = Bk +
ykyT

k
yT

k sk
−

BksksT
k Bk

sT
k Bksk

.

All these updates satisfy the so called secant condition which reads

Bk+1sk = yk. (7)

The first update is nonsymmetric, the SR1 and BFGS formulae define a symmetric sequence
provided B0 is so. Consider now the problem of updating a given preconditioner P0 = M−1

0 . We can
use all the preceding equations after employing the following substitutions:

sk −→ w, yk −→ Aw, Bk −→ M0, Bk+1 −→ M,

which transform the secant condition into

Mw = Aw, (8)

that is the tuning property. We can then develop three different tuning strategies. For each of them, in
Tables 1–3, we write the “direct” formula (with M, M0) the inverse representation (with P, P0), by the
Shermann-Morrison inversion formula, and develop the corresponding inverse block formula.

Algorithms 2020, 13, 100 5 of 19

Table 1. Direct, inverse and block versions of the Broyden (nonsymmetric) update.

direct M = M0 +
(A−M0)wwT

wTw
Mw = Aw

inverse P = P0 −
(P0 Aw−w)wT P0

wT P0 Aw
PAw = w

block P = P0 − (P0 AW −W)
(
WT P0 AW

)−1 WT P0 PAW = W

Table 2. Direct, inverse and block versions of the SR1 update.

direct M = M0 +
uuT

wTu
, u = (A−M0)w

inverse P = P0 −
zzT

zT Aw
, z = P0 Aw−w

block P = P0 − Z
(
ZT AW

)−1 ZT , Z = P0 AW −W

Table 3. Direct, inverse and block versions of the BFGS update.

direct M = M0 +
(Aw)T Aw

wT Aw
− M0wwT M0

wT M0w

inverse P =
wwT

wT Aw
+

(
I − wwT A

wT Aw

)
P0

(
I − AwwT

wT Aw

)
block P = WΠ−1WT + HP0HT Π = WT AW (1) H = I −WΠ−1WT A

The Broyden tuning strategy must be used for nonsymmetric problems, the BFGS formula is well
suited to accelerate the PCG method due to the following result:

Theorem 2. The preconditioner P yielded by the BFGS update formula is SPD provided P0 is so.

Proof. For every nonzero x ∈ Rn we set z = HTx and u = WTx. Then we have

xT Px = (WTx)TΠ−1(WTx) + xT HP0HTx = uTΠ−1u + zT P0z ≥ 0, (9)

the last inequality holding since both Π−1 and P0 are SPD matrices. The inequality is strict since if
u = 0 then WTx = 0 and hence z = (I − AWΠ−1WT)x = x 6= 0.

Finally, the SR1 update provides clearly symmetric matrices, upon symmetry of P0. If in addition
P0 is SPD the new update P is also likely to be SPD as well, depending on the quality of the initial
preconditioner P0, as stated in the following result [25] (Section 3.2).

λmin(P) ≥ λmin(P0)− ‖P0 A− I‖2‖(WT AW)−1‖, (10)

which has however a modest practical use as ‖(WT AW)−1‖may be large.
Whenever the columns of W approximate the smallest eigenvalues of P0 A something more can be

said. Assume that P0 AW = WΘ, with Θ = diag
(
µ1, . . . , µp

)
the diagonal matrix with the eigenvalues

of the initially preconditioned matrix. Assume further that µj < 1, j = 1, . . . , p. Since P0 A is not
symmetric but P1/2

0 AP1/2
0 is so it follows that W must satisfy WT P−1

0 W = I and hence WT AW = Θ.
In such a case we have that matrix

−ZT AW = (W − P0 AW)T AW = (I −Θ)WT AW = (I −Θ)Θ

is obviously SPD and therefore so is P which is the sum of an SPD matrix (P0) and a symmetric positive
semidefinite matrix (−Z(ZT AW)−1ZT).

Algorithms 2020, 13, 100 6 of 19

The Broyden tuned preconditioner was used in Reference [26] to accelerate the GMRES for the
inner linear systems within the Arnoldi method for eigenvalue computation. The SR1 preconditioner
appeared in References [19,25] and also in Reference [27]. This low-rank update has also been employed
to accelerate the PCG method in the solution of linear systems involving SPD Jacobian matrices.
In Reference [28] some conditions are proved under which the SR1 update maintains the symmetric
positive definiteness of a given initial preconditioner. The BFGS preconditioner was used (under the
name of balancing preconditioner) in Reference [29], in Reference[30] for eigenvalue computation and
also in Reference [31] to update the Constraint Preconditioner for sequences of KKT linear systems.
It has been successfully employed (under the name of limited memory preconditioner) to accelerate
sequences of symmetric indefinite linear systems in Reference [32].

We finally mention the work in Reference [33], where the author used this correction to update an
Inexact Constraint Preconditioner, by damping the largest eigenvalues of the preconditioned matrices.

2.3. Spectral Preconditioners

A further strategy to improve the preconditioner’s efficiency by a low-rank update can be found
in References [8,9,27,34,35]. A spectral preconditioner for SPD linear systems is defined as

P = P0 + W(WT AW)−1WT ,

with the leftmost eigenvectors of P0 A as the columns of W. Denoted as µ1, µ2, . . . , µp the smallest
eigenvalues of P0 A it is easily checked that matrix PA has the same eigenvectors w1, . . . , wp as P0 A
with µ1 + 1, . . . , µp + 1 as eigenvalues.

3. Implementation and Computational Complexity

We sketch below the most time-consuming computational tasks when using a low-rank update of
a given preconditioner. Notation: with the symbol O(f (n)) we mean that there are two constant c1

and c2 independent of n such that c1 f (n) ≤ O(f (n)) ≤ c2 f (n).
We first evaluate the preliminary cost, which has to be done before starting he iterative process:

1. All low-rank updates: Computation of AW = AW (O(np) operations).
2. Broyden and SR1 only: Computation of Z = P0AW −W (p applications of the initial preconditioner).
3. All low-rank updates: Computation of Π = WT AW(O(p2n) operations).

