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Abstract

We prove that the closure of every Jordan class J in a semisimple sim-
ply connected complex algebraic group G at a point x with Jordan decom-
position x = rv is smoothly equivalent to the union of closures of those
Jordan classes in the centraliser of r that are contained in J and contain x
in their closure. For x unipotent we also show that the closure of J around
x is smoothly equivalent to the closure of a Jordan class in Lie(G) around
exp−1 x. For G simple we apply these results in order to determine a (non-
exhaustive) list of smooth sheets in G, the complete list of regular Jordan
classes whose closure is normal and Cohen-Macaulay, and to prove that all
sheets and Lusztig strata in SLn(C) are smooth.

MSC: 20G20; 20G07; 17B45

1 Introduction
Jordan classes in a reductive group or Lie algebra are locally closed, smooth,
irreducible G-stable subsets of elements having similar Jordan decomposition.

In the Lie algebra case they are also known as decomposition classes and
were introduced in [3] in order to describe and parametrise sheets for the adjoint
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action of a semisimple group on its Lie algebra. Their geometry has been studied
in [2, 7, 33, 14]. Sheets and birational sheets (recently introduced in [23]) are
unions of Jordan classes: these objects have a role in the representation theory
of finite W -algebras, in the G-module structure of rings of regular functions on
adjoint orbits and in the description of primitive ideals in enveloping algebras. The
group version of Jordan classes made its first appearance in the work of Lusztig on
the generalised Springer correspondence [25]: they provide the stratification with
respect to which character sheaves are constructible. Some of their properties and
their closures have been studied in [10] in order to describe sheets for the action
of a reductive group on itself. Sheets in the group, in turn, are the irreducible
components of the parts of the partition introduced in [27] as fibers of a map
involving Springer representations with trivial local system, [9].

Even though these Lie algebra and group stratifications were introduced to
deal with distinct problems, they present similarities and it is natural to expect
that the geometry of Jordan classes in a group and of Jordan classes in a Lie
algebra are related. An example of the expected connection is to be found in [12]
where the local geometry of the categorical quotient of the closure J of a Jordan
class in the groupG has been related to the local geometry of categorical quotients
of closures of Jordan classes in Lie algebra centralisers of semisimple elements
contained in J . This way the problem of normality or smoothness of J//G could
be related to the analogous problem for semisimple Lie algebras, whose solution
is to be found in [33, 7, 14].

The first goal of this paper is to extend this approach to the study of closures of
Jordan classes in G semisimple and simply connected. We prove in Theorem 4.4
that the closure of a Jordan class J in G around a point g with Jordan decomposi-
tion g = rv is smoothly equivalent to a union of closures of Jordan classes in the
centraliser of r around the unipotent element v. We show that, up to a shift by r,
the Jordan classes occurring in this union are those classes containing rv in their
closure and contained in J and we parametrise them in terms of Lie theoretic data
depending on J and rv. This allows to reduce the local study around any element
to a local study around a unipotent one. Then we prove in Theorem 5.2 that the
exponential map identifies the Jordan stratification induced on a neighbourhood
of the nilpotent cone in Lie(G) with the Jordan stratification induced on a neigh-
bourhood of the unipotent variety in G, preserving closure orderings. Therefore
any closure of a Jordan class in G containing a unipotent element u is smoothly
equivalent in the neighbourhood of u to the closure of a Jordan class in Lie(G) in
the neighbourhood of the logarithm of u. We believe that these two equivalences
could establish new connections between representation theoretic objects related
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either to Jordan classes in a group or in a Lie algebra. For the present, we pro-
vide a series of applications to the study of geometry of closures of certain Jordan
classes and of sheets.

Combining our local analysis and a theorem in [33] describing when the clo-
sure of a regular Jordan class in a Lie algebra is normal and Cohen-Macaulay,
we prove that the closure of a regular Jordan class J in G is normal and Cohen-
Macaulay if and only if J//G is normal if and only if J//G is smooth, Theorem
6.1. Since the list of classes J for which J//G is normal is known [12], this gives
the list of normal and Cohen-Macaulay closures of regular Jordan classes in G,
see Remark 6.3.

Every sheet S contains a dense Jordan class JS and we provide necessary and
sufficient conditions for a sheet to be smooth, in terms of the local geometry of the
closure of JS . We also show in Theorem 6.6 that if G is simple simply connected
and classical and JS//G is normal in codimension 1, then S is always smooth, so
since the list of classes such that JS//G is normal in codimension 1 is known, [12],
we have a list of smooth sheets for G simple, simply-connected and classical, see
Remark 6.7. We also provide the list of smooth sheets when JS//G is normal in
codimension 1 for G exceptional and simple in Corollary 6.8.

When G = SLn(C) the situation is much simpler and we can conclude that
all sheets and all Lusztig strata are smooth (Proposition 6.9). The general case
is more involved and there are examples of singular and non-normal strata, for
instance those containing the subregular unipotent conjugacy class when the root
system is doubly-laced.

2 Notation and preliminary results
In this and the following section G is a complex connected reductive algebraic
group; later it will be necessary to add further requirements on G. We fix a maxi-
mal torus T with associated root system Φ and Weyl group W . We fix also a base
∆ of Φ and Xγ , for γ ∈ Φ will be a root subgroup of G. If Φ is irreducible ∆̃
will be the union of ∆ with the opposite of the highest root in Φ; the numbering
of simple roots will be as in [5]. We set g = Lie(G), h = Lie(T ). By abuse
of terminology we will call Levi subalgebras (subgroups, respectively) the Levi
subalgebras (subgroups, respectively) of some parabolic subalgebra (subgroup,
respectively) of g (of G, respectively). The connected centralizers of semisimple
elements in G are called pseudo-Levi subgroups. If Φ is irreducible such groups
are precisely those conjugate to a group of the form GΠ = 〈T,X±α, | α ∈ Π〉
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for some Π ⊂ ∆̃, [35, Proposition 3],[26, 5.5]. The Weyl group of GΠ will be
denoted by WΠ and gΠ = Lie(GΠ).

We use the dot to denote the conjugacy action ofG on itself, i.e., h·g = hgh−1.
We denote by Ad : G→ GL(g) the adjoint representation of the group G on g. If
g ∈ G, V ⊂ G and x ∈ g, we set

CG(g) := {h ∈ G | h · g = hgh−1 = g},

CG(V ) :=
⋂
v∈V

CG(v),

CG(x) := {h ∈ G | Ad(h)(x) = x},
cg(g) := {y ∈ g | Ad(g)(y) = y} = Lie(CG(g)),

cg(x) := {y ∈ g | [x, y] = 0} = Lie(CG(x)).

The conjugacy class of g in a subgroupH ≤ Gwill be denoted byH ·g = OHg .
For the adjoint orbit of x ∈ g, we use the notationsAd(G)(x) = OG

x . If clear from
the context, indices or superscripts will be omitted. For any algebraic group H ,
the identity component will be denoted byH◦ and the center by Z(H). The center
of a subalgebra m of g will be denoted by z(m).

