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Abstract. Making use of an algebraic model for the study of diatomic endofullerenes recently published [Physical Review A 94,
032508 (2016)], we present a possible extension of this framework for the calculation of infrared intensities. We apply the model
to the absorption infrared spectrum of H2@C60 at T = 6 K obtaining satisfactory preliminary results.

INTRODUCTION

Allotropy or allotropism refers to the existence of the same chemical element in two or more physical forms. A well-
known example is carbon, that can be found as graphite, diamond, fullerenes, or graphene. In fact, one of the main
characters of our tale of two allotropes is buckminsterfullerene, C60. This molecule, considered by some as the most
beautiful molecule, has icosahedral symmetry, the most complex point group symmetry. It is an empty sphere formed
exclusively by carbon atoms. The discovery of fullerenes 1985 -also known as buckyballs- initiated a new branch
of chemistry, with consequences in such diverse areas as astrochemistry, superconductivity and solid state physics.
Soon after the discovery of fullerenes, the first endofullerenes, also called endohedral fullerenes were synthesized
at the beginning of the 1990’s trapping metal atoms into the carbon sphere [1]. These are supramolecular species,
denoted as A@CN and formed by the confinement of a guest, A, into a buckyball. The guest is not bound to the
fullerene carbon walls. On the contrary, the guest is incarcerated into the buckyball by a supramolecular (non-covalent)
interaction. Some years later noble gases and then molecules were trapped into the buckyball [2]. Molecules trapped
into fullerenes are considered the best example to date of a quantum rotor trapped into a spherical potential and the
development of the so called molecular surgery techniques allowed the synthesis of endofullerenes in quantities large
enough to apply different spectroscopic techniques and record the spectrum of the supramolecular species [3].

Endofullerenes are in the limelight due to their surprising quantum properties and because of many possible
practical applications: in molecular electronics, in quantum information, or in radiodiagnostic by magnetic resonance
are currently being explored. We focus our attention on the H2@C60 endofullerene [4, 5], with our second allotrope
as guest: the hydrogen molecule. Hydrogen has two allotropes, para H2 and ortho H2, that differ in their spin stere-
ochemistry, the first has antiparallel proton spins configuration (singlet state) and the second parallel spins (triplet
states). In order to comply with the Pauli selection rule, para and ortho H2 only have even and odd molecular angular
momentum, respectively. The coupling between spatial and spin properties make H2@C60 an excellent playground
for the study of spin chemistry and spectroscopy. The small H2 mass and the size of the space where the molecule is
confined result in the quantization of the molecular center-of-mass translations and their coupling to the rovibrational
degrees of freedom, having as an outcome particularly enticing quantum effects.

The coupling of these two sets of degrees of freedom hinders the problem of modeling the spectra of incarcer-
ated diatomic species making necessary a 5D quantum model to encompass all the relevant degrees of freedom. The
interest of an accurate description of supramolecular complexes as H2@C60 has produced very accurate phenomeno-
logical approaches to reproduce energies and intensities obtained in infrared [6, 7] and inelastic neutron scattering
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[8, 9] experiments. In such phenomenological models H2@C60 states were labeled using the quantum numbers v,
J, n, L, and Λ,MΛ. The number v and J are the number of quanta of vibrational excitation in the molecule and its
angular momentum with respect to the molecular center of mass. The labels n and L are the number of translational
quanta and the angular momentum of the molecular center of mass with respect to the cage. Finally, Λ,MΛ are the
total angular momentum resulting from the coupling of J and L and its projection along an axis. With the aim of
defining an algebraic model that could offer a computationally cheaper alternative to disentangle the interesting prop-
erties of diatomic endohedral species, we have recently presented an algebraic approach to the study of diatomic
endofullerenes where, as an application, H2@C60 energies and state assignments were calculated from a fit to the
available experimental data [10]. Our model reshapes the same physics of existing phenomenological approaches into
an algebraic framework, providing an equivalent, but computationally simpler description that encompasses the main
physical ingredients needed to achieve an accurate modeling of the quantum modes of a diatomic molecule confined
in an isotropic three-dimensional cage. The algebraic Hamiltonian operator includes molecular rotational, vibrational,
and center-of-mass modes, as well as the coupling of these two subsystems. The experimental term energies were ob-
tained with two different techniques: infrared spectroscopy [7] and inelastic neutron scattering [11]. We aim to extend
the results presented in [10] performing a fit to experimental infrared line intensities for H2@C60 at a temperature
T = 6 K reported in [7, 12]. The initial ingredients are the energies and wave functions published in [10] and we de-
fine an new, enlarged, dynamical algebra and tentative infrared transition operators guided as in the previous work by
symmetry considerations. By varying the three free parameters in such transition operator, we optimize the agreement
with experimental infrared line intensities. The enlarged dynamical algebra sets a framework for accomplishing a fit
that simultaneously encompass energies and intensities, and the present work is a first step towards this end.