The cost of this tasks is likely to be amortized during the PCG iterations of the various linear
systems to be solved.

Regarding the most important cost per iteration, the deflated, Broyden, SR1 and spectral
preconditioners behave in the same way, being all based on the following main tasks, in addition to
the application of the initial preconditioner P0 to a given vector.

1. Multiplication of an n× p matrix times a vector (O(np) operations)
2. Solution of a small linear system with matrix Π. (O(p3) operations).
3. Multiplication of a p× n matrix times a vector (O(np) operations)

The BFGS preconditioner, as it needs to correct P0 by a rank-(2p) matrix, roughly doubles tasks 1–3
and hence the total updating cost at each iteration.

4. Choice of the Vectors {wj}

In principle every set of linearly independent vectors can be selected as columns of W. However,
the optimal choice is represented by the eigenvectors of the preconditioned matrix P0 A corresponding
to the smallest eigenvalues. Approximation of these vectors as a by-product of the Conjugate Gradient
method has been considered in various works. We will turn on this crucial issue later on.

Algorithms 2020, 13, 100 7 of 19

We start by presenting some numerical results obtained computing the “true” 10 leftmost
eigenvectors of P0 A using the Matlab eigs command. To measure the sensitivity of the method
to eigenvector accuracy we also use perturbed eigenvectors that is, satisfying ‖P0 Awj − µjwj‖ ≈ δ.
The coefficient matrix was chosen as the FD discretization of the Laplacian on an L-shaped domain
obtained using the Matlab command

A = delsq (numgrid (’L ’ , 5 0 0)) ;

which returns a sparse matrix of order n = 186003. The linear system Ax = b, with b a random
uniformly distributed vector, was solved by the PCG method with various low-rank update techniques
with P0 = IC(0).

The results in Table 4 show that a very low accuracy on the eigenvectors (absolute residual of
order of δ = 0.01) is sufficient to provide good preconditioning results. Also notice that the tuned
preconditioner seems to be more sensitive to the parameter δ.

Table 4. Influence of accuracy of the eigenvectors of P0 A on the efficiency of the low-rank
preconditioners. PCG iterations with various updating strategies are reported.

No Update Tuned Deflated Spectral

exact 466 254 254 254
δ = 0.01 466 261 259 290
δ = 0.05 466 378 260 286

It may also happen that some of the leftmost eigenpairs of the coefficient matrix are instead
available. What if one uses these vectors as columns of W? The following Table 5 gives a surprising
answer: if they are computed to a good accuracy they provide a notable acceleration of convergence.
Again we use either exact eigenvectors or vectors satisfying ‖Awj − λjwj‖ ≈ δ.

Table 5. Influence of accuracy of the eigenvectors of A on the efficiency of the low-rank preconditioners.
PCG iterations with various updating strategies are reported.

No Update Tuned Deflated Spectral

exact 466 254 254 254
δ = 10−3 466 296 296 297
δ = 0.01 466 362 361 369

The conclusion is: yes we can use the leftmost eigenvectors of A instead of those of P0 A without
dramatically loosing efficiency. The reason for this behavior is connected to the action of preconditioners
such as Incomplete Cholesky or approximate inverses. They usually leave almost unchanged the
eigenvectors corresponding to the smallest eigenvalues (though increasing the latter ones).

Consider again the previous matrix and compare the eigenpairs (λj, vj) of A, with those of
the preconditioned matrix with two choices of P0: IC(0) (µP1

j , vP1
j) and the IC factorization with

droptol = 1e− 2 (µP2
j , vP2

j) . As expected, in Figure 1 (left) we give evidence that the preconditioners
shift bottom-up the smallest eigenvalues. However the angle between the corresponding eigenvectors,
computed as

∠ (u, v) = arccos
uTv

‖u‖ · ‖v‖ ,

and displayed in Figure 1, right, turns out to be close to zero showing that they are almost parallel.

Algorithms 2020, 13, 100 8 of 19

1 2 3 4 5 6 7 8 9 10
10 -4

10 -3

10 -2

eigenvalues of A
eigenvalues of P0 A (1)
eigenvalues of P0 A (2)

j ∠
(

vj, vP1
j

)
∠
(

vj, vP2
j

)
1 1.7445 ×10−5 2.6952 ×10−4

2 3.6118 ×10−5 4.3401 ×10−4

3 9.6668 ×10−5 1.5363 ×10−4

4 1.9743 ×10−4 4.5222 ×10−3

5 1.7449 ×10−4 4.9131 ×10−3

Figure 1. Eigenvalues and angle between eigenvectors of A and IC-preconditioned A.

Using Previous Solution Vectors

Computing a subset of the extremal eigenvectors of a given large and sparse matrix may reveal
computationally costly. In the next Section we will develop some methods to save on this cost.
However another possibility for the vectors wj is to use a number of the solutions to the previous
linear systems in the sequence. Assume now that the matrices in the sequence are allowed to (slightly)
change, that is, we want to solve

Akxk = bk, k = 1, . . . , N.

In this case computing the leftmost eigenvectors of Ak is inefficient since this preprocessing should
be done at each linear system.

We then use, for the jth linear system (1 < j ≤ N), the je f f = min{j − 1, p} solutions to the
previous linear systems as columns of W ≡Wj, thus yielding:

Wj =
[
xj−je f f . . . xj−1

]
. (11)

The idea beyond this choice, which is completely cost-free, comes from the reasoning that:

1. A solution xk of the k-th linear system has with high probability non-negligible components in

the directions of the leftmost eigenvectors of Ak since, if bk =
n

∑
i=1

αiu
(k)
i , then xk =

n

∑
i=1

αi

λ
(k)
i

u(k)
i ,

with the largest weights provided by the smallest eigenvalues.
2. The leftmost eigenvector of Ak, k = je f f , . . . j − 1 are good approximation of the leftmost

eigenvectors of Aj.