When we write g = su ∈ G or x = xs + xn ∈ g we implicitly assume that
su (xs + xn, respectively) is the Jordan decomposition of g (x, respectively), with
s semisimple and u unipotent (xs semisimple and xn nilpotent, respectively). We
consider the elements in z(g) as semisimple, so the semisimple part of z + x for
z ∈ z(g) and x ∈ g is z + xs.

If G = Z(G)◦[G,G], we will write [G,G]sc for the simply connected cover of
the semisimple group [G,G] and Gsc := Z(G)◦ × [G,G]sc. Also, π : Gsc → G
will be a central isogeny and we will indicate by Tsc the maximal torus inGsc such
that π(Tsc) = T .

It is well-known that the exponential map is a G-equivariant analytic map
inducing a G-equivariant analytic isomorphism between the nilpotent cone N ⊂
g and the unipotent variety U ⊂ G, see [18, §6.20]. For convenience in the
exposition, we shall denote by expsc : g → Gsc the scalar multiplication by 2πi
followed by the exponential map and by exp the composition π ◦ expsc : g → G
and we shall call these maps the exponential maps.

If d ∈ Z≥0 andX is aG-variety, we denote byX(d) the locally closed subset of
X consisting of points in orbits of dimension d. Their irreducible components are
called the sheets for the action ofG onX . For Y ⊂ X , we shall denote by Y reg the
set of points in Y contained in X(d) for d maximum such that Y ∩X(d) 6= ∅. For
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any group H acting on a set X , unless otherwise stated, the stabiliser of x ∈ X
will be indicated by Hx.

For a surjective morphism p : X → Y , we will say thatU ⊂ X is p-saturated if
U = p−1p(U). We will use this notion forX an affineH-variety withH reductive
and Y = X//H = Spec(C[X]H) and we will denote the projection by πX . In this
case, U is πX-saturated if it isH-stable and such that ifH ·u ⊂ U , thenH ·x ⊂ U
for every orbit H ·x satisfying H · x∩H · u 6= ∅, [24, §I]. For the main properties
of the categorical quotient we refer to [6, Theorem 1.24]. See also [21, §7.13] for
more details on the case X = g and [18, Chapter 3] for the case of X = G, with
adjoint action in both cases.

If X ⊂ Y are topological spaces, we will denote by X
Y

the closure of X
in Y . If the ambient space is clear, we will omit the superscript Y . We recall
that when X and Y are algebraic varieties, the analytic closure coincides with
the Zariski closure, [34, Proposition 7] and that if X is an algebraic variety and
x ∈ X , then X is unibranch, normal, smooth or Cohen-Macaulay at x if and only
if the corresponding analytic variety is so, [16, Exposé XII, Proposition 2.1(vi),
Proposition 3.1 (vii)].

We will also need the following definition, see [17, 1.7]

Definition 2.1. Two pointed varieties (X, x) and (Y, y) are said to be smoothly
equivalent if there exists a pointed variety (Z, z) and two smooth maps ϕ : Z → X
and ψ : Z → Y such that ϕ(z) = x and ψ(z) = y.

Smooth equivalence is an equivalence relation on pointed varieties and it pre-
serves the properties of being unibranch, normal, Cohen-Macaulay or smooth. We
shall denote it by ∼se. By [22, Remark 2.1] if X and Y are varieties satisfying
dimY = dimX + d, then (X, x) ∼se (Y, y) if and only if (X × Ad, (x, 0)) and
(Y, y) are locally analytically isomorphic. So, if d = 0, then (X, x) ∼se (Y, y) if
and only if there is a local analytic isomorphism in a neighbourhood of xmapping
x to y: in this case we will also write (X, x) ∼loc (Y, y).

3 Jordan classes and sheets in G and g

In this section we recall the necessary notions of Jordan classes in g and G. For
more information about them the reader is referred to [2, 3, 7] for the Lie algebra
case and [25, 10] for the group case. The basic idea to keep in mind is that Jordan
classes are irreducible subsets consisting of elements that, up to conjugation, have
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semisimple parts with same connected centraliser M and nilpotent or unipotent
part lying in the same M -orbit.

The Jordan class in g containing the element x = xs + xn is given by

Jg(x) := Ad(G)(z(cg(xs))
reg + xn).(3.1)

In other words it consists of all elements whose centralisers are G-conjugate to
cg(x) [37, 39.1.6]. Jordan classes in g are parametrised by G-orbits of pairs (l,O)
where l is a Levi subalgebra of g and O is a nilpotent class in l. For the above
class Jg(x) we have l = cg(xs) and O = Oxn ⊂ l and we will also indicate Jg(x)
by Jg(l,O).

The closure of Jg(x) and its regular part are unions of Jordan classes and can
be described as unions of adjoint orbits as follows:

Jg(x) =
⋃

ys∈z(cg(xs))

Ad(G)(ys + Ind
cg(ys)

cg(xs)
O
CG(xs)
xn )(3.2)

Jg(x)
reg

=
⋃

ys∈z(cg(xs))

Ad(G)(ys + Ind
cg(ys)

cg(xs)
OCG(xs)
xn )(3.3)

where Ind
cg(ys)

cg(xs)
indicates Lusztig-Spaltenstein’s induction of nilpotent orbits, [28,

2]. Hence, Jg(x) is closed if and only if z(cg(xs))
reg = z(cg(xs)) = z(g) and

O
CG(xs)
xn is closed, i.e., if and only if Jg(x) = z(g). It also follows from the

above formula that the closure of any Jordan class in g contains 0, hence nilpotent
elements.

A Jordan class J′ contained in Jg(x)
reg

is closed therein if and only if J′
reg

= J′

and this is the case if and only if J′ is the sum of z(g) with the unique nilpotent
orbit in J(x)

reg
.

The Jordan class in G containing the element g = su is given by

JG(g) := G · ((Z(CG(s)◦)◦s)regu).(3.4)

The definition simplifies slightly if G is simply connected, because CG(s)◦ =
CG(s) for any semisimple element s. However, taking the connected component
Z(CG(s)◦)◦s instead of Z(CG(s)◦) is necessary to guarantee irreducibility of a
Jordan class.

These classes are parametrised byG-orbits in the set G of triples (M,Z(M)◦r,O)
where M is a pseudo-Levi subgroup of G; Z(M)◦r is a coset in Z(M)/Z(M)◦

satisfying CG(Z(M)◦r)◦ = M and O is a unipotent class in M . For the above

6



class JG(g) we can take the triple: M = CG(s)◦, Z(M)◦r = Z(M)◦s, and
O = OMu . We will denote JG(g) by JG(M,Z(M)◦s,O). By construction, Jordan
classes in G are stable by left multiplication by elements in Z(G)◦.