As it would be clear for the reader in the next section, the algebraic model presented is strongly inspired by
previous Franco Iachello works. Of course this will be completely clear for the reader in the second section, once
he discovers that it is through the vibron model and its u(4) dynamical algebra [13, 14] that we deal with molecular
rotational and vibrational degrees of freedom. Nevertheless, taking into consideration the occasion on which this
work is published, we think it is pertinent to include some lines about how Franco Iachello has and inspired us and
influenced our professional careers.

In the case of LF, I came across Iachello’s works during my PhD in Theoretical Nuclear Physics, mainly be-
cause of the new E(5) solution of the Bohr hamiltonian. I soon realized I could find other solvable cases and this
accomplishment brought me several praises. Little by little, I approached Lie algebras and group theory and reading
Franco’s papers was like opening a Pandora’s box full of wonderfully crafted theories. His work is a constant source
of inspiration and innovation, not only in nuclear, but also in molecular and particle physics. His profound dedication
to this art is truly impressive.

In my case, FPB, I was introduced to Franco Iachello for the first time on June 22nd, 1993, when he was awarded
the Honoris Causa PhD by the University of Sevilla. At that time I was an undergraduate student, close to the end of
his major in Physics, that had already been strongly attracted by the beauty and elegance of group theory and algebraic
methods in Physics. José Miguel Arias, and two visiting professors from UNAM, Renato Lemus and Alejandro Frank,
introduced me to the symmetry way. On the ceremony, I was pleased to meet the famous Yale professor of which I had
heard so much from the members of the Nuclear Physics group in Sevilla. Some years later, in 1997 and as a graduate
student about to finish his PhD thesis, I visited Franco for the first time at Yale and spend some months there. It was
a very fruitful period, when a research line on the calculation of Franck-Condon factors for polyatomic molecules
was started [15]. This work was done in a close and very satisfactory collaboration with Pat Vaccaro and his graduate
student Thomas Müller from the Chemistry Department (where Franco has a joined appointment) and others. Such a
positive experience made me apply for a postdoc in Yale, where we proceeded with the Franck-Condon calculations
applied to S2O [16, 17, 18] and HCP [19], in the latter case introducing the 2D limit of the vibron model due to
the geometric changes experienced by the molecule upon electronic excitation. This was only the beginning and the
collaboration with Franco proceeded, with periodic stays in the Sloane Physics Laboratory to work on the description
of the spectra and excitation of bending vibrations for non-rigid molecules in collaboration with Lea Santos [20, 21],
QPTs and ESQPTs in the 2D limit of the vibron model [22, 23] or how to deal with coupled bending degrees of
freedom in systems of interest, like acetylene [24, 25, 26]. My postdoc with Franco and every visit to him since,
either in the USA or in Italy, had been unforgettable times that offered me the possibility of meeting many interesting
people; many of them are nowadays great friends. But I would like to go beyond the bare scientific results and papers,
notwithstanding the pleasure enjoyed in the collaborations that have produced this works. I want to stress the fact
that Franco has been, from the very beginning, when he hosted me for the first time as a young student and visitor,
a model both as a scholar and as a person. I consider a privilege to have had the wonderful opportunity of working
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with somebody who owns a great generosity, an amazing physical insight, and a vast mathematical knowledge. On
top of that I have enjoyed countless times his warm hospitality, his enlightening conversation and his deep knowledge
of literature, poetry, art, history, or archaeology. Finally, I feel very glad and proud to count him as a friend and I hope
that ours will be a lasting friendship with many interesting conversations to come.