To give experimental evidence of the efficiency of this approach we report some results in solving
a sequence of 30 linear systems arising from the Finite Element/Backward Euler discretization of the
branched transport equation [35] which gives raise to a sequence of (2× 2) block nonlinear systems in
turn solved by the Inexact Newton method. After linearization and block Gaussian Elimination the
problem reduces to the solution of a sequences of symmetric linear systems of the form

(A + BTEB)kx = bk, k = 1, . . . ,

where A is SPD, B is rectangular with full row rank, E is diagonal and possibly indefinite. We take 30
consecutive linear systems from this sequence, and solve them with the minimum residual (MINRES)

Algorithms 2020, 13, 100 9 of 19

iterative method using as the initial preconditioner the incomplete Cholesky factorization of A with
drop tolerance 10−2 and the following updates

1. BFGS, with update directions as in (11).
2. Spectral preconditioner, with update directions as in (11).
3. BFGS, with the accurate leftmost eigenvectors of Ak as the update directions.

The results are reported in Figure 2 where we can appreciate reduction of the number of iterations
provided by the low-rank update. The (cheaper) spectral preconditioner provides as good acceleration
as the BFGS approach with update directions as in (11). Moreover the number of iterations is comparable
to those obtained with the “ideal” eigenvectors (which are obtained by the Matlab eigs function).

0 5 10 15 20 25 30

linear system

0

50

100

150

200

250

300

350

nu
m

be
r

of
 li

ne
ar

 it
er

at
io

ns

no update
spectral
BFGS
BFGS+eigenvectors

Strategy Iter. CPU (s)

no update 7491 51.53
BFGS + previous solutions 4769 50.14
Spectral + previous solutions 4925 41.45
BFGS + eigenvectors 3854 145.07

Figure 2. Number of iterations to solve each linear system in the sequence by MINRES with: no update,
BFGS update with previous solutions, spectral update with previous solutions, BFGS update with
leftmost eigenvectors. On the right also the CPU time is reported.

5. Cost-Free Approximation of the Leftmost Eigenpairs

The most appropriate candidate vectors for the columns of W are anyway the eigenvectors of the
preconditioned matrix corresponding to the smallest eigenvalues.

The Lanczos-PCG Connection

A simple way to recover some of the extremal eigenpairs of the preconditioned matrix is to exploit
the so called Lanczos connection [36,37]. During the PCG method, preconditioned with P0, it is possible
to save the first m (scaled) preconditioned residuals as columns of a matrix Vm:

Vm =

[P0r0√
rT

0 P0r0

,
P0r1√
rT

1 P0r1

, . . . ,
P0rm−1√

rT
m−1P0rm−1

]
.

Matrix Vm is such that VT
m P−1

0 Vm = Im, in view of the P0−orthogonality of the residuals generated
by the PCG method. The Lanczos tridiagonal matrix can be formed using the PCG coefficients αk, βk:

Algorithms 2020, 13, 100 10 of 19

Tm =

1
α0

−
√

β1

α0

−
√

β1

α0

1
α1

+
β1

α0
−
√

β2

α1
. . .

−
√

βm−1

αm−2

−
√

βm−1

αm−2

1
αm−1

+
βm−1

αm−2

Matrices Vm and Tm obey to the classical Lanczos relation that is:

VT
m AVm = Tm.

The eigensolution of Tm provides the eigendecomposition TmΛm = ΛmQm. Then, the eigenvectors
corresponding to the p smallest eigenvalues are selected as p columns of matrix Qp. Finally, the
columns of Wp = VmQp are expected to approximate the p leftmost eigenvectors of P0 A.

This procedure can be implemented to a very little computational cost but it has a number of
disadvantages: First, it requires the storage of m preconditioned residuals, Second, as the convergence
for the Lanczos process to the smallest eigenvalues is relatively slow, it sometimes happens that PCG
convergence takes place before eigenvector convergence. Third, some of the leftmost eigenpairs can be
missing by the non-restarted Lanczos procedure.

To partially overcome these drawbacks in Reference [38] the authors suggest implementing a
thick restart within the PCG iteration (without affecting it) and incrementally correct the eigenvector
approximations during subsequent linear system solvers. The final set of directions is, in that paper,
used only to deflate the initial vector and not to form a preconditioner (eigCG algorithm) in the solution
of a sequence of hundreds of linear systems in lattice quantum chromodynamics.

A number of alternative ways to approximate eigenvectors during the PCG iteration can be found
in the literature. In Reference [5], a technique is suggested to refine them during subsequent linear
systems with the same matrix but different right-hand-sides by using the p smallest harmonic Ritz
values. In this approach the vector stored within the PCG iteration are the conjugate directions pk
instead of the preconditioned residuals (they actually lie in the same Krylov subspace).

6. Sequences of Nonsymmetric Linear Systems

The techniques described so far have been especially developed to accelerate the PCG method
for SPD matrices. In principle they can however be extended also to nonsymmetric linear systems.
Even though eigenvalues of the preconditioned matrices are not always completely informative [39,40]
on the convergence of Krylov methods for such problems, in any case shifting a small number of
eigenvalues towards the middle of the spectrum is usually beneficial for iterative solvers. The spectral
low-rank preconditioner (SRLU) was originally presented in Reference [9] for general matrices, with
no diagonalizability assumptions, to accelerate the GMRES-DR method proposed by Morgan in
Reference [41]. Regarding the tuning preconditioner, the Broyden update has been successfully used,
for example, in Reference [26] to accelerate the GMRES for the inner linear systems within the Arnoldi
method for eigenvalue computation. For shifted linear systems, the shift invariance property of Krylov
subspace is very important for building the preconditioner (see e.g., References [7,42] for details).
Regarding (non necessarily low-rank) updates of a given preconditioner, we mention Reference [43]
in the framework of constrained optimization, and Reference [44], which showed that (roughly) one
matrix factorization and a single Krylov subspace is enough for handling the whole sequence of shifted
linear systems.

Algorithms 2020, 13, 100 11 of 19

7. Numerical Results

The technique previously described are very powerful when applied to sequences of linear
systems where the coefficient matrix remains the same. In this case it is possible to refine the
eigenvalues of the preconditioned matrix during the first linear systems solutions up to machine
precision [38]. However, in most situations this high accuracy is not really needed (see the discussion
in Section 4).