The closure of JG(g) and its regular part are unions of Jordan classes and can
be described as unions of conjugacy classes as follows:

JG(M,Z(M)◦s,OMu ) =
⋃

z∈Z(M)◦s

G · (zInd
CG(z)◦

M OMu )(3.5)

JG(M,Z(M)◦s,OMu )
reg

=
⋃

z∈Z(M)◦s

G · (zInd
CG(z)◦

M OMu )(3.6)

where Ind
CG(z)◦

M indicates Lusztig-Spaltenstein’s induction of unipotent conjugacy
classes, [28][10, Proposition 4.8]. The Jordan class JG(g) is closed if and only
if Z(M)◦s = (Z(M)◦s)reg = Z(G)◦s and OMu = OMu . One can verify that this
happens if and only if u = 1 andM/Z(G)◦ is semisimple, i.e., if and only if g = s
is semisimple and isolated in the terminology of [25]. A Jordan class J ′ contained
in JG(M,Z(M)◦s,OMu )

reg
is closed therein if and only if J ′

reg
= J ′ and this is the

case if and only if J ′ = JG(M ′, Z(M ′)◦r,Ov) ⊂ JG(M,Z(M)◦s,OMu )
reg

with
M ′/Z(G)◦ semisimple, i.e., the semisimple part of the elements in J ′ are isolated.

It is worthwhile to notice that, in contrast with the Lie algebra situation, not
all closures of Jordan classes contain a unipotent conjugacy class, even up to
a central element. In fact, JG(M,Z(M)◦s,O) ∩ Z(G)U 6= ∅ if and only if
JG(M,Z(M)◦s,O)∩Z(G) 6= ∅ and the latter holds if and only ifM is a Levi sub-
group. Also, JG(M,Z(M)◦s,O) ∩ U 6= ∅ if and only if 1 ∈ JG(M,Z(M)◦s,O)
if and only if M is a Levi subgroup and Z(M)◦s = Z(M)◦, see formula (3.5) and
the proof of [10, Proposition 5.6].

Using our choice of maximal torus T we can simplify the parametrisation of
Jordan classes in G by reducing the set of admissible triples and the symmetry
group acting on it. Let T = {(M,Z(M)◦s,OMu ) ∈ G | T ⊂ M}. Observe that in
this case Z(M)◦s ⊂ T , that NG(T ) acts on T and that T acts trivially, so W acts
on T .

Proposition 3.1. Jordan classes in G are parametrised by elements in T /W .

Proof. We need to show that G/G is in bijection with T /W . First of all, since all
semisimple classes in G have a representative in T , any triple in G is G-conjugate
to a triple in T . We show that two triples in T are G-conjugate if and only if
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they lie in the same W -orbit. One direction is immediate, as NG(T ) ⊂ G. Let
(M1, Z(M1)◦s1,O1) and (M2, Z(M2)◦s2,O2) ∈ T and assume

(M2, Z(M2)◦s2,O2) = g · (M1, Z(M1)◦s1,O1), for some g ∈ G.

Since all maximal tori in M2 are M2-conjugate, there exists m ∈ M2 such that
ẇ := mg ∈ NG(T ), and (M2, Z(M2)◦s2,O2) = ẇ · (M1, Z(M1)◦s1,O1) �

Jordan classes in g and G form a partition of their ambient variety into finitely
many locally closed, irreducible, smooth G-stable subsets [7, 3, 25]. If the ambi-
ent Lie algebra or group is clear, we will omit the subscript g or G.

The sheets for the action of G on g or G are obtained as follows, [3, 10]:
every sheet S in g (in G, respectively) contains a unique dense Jordan class J
(J , respectively) and S = J

reg
(S = J

reg
, respectively). A Jordan class J(l,O)

(J(M,Z(M)◦s,O), respectively) is dense in a sheet if and only if O is rigid in
l (O is rigid in M , respectively), i.e., it is not induced from an orbit (conjugacy
class, respectively) in a proper Levi subalgebra (subgroup, respectively).

4 Reduction to unipotent elements
In this section G is semisimple and simply connected. We begin our local study
of Jordan classes. We will use a variant of Luna’s étale slice theorem to reduce
the study of the closure of a Jordan class in G in the neighbourhood of an el-
ement rv to the study of the closures of several Jordan classes in CG(r) in the
neighbourhood of the unipotent part v.

We recall that if H is a reductive subgroup of G acting on a variety X then
G ×H X := (G ×X)/H where the quotient is taken with respect to the free H-
action h · (g, x) = (gh−1, h · x). In this case, (G ×X)/H ' (G ×X)//H . The
class of (g, x) is denoted by g ∗ x. The group G naturally acts on G×H X by left
multiplication on the first component. It follows from the proof of [24, Lemma I.3]
that if Y ⊂ G×HX isG-stable and Zariski open, respectively closed, respectively
locally closed, then there exists a H-stable open, respectively closed, respectively
locally closed subset YX ⊂ X such that Y = G ×H YX . Also, there is a natural
correspondence between G-orbits in G×H X and H-orbits in X .

Proposition 4.1. Let r ∈ G be a semisimple element and let M = CG(r). There
is a Zariski open neighbourhood U of r in M such that:

1. U is πM -saturated;
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2. For any Jordan class JM of M we have JM ∩ U 6= ∅ if and only if r ∈ JM ;

3. The restriction γU to G ×M U of the map γ : G ×M M → G given by
γ(g ∗ x) = gxg−1 is étale;

4. The image G · U of γU is a πG-saturated open neighbourhood of r in G.

Proof. Observe thatG ·(1∗r) = G∗r andOGr are closed because r is semisimple.
By construction, the restriction of γ to G ∗ r is injective. We claim that γ is étale
at 1 ∗ r, that is, the differential dγ(1∗r) : T1∗r(G ×M M) → TrG is bijective. We
consider the map γ̃ : G×M → G given by the conjugation action and the natural
projection p : G ×M → G ×M M , so γ̃ = γ ◦ p. For m ∈ M the differential
dγ̃(1,m) : g ⊕ m → g at (1,m) is given by (x, y) 7→ y − x + Ad(m−1)x. For
g ∈ G, let Lg be left translation in G by g. The induced map identifies g with
TgG and m = cg(r) with TgM . This way, dγ̃(g,m) : g ⊕ m → g is given by
(x, y) 7→ Ad(g)(y − x+ Ad(m−1)x). Since r is semisimple, g = Im(Ad(r−1)−
id) ⊕ Ker(Ad(r−1) − id) and Ker(Ad(r−1) − id) = Ker(id − Ad(r)) = m so
dγ̃(1,r) is onto, yielding surjectivity of dγ1∗r. For any pair (g,m) ∈ G ×M the
composition

G×M Lg×Lm−−−−→ G×M p−−−→ G×M M
yields an exact sequence

0 −−−→ Nm −−−→ g⊕m
dp−−−→ Tg∗m(G×M M) −−−→ 0

where Nm = {(x, x − Ad(m−1)(x) | x ∈ m}, so dimTg∗m(G ×M M) = dim g
and injectivity of dγ1∗r follows. Therefore the hypotheses of [24, Lemme fonda-
mental, §II.2] are satisfied for the map γ : G×M M → G and the point 1 ∗ r and
there exists an étale slice; in particular, there exists a πM -saturated Zariski open
neighbourhood U ′ of r in M such that the restriction of γ to G ×M U ′ → G is
étale with image a πG-saturated open subset V ′ = G · U ′ of G.