ALGEBRAIC APPROACH TO ENDOFULLERENES

Dynamical Symmetry and Associated Basis
The dynamical symmetry proposed in [10] was defined in such a way that the rotations and vibrations of the diatomic
molecule were described within the vibron model, introduced by Iachello in the 80’s [13, 14, 27], associating a u(4)
Lie algebra to such molecular degrees of freedom. This algebra arises from the possible bilinear products of a creation
and an annihilation operator based on two different bosons, a scalar sp, s

†
p (` = 0) and a vector pµ, p†µ (` = 1, µ = ±1, 0)

[28]. The fullerene cage was originally modeled as a spherical three dimensional well and making use of a u(3) Lie
algebra. This Lie algebra was built from a single vector boson operator qµ, q

†
µ (` = 1, µ = ±1, 0) [29]. Thus, the

algebraic model presented in [10] was based on the direct sum Lie algebra up(4) ⊕ uq(3), where we used the sub-
indexes p and q to distinguish the two different sets of degrees of freedom: molecular rotations and vibrations and the
quantization of the molecular center of mass due to the interaction with the cage walls.

The consideration of infrared intensities and their associated selection rules requires an extension of this dynam-
ical algebra, at least to simultaneously describe the wavefunctions involved in the transition and to enlarge the set of
possible candidates for transition operator. This extension is performed à la Iachello’s: including a new scalar boson,
sq, s

†
q whose combination with the vector boson qµ, q

†
µ gives as a result a uq(4) Lie algebra for the description of the

center of mass degrees of freedom [30].
The final dynamical algebra is up(4)⊕uq(4) and the best dynamical symmetry to deal with endofullerenes studies

is
up(4) ⊕ uq(4) ⊃ sop(4) ⊕ uq(3) ⊃ sop(3) ⊕ soq(3) ⊃ sopq(3) ⊃ sopq(2)
Np Nq ω nq J L Λ MΛ

, (1)

where we have closely followed the notation introduced in our previous work. The basis states can be labeled as
|[NpNq]ωJ; nqL; Λ〉 or |[NpNq]vJ; nqL; Λ〉[31]. For the sake of brevity, we will remove the labels [NpNq] that define
the dynamical symmetry irrep and are common to all states. The set of quantum numbers (vJNqLΛ) corresponds to
the state labels used so far in theoretical investigations, enhancing the connection with Refs. [6, 7, 8, 11, 32, 5].

The basis quantum numbers follow well-known branching rules [27, 29]

ω = Np,Np − 2, . . . , 1 or 0 ,
nq = Nq,Nq − 1, . . . , 0 ,
J = 0, 1, . . . , ω ,

L = Nq,Nq − 2, . . . , 1 or 0 , (2)
Λ = |J − L|, |J − L| + 1, . . . , J + L .

MΛ = −Λ,−Λ + 1, . . . ,Λ − 1,Λ .

Model Hamiltonian
The total Hamiltonian can be written as

Ĥendo = Ĥup(4) + Ĥuq(4) + ĤCoupl , (3)

where the first and second terms are the vibron model Hamiltonian for rotations and vibrations of the diatomic guest
[33] and the Hamiltonian modeling the motion of the molecular center-of-mass inside a three-dimensional spherically-
symmetric confining potential. The third term includes the couplings between the center of mass and rotational and
vibrational degrees of freedom. As we proceed to show, the goodness of the basis defined in (1) is clear when we
realize that, using the same Hamiltonian operators than in Ref. [10], the Ĥup(4) and Ĥuq(4) operators are diagonal and
ĤCoupl is the only non-diagonal contribution.
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The u(4) vibron model Hamiltonian contains Casimir operators of the so(4) dynamical symmetry [33, 27], the
first two terms are standard two-body operators, and the other two are higher-order contributions, the third is a cen-
trifugal correction and the fourth a rotation-vibration coupling.

Ĥup(4) = E0 + β Ĉ2[sop(4)] + γ Ĉ2[sop(3)] + γ2Ĉ2[sop(3)]2 + κ Ĉ2[sop(4)]Ĉ2[sop(3)] . (4)

The Casimir operators in Equation (4) are diagonal in the chosen basis (1)

〈α|Ĉ2[sop(4)]|α〉 = ω(ω + 2) ,

〈α|Ĉ2[sop(3)]|α〉 = J(J + 1) , (5)

〈α|Ĉ2[sop(4)]Ĉ2[sop(3)]|α〉 = ω(ω + 2)J(J + 1) ,

where |α〉 = |ωJ; nqL; Λ〉.
The energy formula obtained for Ĥup(4) is

Eup(4) = E0 + βω(ω + 2) + γ J(J + 1)