In this section we will consider a particular case of sequences of linear systems with (slightly)
changing matrices as

Akx = bk, Ak = A0 + αk A1,

which can be viewed as shifted linear systems. These sequences appear for example, in the Finite
Difference or Finite Element discretization of transient PDEs or as an inner linear system within
iterative eigensolvers. We will show that the low-rank techniques could be successfully employed in
the acceleration of iterative methods in the solution of such linear systems.

7.1. Fe Discretization of a Parabolic Equation

Consider the parabolic PDE

Sh
∂u(~x, t)

∂t
= ∇ (K(~x)∇u(~x, t)) + BCs.

u is the pressure of the fluid, Sh the elastic storage, K the (SPD) hydraulic conductivity tensor.
This equation is used to model water pumping in the Beijing plan to predict land subsidence in
that area [45]. The 3D computational domain turns out to be very heterogeneous and geometrically
irregular as sketched in Figure 3:

Figure 3. 3D domain and triangulation.

FE discretization in space needs highly irregular tetrahedra, which, combined with the high
heterogeneity of the medium, gives raise to an ill-conditioned discretized diffusion matrix. After FE
discretization a system of ODEs is left:

B
∂u(t)

∂t
= −Au(t) + b(t).

where A is the SPD stiffness matrix, B is the SPD mass matrix. The right-hand-side account for source
terms and Neumann boundary conditions. Using a time marching scheme (e.g., Crank-Nicolson for
stiff problems) yields a sequence of linear systems

(A + σkB)uk = bk, σk =
2

∆tk
, k = 1, Nstep. (12)

Algorithms 2020, 13, 100 12 of 19

The discretized FE matrices have both n = 589,661 and a number of nonzeros nz = 8,833,795. We
now report the results of a complete simulation which took Nstep = 32 steps. The near steady state is
reached after T = 36,000 days. Initially we set ∆t1 = 60 (days). Then we incremented the timesteps as

∆tk = min(1.2∆tk−1, 7300, T − ∆tk−1) =⇒ σk =
2

∆tk
, k = 2, . . . , Nstep.

This formula allows the timestep size to constantly increase and to take its largest value
approaching the steady state solution. The initial preconditioner P0 was evaluated employing the
Matlab function ichol with

(1) droptol = 10−5 applied to A1 = A + 5B to enhance diagonal dominance; this resulted in a
triangular Cholesky factor with density 5.18 and

(2) droptol = 10−4 applied to A2 = A + 20B (density 2.83).

We solved the first linear system to a high accuracy to assess as accurately as possible the p = 10

leftmost eigenvectors. Using the residual δj =
‖P0 Awj − µjwj‖

‖wj‖
to measure the accuracy of the

approximate eigenvectors we found:

• Case (1). 179 PCG iterations for the first linear system; δj ∈ [1.1 10−3, 5.8 10−3].
• Case (2). 370 PCG iterations for the first linear system; δj ∈ [1.1 10−3, 3.3 10−3].

This set of vectors is then used to construct deflation, tuned and spectral preconditioners for
all the subsequent linear systems in the sequence (with exit test on relative residual and tolerance
TOL= 1e− 10).

The results are summarized in Table 6. The eigenvectors estimated during the first linear system
are adequate to accelerate the subsequent iterations for both the tuned and spectral approaches which
provide an improvement in both iteration number and CPU time. Note also that the time per iteration
is only slightly increased with respect to the “no update” case.

Table 6. Number of iterations and total CPU time for solving the sequence (12) of shifted linear system.
† = for some of the system in the sequence convergence not achieved.

IC (A1, 1e− 5) IC (A2, 1e− 4)

update # its CPU CPU per it. # its CPU CPU per it.
no update 8231 805.8 0.098 16582 1177.2 0.071

spectral 5213 557.3 0.107 10225 817.5 0.080
SR1 tuned 5161 551.7 0.107 10152 811.4 0.080

BFGS tuned 5178 612.3 0.118 10198 924.6 0.091
deflated † † † † † †

Instead, the PCG residuals obtained with the deflation preconditioner in some instances stagnate
before reaching the exit test. The lack of robustness of the deflation approach is also observed in
Reference [5] where the authors suggest a reorthogonalization of the residuals at the price of increasing
costs per iteration and also Reference [26] in the framework of iterative eigensolvers. Regarding tuned
preconditioners, SR1 is definitely superior to the BFGS approach due to its lower computational cost.

In Figure 4, left, we plot the number of iterations needed by the “no update” and tuned
preconditioners for every system in the sequence compared also with the scaled

√
∆tk ≈ σ−1/2

k values
(blue lines) as indicators of the increasing condition number of the coefficient matrices. On the right plot
the behavior of the tuned vs spectral preconditioners is displayed, showing the substantial equivalence
between the two approaches. Note finally that the PCG solver with the tuned preconditioner is almost
insensitive to the increasing condition number of the matrices, displaying a number of iterations
roughly constant throughout the timesteps.

Algorithms 2020, 13, 100 13 of 19

Figure 4. Number of iterations for each linear system in the sequence and various preconditioning
strategies. Initial preconditioner: IC (A1, 1e− 5) (upper plots) and IC (A2, 1e− 4) lower plots.

7.2. Iterative Eigensolvers

When computing the smallest or a number of the interior eigenvalues of a large and sparse matrix,
most iterative solvers require the solution of a shifted linear system of the type

(A− σB)x = b.

This is true for instance in the shift-invert Arnoldi method, in the inverse power iteration, in the
Rayleigh Quotient iteration. A related linear system is also to be solved within the correction equation
in the Jacobi-Davidson method. Other gradient-based methods such as the Locally Optimal Block
PCG method (LOBPCG) [46] or the Deflation-Accelerated Conjugate Gradient method (DACG) [47]
implicitly solve a shifted linear system. The sequence of linear systems are characterized by a constant
or a slowly varying parameter σ so informations on matrix A or on the pencil (A, B) can be profitably
used for all the sequence.