Consider the stratification on M//M with finitely-many closed strata of the
form JM//M , for JM a (semisimple) Jordan class in M , and let JM//M denote
the open stratum in JM//M . Let V be the union of all JM//M containing the class
of r in their closure. It is open, because its complement is the closed set⋃

[r] 6∈JM//M

JM//M =
⋃

[r]6∈JM//M

JM//M.

Then U ′′ := π−1
M (V ) is a πM -saturated open subset of M containing r and such

that a Jordan class JM in M meets U ′′ if and only if r ∈ JM . We take the πM -
saturated neighbourhood U = U ′ ∩U ′′. It satisfies condition 2. and the restriction

9



of the étale map γ to the open subset G ×M U is again étale and its image G · U
is a πG-saturated open neighbourhood of r in G. �

Remark 4.2. With notation as above, since γU is étale, for any x ∈ U we have
dimG · x = dimG · (γ(1 ∗ x)) = dim(G ∗ x), so dimCG(x) = dimG1∗x =
dim(CG(x) ∩M). Hence, CM(x)◦ = CG(x)◦. Since U is πM -saturated, if x =
su ∈ U , then s ∈ U and so CM(s)◦ = CG(s), see also [24, Remarque III.1.4].

Proposition 4.3. Let J = JG(τ) for some τ ∈ T , let rv ∈ J and let M = CG(r).
Then

(J, rv) ∼se

 ⋃
i∈IJ,rv

r−1JM,i, v

(4.7)

where the JM,i’s for i ∈ IJ,rv are precisely the Jordan classes in M contained in
J and containing rv in their closure.

If, in addition, rv ∈ J reg
, then rv ∈ JM,i

reg
for every i ∈ IJ,rv and

(J
reg
, rv) ∼se

 ⋃
i∈IJ,rv

r−1JM,i
reg
, v

.(4.8)

Proof. Let τ = (M ′, Z(M ′)◦s,O). Since conjugation by g ∈ G induces an
isomorphism of pointed varieties (J, rv) ' (J, g · (rv)), we may assume that
r ∈ Z(M ′)◦s, so M ′ ⊂M . We adopt notation from Proposition 4.1 and its proof,
but with γU viewed as a map G×M U → G · U . Let γ̃U : G× U → G · U be the
restriction of γ̃.

We will first show that (J, x) ∼se (J ∩ U, x) for any x ∈ J ∩ U . Then, we
will prove that J ∩ U = J ∩ UU

and show that the irreducible components of
J ∩ UU

are the intersections of U with the closures of those Jordan classes in M
that are contained in J and contain r in their closure. We will conclude the proof
of (4.7) by observing that, in order to study (J, x) we can neglect those irreducible
components of J ∩ UU

not containing x. A dimension argument will give (4.8).
We consider the following commutative diagram

G× U p−−−→ G×M U
γU−−−→ G · Ux x xι

G× (J ∩ U) −−−→ G×M (J ∩ U) −−−→ J ∩G · U
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Observe that γ̃−1
U (J∩G ·U) is aG-stable closed subset ofG×U , so it is of the

formG×V for some V closed in U . In turn, V is the pre-image ofG×V through
the natural inclusion ofU intoG×U . Therefore γ̃−1

U (J∩G·U) = G×(J∩U). This
is exactly saying that the bottom composition of arrows is obtained by pulling-
back γ̃U along the closed embedding ι. Hence the bottom composition is also
smooth and for any x ∈ J ∩ U

(J, x) ∼loc (J ∩G · U, x) ∼se (G× (J ∩ U), (1, x)) ∼se (J ∩ U, x).(4.9)

We show that J ∩ U = J ∩ UU
by proving the equivalent statement G ×M (J ∩

U) = G×M (J ∩ U)
G×MU

, i.e., γ−1
U (J ∩ G · U) = γ−1

U (J ∩G · U)
G×MU

. By
elementary topology we see that J ∩ (G ·U) = J ∩G · UG·U

. Since γU is contin-

uous, surjective and open, γ−1
U (J ∩G · UG·U

) = γ−1
U (J ∩G · U)

G×MU
giving the

desired equality. Thus (4.9) gives (J, x) ∼se (J ∩ UU
, x) for any x ∈ J ∩ U .

We describe now the irreducible components of J ∩ UU
. By base-change the

restriction of γ to G×M (J ∩U) is a G-equivariant étale map to J ∩G ·U ⊂ G(d)

for some d. Hence all G-orbits in G ×M (J ∩ U) have the same dimension. By
Remark 4.2 we have J ∩ U ⊂ M(d′) for some d′. The equivalence (4.9) implies
that (J ∩ U, x) ∼se (J, x) for any x ∈ U ∩ J and J is smooth, so the intersection
U ∩ J is also smooth. Hence it is the union of its connected components and it
is contained in the finite union of those Jordan classes in M(d′) containing r in
their closure. Let JM be a Jordan class in M such that J ∩ U ∩ JM 6= ∅. By
construction of U , we have r ∈ JM . It follows from Remark 4.2 that if x = tu ∈
JM ∩U ∩J , then CM(t)◦ = CG(t), hence dimZ(CM(t)◦)◦ = dimZ(CG(t)◦)◦ =
dimZ(M ′)◦. The proof of [10, Theorem 5.6 (e)] applied to the case of (regular
closures of) arbitrary Jordan classes shows that dim JM = d′ + dimZ(M ′)◦, so
all Jordan classes of M meeting J ∩ U have the same dimension. The same
argument also shows that (Z(CM(t)◦)◦r)regu = (Z(CG(t))◦r)regu and so JM =
M · ((Z(CM(t)◦)◦r)regu) ⊂ G · ((Z(CG(t))◦r)regu) = J . Therefore, JM ⊂ J .
Conversely, if a Jordan class JM ⊂M contains r in its closure and is contained in
J , then ∅ 6= JM ∩ U ⊂ J ∩ U .

Let IJ,r be the index set parametrising the Jordan classes JM,i of M such that
r ∈ JM,i and JM,i ⊂ J . Then J ∩ U =

⋃
i∈I JM,i ∩ U , and the locally closed

subsets JM,i ∩ U are finitely many, disjoint, irreducible and have all the same
dimension. Hence, their closures are the irreducible components of U ∩ JU =
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J ∩ U . Therefore, for any x ∈ U ∩ JU :

(U ∩ JU , x) ' (
⋃
i∈I

JM,i ∩ U
U

, x) ' (
⋃
i∈I

JM,i ∩ U
U
, x)

' (
⋃
i∈I

JM,i
M ∩ U, x) ∼loc (

⋃
i∈I

JM,i
M
, x).

Let IJ,x be the set of indices in IJ,r such that x ∈ JM,i and let Ux be a Zariski open
neighbourhood of x in M such that Ux ∩ JM,i = ∅ for any i ∈ IJ,r \ IJ,x. Then,

(J, x) ∼se (
⋃
i∈IJ,r

JM,i
M ∩ Ux, x) ∼loc (

⋃
i∈IJ,x

JM,i
M ∩ Ux, x) ∼loc (

⋃
i∈IJ,x

JM,i
M
, x).