+ γ2

[
J(J + 1)

]2
+ κ

[
ω(ω + 2)J(J + 1)

]
, (6)

where ω = Np,Np − 2, . . . , 1 or 0 or, alternatively, v = 0, 1, . . . , 1
2 (Np − 1) or 1

2 Np and J = 0, 1, . . . , ω.
The center-of-mass degrees of freedom Hamiltonian, within the uq(4) dynamical symmetry, is kept the same than

in the precious work
Ĥuq(4) = a Ĉ1[uq(3)] + b Ĉ2[uq(3)] + c Ĉ2[soq(3)] , (7)

where the first term is the number of q bosons, the second term is an anharmonic correction, and the third term is the
H2 center-of-mass centrifugal energy.

Again the Casimir operators are diagonal in the chosen basis (1)

〈α|Ĉ1[uq(3)]|α〉 = nq ,

〈α|Ĉ2[uq(3)]|α〉 = n2
q , (8)

〈α|Ĉ2[soq(3)]|α〉 = L(L + 1) ,

where |α〉 is again |ωJ; nqL; Λ〉. The resulting energy formula is

Euq(4) = a nq + b n2
q + c L(L + 1) , (9)

where nq is the eigenvalue of the number of quanta operator and L is the orbital angular momentum of the whole
confined particle (viz. the center of mass of the H2 molecule) inside the fullerene cage.

In regard with the coupling between the center of mass and rovibrational degrees of freedom, the guest diatomic
molecule and the cage interact through a number of different physical mechanisms, and we have found that the relevant
terms imply quadrupole-quadrupole couplings [10].

The algebraic scheme provides the quadrupole operators of up(4) and uq(4), namely Q̂t = [t† × t̃](2), where
t = p, q. A scalar coupling can be built from these two operators as [Q̂(2)

p × Q̂(2)
q ](0). This operator lifts the degeneracy

of Λ , 0 multiplets and gives as a result the unusual level ordering recorded in experiments and is the basis for the
coupling terms in the Hamiltonian (3). In addition, with the aim of optimizing the agreement with experimental data,
higher order terms were considered in the coupling Hamiltonian:

ĤCoupl = ϑpq[Q̂(2)
p × Q̂(2)

q ](0) + ϑpqw

[
Ĉ2[sop(4)][Q̂(2)

p × Q̂(2)
q ](0) + [Q̂(2)

p × Q̂(2)
q ](0)Ĉ2[sop(4)]

]
+ vpqĈ1[uq(3)]Ĉ2[sop(4)] .

(10)
For the sake of self-consistency, we provide the matrix elements of the scalar coupling [Q̂(2)

p × Q̂(2)
q ](0) [34]

〈ωJ; nqL; Λ|[Q̂(2)
p × Q̂(2)

q ](0)|ω′J′; n′qL′; Λ′〉 = (−1)L+Λ+J′
√

5
{

J L Λ

L′ J′ 2

}
〈nqL||Q̂q||n′qL′〉〈ωJ||Q̂p||ω

′J′〉δΛ,Λ′ .

(11)
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Once we separate the molecular and cage degrees of freedom, the reduced matrix elements of the molecular (Q̂p) and
center-of-mass (Q̂q) quadrupole degrees of freedom are [27]

〈nqL||Q̂q||nqL〉 = (2nq + 3)

√
L(L + 1)(2L + 1)
6(2L − 1)(2L + 3)

,

〈nqL + 2||Q̂q||nqL〉 =

√
(nq − L)(nq + L + 3)(L + 1)(L + 2)

(2L + 3)
,

〈ω0||Q̂p||ω0〉 = 0 ,

〈ωJ||Q̂p||ωJ〉 = (Np + 2)
(
1 +

J(J + 1)
ω(ω + 2)

) √
J(J + 1)(2J + 1)

6(2J − 1)(2J + 3)
,

〈ωJ + 2||Q̂p||ωJ〉 = (Np + 2)

√
(ω − J − 1)2(ω + J + 2)2(J + 1)(J + 2)

4ω2(ω + 2)2(2J + 3)
,

〈ω + 2J − 2||Q̂p||ωJ〉 =

√
(Np − ω)(Np + ω + 4)(ω − J + 1)4J(J − 1)