We denote as 0 < λ1 ≤ λ2 ≤ . . . λm . . . ≤ λn its eigenvalues and v1, v2, . . . , vm, . . . vn the
corresponding eigenvectors. Our aim is to investigate the efficiency of the SR1 tuned preconditioner
in the acceleration of the so-called correction equation in the simplified Jacobi-Davidson (JD)
method [48,49].

To assess eigenpair (λj, vj) a number of linear systems have to be solved of the form

J(j)
k s = −(A− θ

(k)
j I)uk; for s ⊥ uk, where (13)

J(j)
k = (I −QQT)(A− θ

(k)
j I)(I −QQT), θ

(k)
j = q(uk) ≡

uT
k Auk

uT
k uk

, (14)

Q =
[
v1 . . . vj−1 uk

]
.

Algorithms 2020, 13, 100 14 of 19

The PCG method is proved to converge if applied to systems (13) as the Jacobian J(j)
k is shown to

be SPD in the subspace orthogonal to uk [22,49]. Following the works in [27,50], which are based on a
two-stage algorithm, the columns of W are orthonormal approximate eigenvectors of A provided by a
gradient method, DACG [47], satisfying

Aṽs = λ̃sṽs + ress, ‖ress‖ ≤ τλs (15)
s = 1, . . . , m.

λ̃s − λs ≤ τλs. (16)

These vectors are also used as initial guesses for the Newton phase. To update a given initial
preconditioner for (λj, vj) we use the next approximate eigenvectors vj+1, . . . , vm to define an SR1
tuned preconditioner as

Pj = P0 − Z
(

ZT AWj

)−1
ZT , Z = P0 AWj −Wj, with Wj =

[
ṽj+1 . . . ṽm

]
. (17)

We recall the following result stated in ([27], Lemma 3.1):

Lemma 1. Let Pj a block tuned preconditioner satisfying condition (17). In the hypothesis (15) each column of
Wj that is, ṽs, s = j + 1, . . . , m, is an approximate eigenvector of Pj(A− θj I) satisfying

Pj(A− θj I)ṽs =

(
1−

θj

λ̃s

)
ṽs + εs, with ‖εs‖ ≤ τλj+1‖Pj‖.

The effect of applying a tuned preconditioner to A − θj I is to set a number of eigenvalues of
P(A − θj I) to a value that is close to one only under the conditions that the eigenvalues are well

separated, that is,
λj

λj+1
� 1, which is not always the case in realistic problems.

In order to define a more effective preconditioner for shifted linear systems one can allow the
preconditioned matrix PA to have eigenvalues different from one corresponding to the columns of
matrix W. In Reference [50] a generalized block tuned (GBT) preconditioner is defined:

Definition 3. Given a preconditioner P0, an n× p matrix W with full column rank, and a diagonal matrix
Γ = diag(γ1, . . . , γp), a generalized block tuned preconditioner for matrix A is a matrix P obtained by correcting
P0 with a low-rank matrix depending on A, W and Γ and satisfying

PAW = WΓ. (18)

The generalized SR1 preconditioner is defined as

P = P0 − ZΠ−1ZT , where Z = P0 AW −WΓ, and Π = ZT AW. (19)

Note that the above preconditioner is not in general symmetric as small matrix Π is not and hence
its use would prevent convergence either of the DACG eigensolver or the inner PCG iteration within
the Newton method. However, this drawback can be circumvented when W ≡ Wj represents the
matrix of the (approximate) eigenvectors corresponding to the diagonal matrix with the eigenvalues of
A: Λj = diag(λ̃j+1, λ̃j+2, . . . , λ̃m). In such case we can approximate Π as

Π = WT
j APAWj − ΓWT

j AWj ≈WT
j APAWj − ΓΛj = Π̃, (20)

so restoring symmetry. This modified preconditioner P̃j = P0 − ZΠ̃−1ZT satisfies only approximately
the tuning property as

Algorithms 2020, 13, 100 15 of 19

P̃j Aṽs = γsṽs + Es, ‖Es‖ ≤ τλs‖ZΠ̃−1Γ‖, s = j + 1, . . . , m. (21)

The following theorem states that it is however possible to have p eigenvalues of the
preconditioned matrix P̃j(A − θj I) very close to one depending on how the columns of matrix W
approximate the eigenvectors of A. We also define the reciprocal of the relative separation between
pairs of eigenvalues as

ξ j =
λj+1

λj+1 − λj
. (22)

Theorem 3. Let matrix Wj be as in (17), P̃j an approximate GBT preconditioner satisfying condition (21), with
γs = λ̃s/(λ̃s − λ̃j), s = j + 1, . . . , m, then each column of Wj is an approximate eigenvector of P̃j(A− θj I)
corresponding to the approximate eigenvalue

µs =
λ̃s − θj

λ̃s − λ̃j
.

satisfying

P̃j(A− θj I)ṽs = µsṽs + εs, with ‖εs‖ ≤ τ
(

λs‖ZΠ̃−1Γ‖+ λj+1‖P̃j‖
)

.

Proof. See Reference [50].

The eigenvalues µs can be very close to one depending on the initial tolerance τ as stated in
Corollary 1, under reasonable additional hypotheses

Corollary 1. Let θj, τ such that, for all j = 1, . . . , m− 1:

λj ≤ θj ≤ λ̃j, (23)

τ < (2ξ j)
−1, (24)

then
1 ≤ µs ≤ 1 + 2τ(ξ j − 1), s = j + 1, . . . , m.

Proof. See Reference [50].

From Corollary 1 it is clear that µs can be made arbitrarily close to one by appropriately reducing
the tolerance τ. As an example, if ξ j = 102, τ = 10−3 then all µs are expected to be in (1, 1.2).

In Reference [50] (Theorem 2) is also stated that the eigenvalues of the preconditioned projected
Jacobian matrix (13) are characterized in the same way as stated in Theorem 3, that is, that for a suitable
function C(τ), increasing in τ

PQ J(j)
k ṽs = µsṽs + err, ‖err‖ ≤ τ C, (25)

where P̃j a generalized block tuned preconditioner, PQ = (I −QQT)P̃j(I −QQT).
To limit the cost of the application of the low-rank correction it is customary to fix the maximum

number of columns of matrix Wj, parameter lmax. Conversely, it is required to enlarge it when assessing
eigenpairs with j ≈ m. The first DACG stage is hence used to compute an extra number (win) of
approximated eigenpairs. In this way the number of columns of Wj is mj = min{lmax, m + win− j}.