Taking x = rv and translating by r−1 gives (4.7). Observe that if rv ∈ J reg
, then

OGrv ⊂ G(d) and meets U . Since γU is étale, OMrv ⊂ M(d′) so it lies in J
reg
M,i for

every i ∈ IJ,x. Since J
reg

is open in J and
⋃
i∈IJ,rv J

reg
M,i is open in the union of

equidimensional closures
⋃
i∈IJ,rv JM,i, equation (4.8) follows from (4.7). �

In order to provide an explicit parametrisaton of the set IJ,rv from Proposition
4.3 in terms of data depending on J and rv, we introduce some notation. Let
τ = (M ′, Z(M ′)◦s,O) ∈ T , let rv ∈ J ∩Z(M ′)◦sv and let M = CG(r). We set:

Wτ := StabW (τ)

W (τ, r) := {w ∈ W | r ∈ w · (Z(M ′)◦s)}.

If w ∈ W (τ, r) then w ·M ′ = CG(w · (Z(M ′)◦s))◦ ⊂ M and w ·M ′ is a Levi
subgroup in M , [10, Lemma 4.10]. We consider then

W (τ, rv) :=
{
w ∈ W (τ, r) | OMv ⊂ IndMw·M ′(w · O)

}
.

The reader should be alerted that W (τ, r) and W (τ, rv) are not subgroups of W
in general.

Since Wτ ≤ StabW (Z(M ′)◦s), it acts on W (τ, r) from the right. It preserves
M ′ and O, hence it acts also on W (τ, rv) from the right.
The group Wr := NM(T )/T ≤ W acts on W (τ, r) and W (τ, rv) from the left.

12



Theorem 4.4. Let J = JG(τ) for some τ = (M ′, Z(M ′)◦s,O) ∈ T , let r ∈
Z(M ′)◦s and M = CG(r). Then

(J, r) ∼se

 ⋃
w∈Wr\W (τ,r)/Wτ

JM(w · τ), r

 .(4.10)

If rv ∈ J then

(J, rv) ∼se

 ⋃
w∈Wr\W (τ,rv)/Wτ

r−1JM(w · τ), v

 .(4.11)

If rv ∈ J reg
then

(J
reg
, rv) ∼se

 ⋃
w∈Wr\W (τ,rv)/Wτ

r−1JM(w · τ)
reg
, v

 .(4.12)

Proof. We first consider the neighbourhood of r. By Proposition 4.3 it is enough
to show that the right hand side of (4.10) involves precisely those Jordan classes
in M that

1. are contained in J and

2. contain r in their closure.

By condition 1, the latter are parametrised by Wr-orbits of triples of the form w ·τ
for some w ∈ W/Wτ . Condition 2 is equivalent to r ∈ w · (Z(M ′)◦s). Hence the
elements w must be taken in W (τ, r)/Wτ . This gives (4.10).

Let us now consider the neighbourhood of rv. In this case we need to prove
that the classes occurring in the right hand side of (4.11) are precisely those Jordan
classes JM(M ′′, Z(M ′′)◦s′,O′) in M that

1. are contained in J and

2. contain rv in their closure, that is, contain r in their closure and satisfy
OMv ⊂ IndMM ′′O′.

They are parametrised by Wr-orbits of triples of the form w · τ , where w must be
taken in W (τ, rv)/Wτ , as one sees from condition 2. This gives (4.11). Equation
(4.12) follows from (4.11) and (4.8). �
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Corollary 4.5. Let J = JG(τ) for some τ ∈ T and let rv, r′v′ ∈ J ′ ⊂ J . Then,
(J, rv) ∼se (J, r′v′). In other words, the geometry of G and J is constant along
Jordan classes.

Proof. Let τ = (M ′, Z(M ′)◦s,O). Since (J, x) ∼se (J, g · x) for any g ∈ G,
we may assume that r ∈ Z(M ′)◦s, CG(r) = CG(r′), r′ ∈ (Z(CG(r))◦r)reg and
v′ = v so Wr′ = Wr. We set M := CG(r). If r ∈ w · (Z(M ′)◦s) for some
w ∈ W , then M ⊃ CG(w · (Z(M ′)◦s)) = w ·M ′ whence Z(M)◦ ⊂ w · Z(M ′)◦,
and therefore r′ ∈ Z(M)◦r ⊂ w · (Z(M ′)◦s). Hence, W (τ, r) = W (τ, r′) and so
W (τ, rv) = W (τ, r′v). The statement follows from (4.11) and left translation by
r′r−1 ∈ Z(M)◦. �

Corollary 4.6. Let J = JG(τ), for τ = (M ′, Z(M ′)◦s,O) ∈ T , let rv ∈
J ∩ Z(M ′)◦sv and let M = CG(r). Then J is unibranch, respectively smooth,
respectively normal, at rv if and only if |Wr\W (τ, rv)/Wτ | = 1 and r−1JM(τ) is
so at v.

Proof. Let U be as in the proof of Proposition 4.3. Then the irreducible com-
ponents of U ∩ J containing rv are precisely the subsets JM(w · τ) ∩ U for
w ∈ Wr\W (τ, rv)/Wτ . Hence, |Wr\W (τ, rv)/Wτ | = 1 is a necessary condi-
tion for J being unibranch at rv, and a fortiori, normal, or smooth. In addition, if
|Wr\W (τ, rv)/Wτ | = 1, then (J, rv) ∼se (r−1JM(τ), v) and we use the proper-
ties of smooth equivalence. �

The same argument gives the following statement.

Corollary 4.7. Let J = JG(τ), for τ = (M ′, Z(M ′)◦s,O) ∈ T , let rv ∈ J ∩
Z(M)◦sv and let M = CG(r). Assume |Wr\W (τ, rv)/Wτ | = 1. Then J is
Cohen-Macaulay at rv if and only if r−1JM(τ) is so at v. �

The local study of the closure of a Jordan class J = JG(τ) around rv sim-
plifies drastically when |Wr\W (τ, r)/Wτ | = 1 and therefore it is important to
characterize when this is the case. The next corollary deals with this question un-
der the assumption that Wτ = StabW (Z(M ′)◦s), which is always satisfied when
O is characteristic, e.g., when O = 1 (semisimple Jordan classes) or when O is
regular (regular Jordan classes).