16(ω + 1)3(ω + 2)(2J − 1)
,

〈ω + 2J||Q̂p||ωJ〉 =

√
(Np − ω)(Np + ω + 4)(ω − J + 1)2(ω + J + 2)2J(J + 1)(2J + 1)

24(ω + 1)3(ω + 2)(2J − 1)(2J + 3)
,

〈ω + 2J + 2||Q̂p||ωJ〉 =

√
(Np − ω)(Np + ω + 4)(ω + J + 2)4(J + 1)(J + 2)

16(ω + 1)3(ω + 2)(2J + 3)
,

where we use the Pochhammer symbol (a)b = a(a + 1) · · · (a + b − 1). Note that the enlargement of the original
dynamical symmetry from up(4) ⊕ uq(3) to up(4) ⊕ uq(4) does not affect these matrix element due to the fact that the
center-of-mass quadrupole (Q̂q) belongs to the uq(3) ∈ uq(4).

The matrix elements for the other two operators in the coupling Hamiltonian (10),[
Ĉ2[sop(4)][Q̂(2)

p × Q̂(2)
q ](0) + [Q̂(2)

p × Q̂(2)
q ](0)Ĉ2[sop(4)]

]
and Ĉ1[uq(3)]Ĉ2[sop(4)], are trivially computed using

Equation (5), (8), and (11).
The model Hamiltonian has a total of 10 free parameters whose values, as explained in [10], were fixed to achieve

the better possible agreement with the available set of experimental data, obtaining a satisfactory agreement with the
experiment. We performed two fits, denoted as fit F0 and F1. The first one includes 7 parameters, leaving aside γ2,
ϑpqw, and vpq, while the second one includes all the parameters. It is especially interesting how the characteristic level
splitting due to the interaction between translational and rovibrational degrees of freedom, shown in Figure 1 can be
reproduced with the inclusion of the quadrupole-quadrupole coupling interaction

INFRARED LINE INTENSITY AND TRANSITION OPERATOR

We follow closely Ref. [7] for the calculation of the infrared absorption line areas. In principle, the H2 molecule dipole
moment is zero, as happens with all homonuclear diatomic molecular species, however the interaction between the
molecule and the cage in the translational motion results in an induced dipole moment.

From Ref. [7] the infrared absorption line area between states |i〉 and | f 〉, that is the experimentally reported
quantity, is denoted as S (ωi f ) and is expressed as follows

S (ωi f ) =
N

V
π10−2

3η~cε0
piωi f

∣∣∣〈 f ||d(1)||i〉
∣∣∣ , (12)

where all units are SI but ω in cm−1 and S (ωi f ) in cm−2. The different quantities involved are NV = 1.48 × 1027 m−3,
the number density of molecules in solid C60; ε0, the permitivity of vacuum; η = 2, the C60 index of refraction; pi,
the probability that the initial state is populated; ωi f = (E f − E − i)/(2π~c); and d(1) is the endofullerene H2 induced
dipole moment.
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FIGURE 1. Lowest energy levels and the corresponding IR spectroscopy transitions for para (left) and ortho (right) H2@C60 at
low temperatures. Dashed lines stand for forbidden transitions. The incarceration of H2 into the buckyball originates the splittings
of the unperturbed molecule rovibrational energy levels into translational sublevels labeled by quantum numbers n, l, and λ, as
discussed in the text. For the sake of clarity, in the ground vibrational v = 0 state only the j = 1 energy level is shown.

The probability that the |i〉 state is populated can be computed as [7]

pi =
nk(2Λi + 1) exp

(
−

Ei
kBT

)
∑

j(2Λ j + 1) exp
(
−

E j

kBT

) , (13)

where the sum in j runs over all para or ortho states, Ei is the initial state excitation energy from the nq = v = 0 state,
and nk with k = o, p the fractional ortho and para populations.

From the wave functions and energy spectra obtained in the fit reported in [10], all quantities in Equation (12)
can be computed apart from the induced dipole moment reduced matrix elements 〈 f ||d(1)||i〉. In the present work we
suggest a possible algebraic realization of such infrared transition operator, denoted as d̂(1). The defined induced dipole
moment complies with the selection rules for infrared transitions: ∆nq = ±1, ∆L = ±1, ∆J = 0,±2, and ∆Λ = 0,±1
[7, 32] for endofullerenes and depends on two operators that couple molecular rovibrational and translational degrees
of freedom

d̂(1) = δ(1)
0 [np × D̂′q](1) + δ(1)

1 [Q̂(2)
p × D̂′q](1) , (14)

where δ(1)
i with i = 0, 1 are free parameters to optimize the agreement with experimental absorption line areas.