The construction (C) of P̃j and its application (A) as P̃jr are sketched below. MVP = matrix-vector
products, Zj = Z0(:,j+1:j+mj) and Πj = Π0(j+1:j+mj, j+1:j+mj).

Algorithms 2020, 13, 100 16 of 19

Phase When What Relevant Cost

C once and • Z0 = P0 AV0 m + win MVPs and applications of P0

for all • Π0 = ZT
0 AV0 (m + win)2/2 dot products.

C for every • Z = Zj −VjΓ mj daxpys
eigenpair • Π̃ = Πj − ΓΛj

A at each • h = ZTr mj dot products
iteration • g = Π̃\h 1 system solve of size mj

• w = P0r− Zg 1 application of P0, mj daxpys

We report from Reference [50] the results of the described preconditioner in the computation
of the 20 smallest eigenpairs of matrix THERMOMEC, which is available in the SuiteSparse Matrix
Collection at https://sparse.tamu.edu/. This is a challenging test due to the high clustering of its
smallest eigenvalues. The CPU times (in seconds) refer to running a Fortran 90 code on a 2 x Intel Xeon
CPU E5645 at 2.40 GHz (six core) and with 4 GB RAM for each core. The exit test is on the relative

eigenresidual:
‖Au− q(u)u‖

q(u)
≤ ε = 10−8, with q(u) defined in (14).

The results of the runs are displayed in Table 7 where the number of iterations (and CPU time)
of the initial DACG method are reported as well as the cumulative number of iterations (and CPU
time) needed for solving all the linear systems (13) within the Newton iteration for the 20 eigenpairs.
Especially the second (Newton) phase takes great advantage by the GBT preconditioner as also
accounted for by Figure 5 shows the number of iterations taken by the Newton phase with the fixed IC,
SR1 tuned and GBT preconditioners, together the (scaled) log ξ j, which is a measure of the condition
number of the inner linear systems.

The almost constant GBT curve confirms the property of this preconditioner which makes the
number of iterations nearly independent on the relative separation between consecutive eigenvalues.

Table 7. Timings and iterations for the DACG -Newton method for the computation of m = 20
eigenpairs of matrix THERMOMEC. In boldface the smallest overall number of iterations and CPU time.

DACG Newton Total
Iterations CPU

Prec. win lmax τ Its. CPU OUT Inner MVP CPU

Fixed 0 0 10−4 1510 15.86 153 2628 34.12 4291 52.97
SR1 Tuned 10 10 10−3 1335 14.89 137 2187 32.19 3659 51.48

GBT 5 10 10−3 777 11.16 44 607 9.42 1428 20.74

Figure 5. Number of iterations for the Newton phase with fixed, SR1 tuned and generalized block
tuned (GBT) preconditioners. In red the (scaled) logarithm of the indicator ξ j.

https://sparse.tamu.edu/

Algorithms 2020, 13, 100 17 of 19

8. Conclusions

We have presented a general framework of updating a given preconditioner P0 with a low-rank
matrix with the aim of further clustering eigenvalues of the preconditioned matrix P0 A. We have shown
that this approach is particularly efficient when a sequence of linear systems has to be solved. In this
case the cost of computation of the leftmost eigenvector of the preconditioned matrices is payed for by
the number of system solutions. Alternatively, the vector forming the low-rank updates can be chosen
as the previous solutions in the sequence. In summary we have reviewed three updating processes:

• Deflation, aimed at shifting to zero a number of approximate eigenvalues of P0 A.
• Tuning, aimed at shifting to one a number of approximate eigenvalues of P0 A.
• Spectral preconditioners, aimed at adding one to a number of approximate eigenvalues of P0 A.

The most popular choices of the vectors (such as leftmost eigenvectors of either A or P0 A) have
been considered together with some techniques to cheaply assess them.

Finally we have considered a number of applications, such as discretization of evolutionary PDEs
and solution of large eigenvalue problems. In all these applications the low-rank correction is much
beneficial to reduce the number of iterations of the iterative solver of choice.

As a general recommendation we can say that accelerating a given preconditioner by a low-rank
matrix can be useful when both the following situations occur:

1. A sequence of linear systems with constant or slightly varying matrices has to be solved.
2. Either the smallest or the largest eigenvalues do not form a cluster.

Funding: This research received no external funding.

Acknowledgments: The author is indebted to the reviewers whose suggestions helped improve the quality of the
paper. This work was partially supported by the INdAM Research group GNCS (Year 2020 project: Optimization
and Advanced Linear Algebra for Problems Governed by PDEs) and by the project funded by CARIPARO: Matrix-Free
Preconditioners for Large-Scale Convex Constrained Optimization Problems (PRECOOP).

Conflicts of Interest: The author declares no conflict of interest.

References

1. Kolotilina, L.Y.; Yeremin, A.Y. Factorized Sparse Approximate Inverse Preconditionings I. Theory. SIAM J.
Matrix Anal. Appl. 1993, 14, 45–58. [CrossRef]

2. Benzi, M.; Meyer, C.D.; Tůma, M. A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient
Method. SIAM J. Sci. Comput. 1996, 17, 1135–1149. [CrossRef]

3. Elman, H.C.; Silvester, D.J.; Wathen, A.J. Finite Elements and Fast Iterative Solvers: With Applications
in Incompressible Fluid Dynamics, 2nd ed.; Numerical Mathematics and Scientific Computation; Oxford
University Press: New York, NY, USA, 2014; p. xiv+400.