Lemma 4.8. Let J = JG(τ) for τ = (M ′, Z(M ′)◦s,O) ∈ T and let r ∈
(Z(M ′)◦s)∩J . Assume thatWτ = StabW (Z(M ′)◦s). Then |Wr\W (τ, r)/Wτ | =
1 if and only if J//G is unibranch at the class [r] of r.
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Proof. The isomorphism G//G ' T/W identifies J//G with W · (Z(M ′)◦s)/W ,
so we need to understand the neighbourhood of W · (Z(M ′)◦s)/W around [r]. By
[1, Anhang zu K. 7, Satz 21], there is a Wr-stable analytic open neighbourhood
U of r in W · (Z(M ′)◦s) such that U/Wr identifies with a neighbourhood of [r]
in W · (Z(M ′)◦s)/W . We can choose U so that it meets only the W -translates of
Z(M ′)◦s containing r. Therefore

(W · (Z(M ′)◦s)/W, [r]) ∼loc (W · (Z(M ′)◦s) ∩ U/Wr, [r])

∼loc

 ⋃
w∈W (τ,r)/Wτ

w · (Z(M ′)◦s)/Wr, [r]

 .

Here, Wr acts as usual from the left. Hence, J//G is unibranch at [r] if and only
if |Wr\W (τ, r)/Wr| = 1. �

Remark 4.9. By construction |Wr\W (τ, rv)/Wτ | ≤ |Wr\W (τ, r)/Wτ | but the
inequality may be strict: here is an example. Let G = SL4(C), M = 〈T, X±α1〉,
τ = (M,Z(M)◦, 1). In this case Z(M) = Z(M)◦ and Wτ = StabW (Z(M)) =

〈s1, s3〉. Let rv ∈ JG(τ) with CG(r) = 〈T, X±α1 , X±α3〉 and v ∈ Ind
CG(r)
M (1).

Then Wr = Wτ and v is trivial in the component corresponding to α1 and regular
in the component corresponding to α3. Ifw ∈ W satisfies r ∈ w ·Z(M) 6= Z(M),
then w ∈ w0Wτ . Since w0 6∈ Wτ we have |Wr\W (τ, r)/Wτ | = 2. However, if
w is as above, then rv 6∈ JCG(r)(w · τ). Indeed, if rv′ ∈ JCG(r)(w · τ), then v′ ∈
Ind

CG(r)
w·M (1) which does not contain Ind

CG(r)
M (1). Hence |Wr\W (τ, rv)/Wτ | = 1.

5 From unipotent elements to nilpotent elements
In this section G is an arbitrary complex connected reductive group. We compare
the local geometry of Jordan classes containing a unipotent element with the local
geometry of Jordan classes in g. Our main tool will be the exponential map, as
introduced in Section 2. It is well-known that it is an analytic local isomorphism
around a nilpotent element, see for instance [15, Chapter I, Theorem 3.5].

For our purposes we will need to describe more explicitly the loci on which
expsc and exp are local analytic isomorphisms as open neighbourhoods of the
nilpotent cone N . We will use the convention that, unless otherwise stated, a
letter in gothic character will denote the Lie algebra of the group denoted by the
same letter in capital Latin character.
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If G is simple, we consider the coroot lattice Q∨ = Ker(expsc); its real span
hR = RQ∨, so h = hR⊗RC; the fundamental alcoveA := {h ∈ hR | 0 ≤ α(h) ≤
1, ∀α ∈ ∆̃} and the affine hyperplanes Hα,l := {h ∈ h | α(h) = l} for l ∈ Z.
Let A be the interior of W · A+ ihR in h and let

(5.13) Usc := π−1
g πgA.

It is πg-saturated by construction and open by Chevalley’s restriction theorem.

Lemma 5.1. There exist a πg-saturated analytic open neighbourhood U of N in
g and a πG-saturated analytic open neighbourhood V of U in G such that the
restriction of exp to U is an analytic isomorphism expU : U → V . If G = Gsc

and it is simple, then one can take U = Usc as in (5.13) and V = expsc(Usc).

Proof. If G is a torus, then g is abelian, exp is a local analytic isomorphism and
N and U are trivial, so there is nothing to prove. If G is a direct product, then
it is enough to prove the statement for each factor. Let π : Gsc → G be a central
isogeny and let π : Gsc//Gsc → G//G be the induced map and assume there exist
a πg-saturated analytic open neighbourhood Ũ of N in g such that the restriction
of expsc to Ũ is an analytic isomorphism. Let A′ be an open neighbourhood of the
class [1] in Gsc//Gsc such that if kA′ ∩ A′ 6= ∅ for some k ∈ Ker π, then k = 1.
Let Ã = π−1

Gsc
A′. Then Ṽ := Ã∩ expsc Ũ is a πGsc-saturated open neighbourhood

of U in Gsc and U := Ũ ∩ exp−1
sc (Ṽ ) and V := exp(U) = π(Ṽ ) are the sought

neighbourhoods for g and G.
Since there is always a central isogeny π : Z(G)◦×[G, G]sc → G and [G, G]sc

is a direct product of simple, simply connected factors, it remains to prove the
statement for G simple and simply connected. In this case we show that expsc is
an analytic isomorphism on Usc. The main result in [30, 31] (see also [15, Chapter
I, Theorem 3.5]), states that the exponential map is a local analytic isomorphism
at x = xs + xn if and only if the eigenvalues of ad(x) do not meet Z \ {0}.
These eigenvalues coincide with those of ad(xs), so the condition is verified if
and only if, up to G-action, xs lies in h \

⋃
l∈Z×,α∈Φ+ Hα,l. As A is contained in

this set, expsc is a local analytic isomorphism on Usc. Let V = expsc(Usc). We
prove now that the restriction expU : U → V is an analytic isomorphism , i.e.,
that expsc is injective on Usc. If expU(xs + xn) = expU(ys + yn), then xn = yn
because expsc is an isomorphism on N and by G-equivariance we may assume
that expU(xs) = expU(ys) ∈ T , so xs, ys ∈ A. Two elements in A cannot differ
by an element in Q∨ because A is a fundamental domain for the Q∨ oW -action
on hR, [19, Theorem 4.8] and Q∨ does not change the imaginary components of
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elements in h. Thus, xs = ys and x = y. The properties of V follow from those
of expsc and of Usc. �

We describe now compatibility of the Jordan stratifications induced on U and
V when U and V are as above.

Theorem 5.2. Let U be a πg-saturated analytic open neighbourhood of N in g
and let V be a πG-saturated analytic open neighbourhood of U in G such that the
restriction of exp to U is a G-equivariant analytic isomorphism expU : U → V .
Then, expU identifies the stratification on U induced by the Jordan one in g with
the stratification on V induced by the Jordan one in G, preserving dimensions,
closure orderings, orbit dimensions. More precisely, for τ = (M,Z(M)◦s,O) ∈
T we have JG(τ)∩V 6= ∅ if and only ifM is a Levi subgroup ofG and Z(M)◦s =
Z(M)◦ and if this is the case, then

JG(M,Z(M)◦,O) ∩ V = exp(Jg(m,O) ∩ U).

where expO = O.

Proof. We keep notation from the proof of Lemma 5.1. Let J = Jg(l,O) be a
Jordan class in g. Then J ∩N 6= ∅ so J ∩ U 6= ∅. By πg-saturation of U we have

U ∩ (z(l)reg + O) = U ∩ z(l)reg + O.