The reduced matrix elements of the induced dipole moment operator (14) in the basis (1) were not reported in
[10] because the D̂′q algebra elements were not originally considered. They stem from the extension of uq(3) to uq(4).
The reduced matrix elements of the two operators in (14) are

〈ωJ; nqL; Λ||[n̂p × D̂′q](1)||ω′J′; n′qL′; Λ′〉 =
√

3(2Λ + 1)(2Λ′ + 1)


J L Λ

J′ L′ Λ′

0 1 1

 (15)

×〈nqL||D̂′q||n
′
qL′〉〈ωJ||n̂p||ω

′J′〉 ,
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〈ωJ; nqL; Λ||[Q̂(2)
p × D̂′q](1)||ω′J′; n′qL′; Λ′〉 =

√
3(2Λ + 1)(2Λ′ + 1)


J L Λ

J′ L′ Λ′

2 1 1

 (16)

×〈nqL||D̂′q||n
′
qL′〉〈ωJ||Q̂p||ω

′J′〉 .

The relevant reduced matrix elements of the operator n̂p in the sop(4) basis are [27]

〈ωJ||n̂p||ωJ〉 =
Np − 1

2

√
2J + 1 +

(Np + 2)J(J + 1)(2J + 1)
2w(w + 2)

, (17)

〈ω + 2J||n̂p||ωJ〉 =

√
(2J + 1)(Np − w)(Np + w + 4)(ω − J + 1)2(w + J + 2)2

16(w + 2)(w + 1)3
, (18)

while in the case of the reduced matrix elements of D̂′q in the uq(3) basis, the required elements are [27]

〈nq + 1L − 1||D̂′q||nqL〉 =

√
(Nq − nq)(nq − L + 2)L , (19)

〈nq + 1L + 1||D̂′q||nqL〉 =

√
(Nq − nq)(nq + L + 3)(L + 1) . (20)

FIT RESULTS TO INFRARED LINE INTENSITIES

As a preliminary test of the algebraic dipole transition operator (14) we perform a non-linear least-squares fit to the
experimental IR absorption line areas reported in [7] and optimize the parameters δ(1)

i with i = 1, 2 and nop = no/np,
the ortho to para ratio [35] We would like to emphasize that the wavefunctions and state term values used are the ones
obtained in the fit labeled as fit F1 in [10], obtained without taking into consideration the experimental intensities and
with a dynamical algebra up(4) ⊕ uq(3). The optimized parameter values are

TABLE 1. Optimized values of the algebraic dipole moment transition operator pa-
rameters δ(1)

i , i = 0, 1, to reproduce the IR spectrum of H2@C60 at 6 K, the ortho to
para ratio nop, the values of the Np and Nq parameters determining the irrep of the
dynamical algebra used in the calculations, and the final reported root mean square,
rms, of the fit. We report the optimized values obtained with wavefunctions from the
fits F0 and F1 published in [10].

Parameter
Units

δ(1)
0

cm−2
δ(1)

1
cm−2

nop Np Nq rms
cm−2

Fit F0 0.0097(5) 0.0138(16) 0.95(12) 34 20 1.236
Fit F1 0.0062(6) 0.0118(24) 1.5(4) 34 20 1.235

The results obtained for parameter in Table 1 are depicted in Fig. 2. The synthetic spectrum is computed from the
available experimental data for the IR spectrum of H2@C60 at 6 K using Gaussian lineshapes with FWHM = 1 cm−1