4. Nicolaides, R.A. Deflation of Conjugate Gradients with Applications to Boundary Value Problems. SIAM J.
Numer. Anal. 1987, 24, 355–365. [CrossRef]

5. Saad, Y.; Yeung, M.; Erhel, J.; Guyomarc’h, F. A deflated version of the conjugate gradient algorithm. SIAM J.
Sci. Comput. 2000, 21, 1909–1926, [CrossRef]

6. Morgan, R.B. A Restarted GMRES method augmented with eigenvectors. SIAM J. Matrix Anal. Appl. 1995,
16, 1154–1171. [CrossRef]

7. Gu, X.M.; Huang, T.Z.; Yin, G.; Carpentieri, B.; Wen, C.; Du, L. Restarted Hessenberg method for solving
shifted nonsymmetric linear systems. J. Comput. Appl. Math. 2018, 331, 166–177. [CrossRef]

8. Carpentieri, B.; Duff, I.S.; Giraud, L. A class of spectral two-level preconditioners. SIAM J. Sci. Comput. 2003,
25, 749–765. [CrossRef]

9. Giraud, L.; Gratton, S.; Martin, E. Incremental spectral preconditioners for sequences of linear systems.
Appl. Numer. Math. 2007, 57, 1164–1180. [CrossRef]

10. Tebbens, J.D.; Tůma, M. Efficient Preconditioning of Sequences of Nonsymmetric Linear Systems. SIAM J.
Sci. Comput. 2007, 29, 1918–1941. [CrossRef]

http://dx.doi.org/10.1137/0614004
http://dx.doi.org/10.1137/S1064827594271421
http://dx.doi.org/10.1137/0724027
http://dx.doi.org/10.1137/S1064829598339761
http://dx.doi.org/10.1137/S0895479893253975
http://dx.doi.org/10.1016/j.cam.2017.09.047
http://dx.doi.org/10.1137/S1064827502408591
http://dx.doi.org/10.1016/j.apnum.2007.01.005
http://dx.doi.org/10.1137/06066151X

Algorithms 2020, 13, 100 18 of 19

11. Duintjer Tebbens, J.; Tůma, M. Preconditioner updates for solving sequences of linear systems in matrix-free
environment. Numer. Linear Algebra Appl. 2010, 17, 997–1019. [CrossRef]

12. Benzi, M.; Bertaccini, D. Approximate inverse preconditioning for shifted linear systems. BIT 2003,
43, 231–244. [CrossRef]

13. Bertaccini, D. Efficient preconditioning for sequences of parametric complex symmetric linear systems.
Electron. Trans. Numer. Anal. 2004, 18, 49–64.

14. Dostál, Z. Conjugate gradient method with preconditioning by projector. Int. J. Comput. Math. 1988,
23, 315–323. [CrossRef]

15. Mansfield, L. On the use of deflation to improve the convergence of conjugate gradient iteration. Commun. Appl.
Numer. Methods 1988, 4, 151–156. [CrossRef]

16. Frank, J.; Vuik, C. On the Construction of Deflation-Based Preconditioners. SIAM J. Sci. Comput. 2001,
23, 442–462. [CrossRef]

17. Gutknecht, M.H. Spectral deflation in Krylov solvers: A theory of coordinate space based methods. Electron. Trans.
Numer. Anal. 2012, 39, 156–185.

18. Freitag, M.A.; Spence, A. Convergence of inexact inverse iteration with application to preconditioned
iterative solves. BIT Numer. Math. 2007, 47, 27–44, [CrossRef]

19. Freitag, M.A.; Spence, A. A tuned preconditioner for inexact inverse iteration applied to Hermitian
eigenvalue problems. IMA J. Numer. Anal. 2008, 28, 522–551. [CrossRef]

20. Bergamaschi, L.; Bru, R.; Martínez, A.; Putti, M. Quasi-Newton preconditioners for the inexact Newton
method. Electron. Trans. Numer. Anal. 2006, 23, 76–87.

21. Bergamaschi, L.; Bru, R.; Martínez, A. Low-Rank Update of Preconditioners for the Inexact Newton Method
with SPD Jacobian. Math. Comput. Model. 2011, 54, 1863–1873. [CrossRef]

22. Bergamaschi, L.; Martínez, A. Efficiently preconditioned Inexact Newton methods for large symmetric
eigenvalue problems. Optim. Methods Softw. 2015, 30, 301–322. [CrossRef]

23. Bergamaschi, L.; Bru, R.; Martínez, A.; Mas, J.; Putti, M. Low-rank Update of Preconditioners for the
nonlinear Richard’s Equation. Math. Comput. Model. 2013, 57, 1933–1941, [CrossRef]

24. Bergamaschi, L.; Bru, R.; Martínez, A.; Putti, M. Quasi-Newton Acceleration of ILU Preconditioners for
Nonlinear Two-Phase Flow Equations in Porous Media. Adv. Eng. Softw. 2012, 46, 63–68. [CrossRef]

25. Martínez, A. Tuned preconditioners for the eigensolution of large SPD matrices arising in engineering
problems. Numer. Linear Algebra Appl. 2016, 23, 427–443. [CrossRef]

26. Freitag, M.A.; Spence, A. Shift-invert Arnoldi’s method with preconditioned iterative solves. SIAM J. Matrix
Anal. Appl. 2009, 31, 942–969. [CrossRef]

27. Bergamaschi, L.; Martínez, A. Two-stage spectral preconditioners for iterative eigensolvers. Numer. Linear
Algebra Appl. 2017, 24, e2084. [CrossRef]

28. Bergamaschi, L.; Marín, J.; Martínez, A. Compact Quasi-Newton preconditioners for SPD linear systems.
arXiv 2020, arXiv:2001.01062.

29. Nabben, R.; Vuik, C. A comparison of deflation and the balancing preconditioner. SIAM J. Sci. Comput. 2006,
27, 1742–1759. [CrossRef]

30. Xue, F.; Elman, H.C. Convergence analysis of iterative solvers in inexact Rayleigh quotient iteration. SIAM J.
Matrix Anal. Appl. 2009, 31, 877–899, [CrossRef]

31. Bergamaschi, L.; De Simone, V.; di Serafino, D.; Martínez, A. BFGS-like updates of constraint preconditioners
for sequences of KKT linear systems. Numer. Linear Algebra Appl. 2018, 25, 1–19. [CrossRef]

32. Gratton, S.; Mercier, S.; Tardieu, N.; Vasseur, X. Limited memory preconditioners for symmetric indefinite
problems with application to structural mechanics. Numer. Linear Algebra Appl. 2016, 23, 865–887. [CrossRef]

33. Bergamaschi, L.; Gondzio, J.; Martínez, A.; Pearson, J.; Pougkakiotis, S. A New Preconditioning Approach
for an Interior Point-Proximal Method of Multipliers for Linear and Convex Quadratic Programming. arXiv
2019, arXiv:1912.10064.