If x = xs +xn ∈ z(l)reg ∩U +O, then exp is a local diffeomorphism at x by [31],
rephrased in [15, Chapter I, Theorem 3.5], so we have l = cg(xs) = cg(exp(xs))
and L = CG(exp(xs))

◦ is a Levi subgroup of G. Setting O = expO we have
exp(z(l)reg ∩ U + O) ∈ V ∩ Z(L)O. Observe that z(l)reg is obtained removing
finitely many vector spaces of real codimension at least 2 from a (complex) vector
space, so it is connected in the analytic topology. Therefore U∩z(l)reg, U∩z(l)reg+
O and J∩U = Ad(G)(U∩z(l)reg+O) are also connected. By continuity, exp(U∩
(z(l)reg + O)) and exp(U ∩ J) are also connected in the analytic topology. Thus,
exp(z(l)reg ∩ U + O) ∈ V ∩ (Z(L)◦s)regO for some s ∈ Z(L) and exp(J ∩ U) ⊂
JG(L,Z(L)◦s,O)∩V . Observe also that 0 ∈ J∩U so 1 ∈ J(L,Z(L)◦s,O)∩V .
By the discussion following (3.5) this implies that Z(L)◦s = Z(L)◦.

Conversely, let J be a Jordan class in G such that V ∩ J 6= ∅ and let su ∈
V ∩ J , with M = CG(s)◦. By πG-saturation of V we have (Z(M)◦s)regOMu ∩
V = ((Z(M)◦s)reg ∩ V )OMu . For any r ∈ (Z(M)◦s)reg ∩ V we have r =
exp(xr) for some xr ∈ U and Lie(CG(r)◦) = m = cg(xs). Therefore for
any rv ∈ (Z(M)◦s)regOMu ) ∩ V we have rv ∈ exp(U ∩ Jg(m,O

M
exp−1 u)) ⊆
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JG(M,Z(M)◦,OMu ) so Z(M)◦s = Z(M)◦ and exp(U ∩ Jg(m,O
M
exp−1 u)) =

V ∩ JG(M,Z(M)◦,OMu ).
Finally, expU is aG-equivariant analytic isomorphism, hence it preserves orbit

dimensions, closure orderings, and dimensions. �

Corollary 5.3. Let J = JG(M,Z(M)◦,O) with v ∈ J ∩ U , let expO = O and
expxn = v. Then,

(J, v) ∼loc (Jg(m,O), xn)

(J
reg
, v) ∼loc (Jg(m,O)

reg
, xn).

Proof. Let U and V be neighbourhoods of N and U , respectively, as in Lemma
5.1, Theorem 5.2. Then v ∈ J ∩V and expU is an analytic isomorphism mapping
Jg(m,O) ∩ U to J ∩ V . �

Remark 5.4. 1. The set of points x in g such that exp is a local analytic iso-
morphism at x is not a union of Jordan classes in general. For instance
s = diag(i,−i) and s′ = diag(1,−1) lie in the same Jordan class in sl2(C),
and the condition on the eigenvalues in [31] holds for s but not for s′.

2. The image of exp is a union of Jordan classes in G. Indeed, g = ru ∈ exp g
if and only if r ∈ CG(u)◦, by [13]. This condition is clearly G-stable, so it
is enough to show that r ∈ CG(u)◦ implies Z(CG(r)◦)◦r ⊂ CG(u)◦. Now,
u ∈ CG(r)◦, so Z(CG(r)◦) ⊂ CG(u). Since Z(CG(r))◦r is connected and
contains r, we have the desired inclusion.

6 Applications
In this Section G is semisimple and, simply connected and we apply the results
from Sections 4 and 5 to deduce geometric properties of closures of regular Jordan
classes, sheets and Lusztig strata.

6.1 Closures of regular Jordan classes in G
We recall that a Jordan class J = JG(M,Z(M)◦s,O) in G is called regular if
J ⊂ Greg, i.e., if O = Oreg, the regular unipotent class in M .

Theorem 6.1. Let J be a regular Jordan class inG. Then the following statements
are equivalent:
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1. J is normal and Cohen-Macaulay.

2. J is normal.

3. J//G is normal.

4. J//G is smooth.

Proof. Clearly 1⇒ 2 ⇒ 3, see [29, Paragraph 0.2] for the second implication.
Also, 3 ⇔ 4 by [12, Corollary 8.1]. We show that 3 ⇒ 1. Let J = JG(τ) for
τ = (M ′, Z(M ′)◦s,OM ′reg ) ∈ T . Recall that J//G = JG(M ′, Z(M ′)◦s, 1)//G. Let
us assume J//G is normal. Then it is everywhere unibranch and since the regu-
lar unipotent class is characteristic, Lemma 4.8 gives |Wr\W (τ, rv)/Wτ | = 1
for all points rv ∈ J . Since the locus where J is not normal (not Cohen-
Macaulay, respectively) is closed, [36, Tag 00RD] and the geometry of J is con-
stant along Jordan classes by Corollary 4.5, it is enough to check the desired prop-
erties of J at points in closed Jordan classes in J . These are the Jordan classes
JG(M,Z(M)◦r, 1) ⊂ J with M semisimple, i.e., isolated semisimple conjugacy
classes in G, see §3. Let OGr be such a class, with M = CG(r). By Corollaries
4.6, 4.7 and 5.3, J is normal and Cohen-Macaulay at r if and only if Jm(m′,OM ′

reg )
is so. By [33, Theorem B], this happens if and only if StabWr(z(m

′)) acts on z(m′)
as a reflection group and Jm(m′, 0)//M is normal. The first condition is ensured
by [12, Proposition 2.5, Lemma 8.3 (i)] applied to Jm(m′, 0)//M . The second
condition is ensured by [12, Theorem 4.9] applied to J//G. �

Remark 6.2. The fact that normality of Jm(m′, 0)//M implies that StabWr(z(m
′))

acts on z(m′) as a reflection group can also be deduced from the proof of [7,
Theorem 3.1] or from the main result in [14].

Remark 6.3. Let G be simple. The Jordan classes in G satisfying condition 3
from Theorem 6.1 are classified in [12, Theorem 8.7]. Therefore, the closure of
a regular Jordan class J = JG(M,Z(M)◦s,OMreg) is smooth if and only if M is
either T , or semisimple, or of the formGΠ where ∅ ( Π ( ∆̃ is one of the subsets
occurring in the mentioned classification.

6.2 Sheets
In this Subsection we apply the local description to the case of sheets, i.e, the
regular closures of Jordan classes J = JG(M ′, Z(M ′)◦s,O) with O rigid in M ′.
We will apply repeatedly the following argument.
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Remark 6.4. Let S = J
reg

, with J = JG(M,Z(M)◦s,O) be a sheet in G.

1. The locus where S is not smooth, respectively normal, is closed. Thus,
by Corollary 4.5 it is enough to check smoothness or normality of S at a
point in each closed Jordan class in S. These are Jordan classes of triples
(M ′, Z(M ′)◦s′,O′) with M ′ semisimple and are precisely the conjugacy
classes of isolated elements contained in S, see §3.