[7, 12]; it is depicted with blue crosses in Fig. 2. The results obtained with the optimized parameters reported in Table
1 are drawn with full orange and red lines. Orange (red) lines correspond to the H2@C60 wave functions from fits
F0 (F1) in [10]. As expected from the quality of the energy fit F1 in [10] the line positions are better reproduced in
this case, nevertheless the agreement between calculated and experimental IR absorption line areas is basically the
same in both cases, as can be deduced from the similar values obtained for the rms in both cases (last column in Table
1). Thus the results of this preliminary calculation indicate that the basic physical ingredients needed to reproduce
the spectrum are already present in the wave functions obtained from a basic fit F0. As we detail in the next section,
we plan to improve this preliminary result in the near future either performing calculations with a modified induced
dipole moment algebraic realization, or taking advantage of the extension of the model to a up(4) ⊕ uq(4) dynamical
algebra and performing a simultaneous fit to term energies and line intensities.
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FIGURE 2. IR absorption line areas for H2@C60 at 6 K as a function of transition wavelength. The synthetic spectrum computed
from the experimental information [7, 12] is depicted using blue crosses. The absorption spectrum computed from the wavefunc-
tions and energies obtained in fit F0 (F1), Equation (12), induced dipole moment algebraic realization (14), and parameters in Table
1 [10] is depicted with full orange (red) lines.

CONCLUDING REMARKS

In the present work we have presented the theoretical formalism to enlarge the dynamical algebra of the algebraic
approach to diatomic endohedral species presented in [10] from the original up(4)⊕uq(3) to a up(4)⊕uq(4) dynamical
algebra. As an application we have proposed an algebraic form for the H2@C60 induced dipole moment that depends
on two free parameters and performed a preliminary calculation of infrared absorption intensities for H2@C60 at a
temperature T = 6 K [7] from the wave functions of fits F0 and F1 reported in [10]. The final results obtained, shown in
Figure 2, have a qualitatively acceptable agreement with the reported experimental synthetic spectrum, although there
is still ample room for improvement as the agreement with the experimental data shows a certain amoint of redshift and
differences between computed and experimental infrared absorption areas. As we mentioned in the previous section,
comparing the rms values reported in Table 1, we find quite remarkable that the intensities computed using the wave
functions from fit F0 have a similar agreement with the experimental infrared absorption areas than the intensities
computed making use of the wave functions from fit F1 that has three extra operators in the Hamiltonian. The line
positions improve in the second case, as expected from the improved energy fit, but the optimized intensities have the
same agreement with the experimental data.

We plan to improve this initial results by working in different aspects of the model. The first step that we will take
to improve the reported results is to extend the results to the 200 K data reported in[7] and perform a simultaneous fit
of energies and intensities. This fit could be done in two ways. On the one hand we can fit energies and line intensities
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in the same way that we have done in [10] and in the present work, though with a fit that combines the information
on energies and line intensities. In our experience the fit of intensities is a stringent test on the quality of the fit and in
several occasions comparable fits considering only the energy spectrum have utterly different results when intensities
are computed [19, 36]. Another possibility is to follow a procedure similar to the one described in [7], and fitting the
model outcome to a synthetic spectrum.

The simultaneous fit of energies and intensities will be combined with the search of improved algebraic realiza-
tions of the induced dipole moment operator d(1). In fact the correct algebraic realization of d(1) may help explaining
why the induced dipole moment is suppressed for transitions in the ground vibrational state, solving the conundrum of
the non observation of ∆nq = ±1 with ∆v = 0. Such transitions should be accessible experimentally if one considers
the modeling results of the present model and of the model of Ge et al. [7].

Another possibility open for improvement of the reported results is the exploration of the possibilities opened
up with the enlargement of the system dynamical symmetry to up(4) ⊕ uq(4). The new dynamical algebra allows for
the inclusion of couplings between states with different nq. Considering our previous remark, this could improve the
agreement with experimental line intensities though the resulting energies may not be greatly affected.

We consider that the present model is a computationally efficient approach to the structure of diatomic molecu-
lar species confined into fullerenes. We have already shown the advantages offered by a symmetry-guided algebraic
approach to these fascinating quantum systems, obtaining a good agreement to the H2@C60 experimental spectrum
making use of Hamiltonian (3), identifying the key coupling as the quadrupole-quadrupole interaction between rovi-
brational and translational degrees of freedom. We expect that once we find an appropriate algebraic realization of the
induced dipole moment equivalent results will be obtained for the intensities, improving our comprehension of endo-
hedral compounds with a simple yet powerful model that follows the trail so brilliantly marked by Franco Iachello
and his many contributions in the description of very different physical systems with the common denominator of an
acute quest for beauty and elegance through the use of symmetry for the description of natural phenomena.
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[25] F. Iachello and F. Pérez-Bernal, J. Phys. Chem. A 113, 13273–13286 (2009).
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