34. Duff, I.S.; Giraud, L.; Langou, J.; Martin, E. Using spectral low rank preconditioners for large electromagnetic
calculations. Int. J. Numer. Methods Eng. 2005, 62, 416–434. [CrossRef]

35. Bergamaschi, L.; Facca, E.; Martínez, A.; Putti, M. Spectral preconditioners for the efficient numerical
solution of a continuous branched transport model. J. Comput. Appl. Math. 2019, 254, 259–270. [CrossRef]

36. Golub, G.H.; van Loan, C.F. Matrix Computation; Johns Hopkins University Press: Baltimore, MD, USA, 1991.
37. Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed.; SIAM: Philadelphia, PA, USA, 2003.

http://dx.doi.org/10.1002/nla.695
http://dx.doi.org/10.1023/A:1026089811044
http://dx.doi.org/10.1080/00207168808803625
http://dx.doi.org/10.1002/cnm.1630040202
http://dx.doi.org/10.1137/S1064827500373231
http://dx.doi.org/10.1007/s10543-006-0100-1
http://dx.doi.org/10.1093/imanum/drm036
http://dx.doi.org/10.1016/j.mcm.2010.11.064
http://dx.doi.org/10.1080/10556788.2014.908878
http://dx.doi.org/10.1016/j.mcm.2012.01.013
http://dx.doi.org/10.1016/j.advengsoft.2010.10.011
http://dx.doi.org/10.1002/nla.2032
http://dx.doi.org/10.1137/080716281
http://dx.doi.org/10.1002/nla.2084
http://dx.doi.org/10.1137/040608246
http://dx.doi.org/10.1137/080712908
http://dx.doi.org/10.1002/nla.2144
http://dx.doi.org/10.1002/nla.2058
http://dx.doi.org/10.1002/nme.1201
http://dx.doi.org/10.1016/j.cam.2018.01.022

Algorithms 2020, 13, 100 19 of 19

38. Stathopoulos, A.; Orginos, K. Computing and deflating eigenvalues while solving multiple right-hand side
linear systems with an application to quantum chromodynamics. SIAM J. Sci. Comput. 2010, 32, 439–462,
[CrossRef]

39. Greenbaum, A. Iterative Methods for Solving Linear Systems; SIAM: Philadelphia, PA, USA, 1997.
40. Embree, M. How Descriptive Are GMRES Convergence Bounds? Technical Report; Oxford University

Computing Laboratory: Oxford, UK, 1999.
41. Morgan, R.B. GMRES with Deflated Restarting. SIAM J. Sci. Comput. 2002, 24, 20–37. [CrossRef]
42. Simoncini, V. Restarted Full Orthogonalization Method for Shifted Linear Systems. BIT Numer. Math. 2003,

43, 459–466. [CrossRef]
43. Bellavia, S.; De Simone, V.; Di Serafino, D.; Morini, B. Efficient preconditioner updates for shifted linear

systems. SIAM J. Sci. Comput. 2011, 33, 1785–1809, [CrossRef]
44. Luo, W.H.; Huang, T.Z.; Li, L.; Zhang, Y.; Gu, X.M. Efficient preconditioner updates for unsymmetric shifted

linear systems. Comput. Math. Appl. 2014, 67, 1643–1655. [CrossRef]
45. Zhu, L.; Gong, H.; Li, X.; Wang, R.; Chen, B.; Dai, Z.; Teatini, P. Land subsidence due to groundwater

withdrawal in the northern Beijing plain, China. Eng. Geol. 2015, 193, 243–255. [CrossRef]
46. Knyazev, A. Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate

gradient method. SIAM J. Sci. Comput. 2001, 23, 517–541. [CrossRef]
47. Bergamaschi, L.; Gambolati, G.; Pini, G. Asymptotic Convergence of Conjugate Gradient Methods for the

Partial Symmetric Eigenproblem. Numer. Linear Algebra Appl. 1997, 4, 69–84. [CrossRef]
48. Sleijpen, G.L.G.; van der Vorst, H.A. A Jacobi-Davidson method for Linear Eigenvalue Problems. SIAM J.

Matrix Anal. Appl. 1996, 17, 401–425. [CrossRef]
49. Notay, Y. Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric eigenproblem.

Numer. Linear Algebra Appl. 2002, 9, 21–44. [CrossRef]
50. Bergamaschi, L.; Martínez, A. Generalized Block Tuned preconditioners for SPD eigensolvers. Springer INdAM Ser.

2019, 30, 237–252.

c© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1137/080725532
http://dx.doi.org/10.1137/S1064827599364659
http://dx.doi.org/10.1023/A:1026000105893
http://dx.doi.org/10.1137/100803419
http://dx.doi.org/10.1016/j.camwa.2014.03.005
http://dx.doi.org/10.1016/j.enggeo.2015.04.020
http://dx.doi.org/10.1137/S1064827500366124
http://dx.doi.org/10.1002/(SICI)1099-1506(199703/04)4:2<69::AID-NLA98>3.0.CO;2-F
http://dx.doi.org/10.1137/S0895479894270427
http://dx.doi.org/10.1002/nla.246
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Low-Rank Updates
	Deflation
	Tuning
	Spectral Preconditioners

	Implementation and Computational Complexity
	Choice of the Vectors { wj }
	Cost-Free Approximation of the Leftmost Eigenpairs
	Sequences of Nonsymmetric Linear Systems
	Numerical Results
	Fe Discretization of a Parabolic Equation
	Iterative Eigensolvers

	Conclusions
	References