2. The conjugacy class w · O is rigid in w · M for any w ∈ W and there-
fore (4.12) implies that S in the neighbourhood of an isolated point rv is
smoothly equivalent to a union of sheets in the semisimple group CG(r) in
the neighbourhood of v.

3. As exp is compatible with induction, it maps rigid nilpotent orbits in g to
rigid unipotent conjugacy classes inG. Hence, it identifies a neighbourhood
of v in a sheet in CG(r) with a neighbourhood of a nilpotent element in a
sheet of cg(r).

Theorem 6.5. Let Φ be classical and let S = J(τ)
reg

be a sheet in G. Then S is
smooth if and only if it is normal if and only if it is unibranch.

Proof. One direction is immediate. Assume S is unibranch: we prove that it is
smooth. Let τ = (M,Z(M)◦s,O) and O = expO. By Corollary 4.6 we have
|Wr\W (τ, rv)/Wτ | = 1 for any point rv ∈ S. Hence (4.12) and Corollary 5.3
imply that S is smooth at rv if and only if Jcg(r)(m,O)

reg
is smooth. By Remark

6.4 part 1, it suffices to prove smoothness of S at isolated classes. In this case
cg(r) is semisimple and classical because its Dynkin diagram is a sub-diagram
of the extended Dynkin diagram of g. In addition, Jcg(r)(m,O)

reg
is a sheet in

cg(r) by Remark 6.4, part 2. Since all sheets in classical Lie algebras are smooth
[4, 32, 20], we have the statement. �

Theorem 6.6. Let Φ be classical and irreducible and let S = J(τ)
reg

be a sheet
in G. If J(τ)//G is normal in codimension 1, then S is smooth.

Proof. By Theorem 6.5 it is enough to show that S is unibranch at every isolated
rv ∈ S. Let τ = (M,Z(M)◦s,O). If J(τ)//G is normal in codimension 1,
then it is unibranch by [12, Lemma 8.2, Lemma 8.3]. By [11, Lemma 3.3] if
G is simple and simply connected and J(τ)

reg
is a sheet we always have Wτ =

StabW (Z(M)◦s), so Lemma 4.8 applies. �
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Remark 6.7. Let Φ be classical and irreducible and let τ = (M,Z(M)◦s,O) ∈
T . Now, J(τ)//G is normal in codimension 1 if and only if M is either T ,
semisimple, or equals GΠ for some Π ⊂ ∆̃ occurring in the classification in
[12, Proposition 8.6]. If this is the case and O is rigid, then the sheet S =
JG(M,Z(M)◦s,O)

reg
is smooth by Theorem 6.6.

Corollary 6.8. Let G be simple with Φ exceptional. Let M be either semisimple,
T , or GΠ for ∅ ( Π ( ∆̃ of the following type:

E6: A5, D4, 4A1, 2A2,

E7: E6, D6, D4 +2A1, 3A2, 2A3, A3 +3A1, D4 +A1, 5A1, {α0, α1, α2, α3, α4},
{α2, α4, α5, α6, α7}, D4, {α0, α2, α3}, {α2, α5, α7}, {α0, α3, α5, α7}.

E8: ∆̃ \ {α1, α3}, ∆̃ \ {α1, α3, α6}, ∆̃ \ {α4, α6, α8}, {α2, α5, α7, α0}, D7, E7,
D6 + A1, 2A3 + A1, 3A2 + A1, D5 + 2A1, D4 + A3, D6, E6, D4 + 2A1,
3A2, D4,

F4: A3, A1 +B2, 2A1 + Ã1, B3, C3, 2A1, Ã2, B2,

G2: Ã1,

and let τ = (M,Z(M)◦s,O) ∈ T with O rigid in M . Then S = JG(τ)
reg

is
smooth if and only if either M = T or M is semisimple or the pair (Π,O) is
different from:

E7: (D6, [2
4, 14]),

E8: (E7, 2A1), (E7, (A1 + A3)a), (D6 + A1, [2
4, 14] + [12]) and (D6, [2

4, 14]),

F4: (B2, [1
5]).

Proof. If M = T or M is semisimple, then S = Greg or a single conjugacy class
and there is nothing to prove. Let M = GΠ with Π from the above list. We apply
Remark 6.4 and we look at S in the neighbourhood of isolated elements rv. For
all Π the quotient S//G is normal in codimension 1, [12, Proposition 8.6], hence
it is unibranch. In addition, [11, Lemma 3.3] ensures that Wτ = StabW (Z(M)◦s)
for any choice of Z(M)◦s. By Lemma 4.8, Corollary 4.6 and [20] the problem is
reduced to showing that Jm′(m,O)

reg
is smooth forO = expO and any m′ = cg(r)

semisimple exceptional containing m. Such Lie subalgebras are conjugate to gΠ′

for some Π′ ⊂ ∆̃ with |Π′| = |∆| and m is WΠ′-conjugate to a standard Levi
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subalgebra therein, [10, Lemma 4.9]. However, normality in codimension 1 of
J//G is equivalent to the condition {wΠ ⊂ Φ | w ∈ W, wΠ ⊂ ∆̃} = {Π}.
Therefore we are left to verify smoothness of the sheets JgΠ′

(gΠ,O)
reg

for all
exceptional Π′ ⊃ Π with |Π′| = |∆|. This is done by using the list in [8, §4]
of smooth and singular sheets in simple exceptional Lie algebras on each simple
component of gΠ′ . �

6.3 Sheets and Lusztig strata in SLn(C)

The case in which G = SLn(C) is particularly simple and we retrieve information
on all its sheets and, as a consequence, on all Lusztig strata as defined in [27, §2],
see also [27, §3.2,3.3].

Proposition 6.9. Every sheet and Lusztig stratum in SLn(C) is smooth.

Proof. Let S be a sheet in G = SLn(C). By Remark 6.4 1., it suffices to prove
smoothness at its isolated classes. These are all of the form zv with z central and
v unipotent, hence (S, zv) ∼se (z−1S, v) ∼se (S, exp−1 v) where S is a sheet in
sln by Corollary 5.3 and Remark 6.4 3. All sheets in sln are smooth by [4], [32].
Hence S is smooth.

We turn now to Lusztig strata. It follows from [9, §2] that their irreducible
components are sheets in G. In the present case strata are of the form XS =⋃
k∈Z(G) kS for S = JG(M,Z(M)◦s, 1)

reg
a given sheet. We claim that kS ∩

k′S 6= ∅ for some k, k′ ∈ Z(G) implies kS = k′S. Indeed, a non-empty in-
tersection of sheets always contains an isolated class [9, Proposition 3.4], i.e,
a class of the form k′′OGv for k′′ ∈ Z(G) and v ∈ U . Observe that kS =

JG(M,Z(M)◦ks, 1)
reg

, for any k ∈ Z(G). Formula (3.6) gives k′′ ∈ Z(M)◦ks ∩
Z(M)◦k′s, i.e., Z(M)◦ks = Z(M)◦k′s and kS = k′S. Hence sheets in G are
connected components of strata so the latter are also smooth. �
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