
THE FONTAINE-OGUS REALISATION OF LAUMON

1-MOTIVES
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Abstract. We construct the (filtered) Ogus realisation of Laumon 1-motives
over a number field. This realisation extends the functor defined on Deligne

1-motives by Andreatta, Barbieri-Viale and Bertapelle.

1. Introduction

By [ABVB] there exists a realisation functor TFOg :M1 → FOg1 from Deligne
1-motives over a number field to (effective) FOg-structures of level ≤ 1.

Let M = [u : L → G] be a Laumon 1-motive over a number field K. We can
define

T aFOg(M) := (TFOg(Mét),Lie(V ),Lie(L))

where V ⊂ G is the vectorial/additive part of G. The above definition induces a
functor

T aFOg :Ma
1 → FOg1 ×ModK ×ModK

extending the filtered Ogus realisation to Laumon 1-motives. This functor is faithful
but certainly not full 1. Con we do something better?

1.1. The problem. How to modify the target category in order to preserve the
fully faithfulness?

1.2. What we know. By looking at sharp de Rham we have the following map

du : Lie(L) = Lie(L◦)→ Lie(G) = Lie(G×)× Lie(V )

and we know that Lie(G×) = TdR(Mét)/F
0 (where G× is the semi-abelian quotient

of G).
For this reason we can try to form a category whose objects are of the form

(TFOg(Mét),Lie(V ),Lie(L), du) satisfying the above diagram. But to do so we need
to add the Hodge filtration to TFOg(Mét) otherwise we cannot recover Lie(G×).

1.3. Strategy.

• We define a category MFOg just by adding the Hodge filtration to FOg
(compatibly to p-adic Hodge theory). Roughly we mix FOg and the
Fontaine category MF ad.

• We show that the realisation T : M1 → FOg factors trough MFOg.
Moreover fully faithfulness is preserved.

• We define MFOga1 in order to have objects as in the previous section.
• We show that there exists T a :Ma

1 →MFOga1 extending T .
• I don’t know yet if this T a is fully faithful, but looks possible.
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1.4. Another question. Can we define Tcrys for “Laumon 1-motives” in char-
acteristic p? More precisely can we do some #-crystalline realisation of Laumon
-motives? Of course there are no Laumon 1-motives in positive characteristic, but
vector group are crystalline in nature!

2. Adding the Hodge filtration

2.1. p-adic Hodge theory for 1-motives. It is known (Fontaine unpublished)
that given a Deligne 1-motive M over a p-adic field K (for simplicity K is the
fraction field of W (k), for k finite of characteristic p) we get a (weakly) admissible
Fontaine (φ,N) module Tp(M). The construction is particularly simple in the
crystalline (or goood reduction) case, where there is no modnodromy. This is the
only situation we are interested in for the following.

So let assume that M is in fact a lisse 1-motive over the dvr OK . Then by
[ABV05] there is a canonical iso

TdR(MK) ∼= Tcrys(Mk)⊗K
thus Tp(M) = “TdR(MK) + the Frobenius isomorphism” (induced by the above iso-
morphism) is a finite dimensional K-module endowed with a semi-linear Frobenius
and a (1-step) filtration, namely

F iTp(M) =


0 i ≥ 0

ker(TdR(M)→ Lie(G)) i = 0

Tp(M) i ≤ −1

.

By devissage2 we can easily prove that Tp(M) is admissible, since Tp(−) of an
abelian veriety (with good reduction), of a torus (of constant rank over OK) and
of its Cartier dual, are all admissible. (give reference for the abelian variety case)

We can recollect the above discussion in the following proposition.

Proposition 2.1. There is a functor

Tp : (1-mot/K + good reduction)→MFadK

induced by TdR(M) and the comparison with Tcrys(M mod π).

2.2. Fontaine-Ogus modules. Let now K be a number field and M be a 1-motive
over K. We know that for n >> 0, M is defined over OK [1/n]. For all finite and
unramified places v - n let pv = charkv. We can consider the pv-adic realisa-

tion Tpv (MKv
) ∈ MFadKv

. It follows that TFOg(M) = (TdR(M), (Tpv (MKv
))v-n) is

endowed with a Hodge filtration3 such that Tpv (MKv
) is an admissible Fontaine

module over Kv (with respect to the induced filtraation).
This motivates the following definition

Definition 2.2. Let MFOgK be the category whose objects are systems (T, (Tv)v, F
•)

such that

• (T, (Tv)v) ∈ FOgK .
• F • is a (decreasing, exhautive) filtration on T .
• for almost all v, (Tv, F

•
v = F • ⊗Kv, φv) is an admissible Fontaine module

over Kv.

Motphisms of MFOgK are morphism of FOgK camptible with respect to the
“Hodge” filtration.

Proposition 2.3. The category MFOgK is abelian.

2admissibility is a property closed under extensions.
3we mean a filtration on T .
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Proof. It is clear how to define kernels and cokernels. As usual we heve to prove that
morphisms are strictly compatible with respect to the Hodge filtration (since we
already know that FOg is abelian, morphisms are strict with respect ot the weight
filtration). But this follows form the fact that morphisms are strict in MFadKv

. �

Proposition 2.4. The filtered Ogus realisation TFOgK
factors trough

TMFOgK
: (1−mot/K)→MFOgK ,

induced by

TMFOgK
(M) = (TdR(M), (Tpv (MKv

))v, F
•TdR(M)) .

Moreover TMFOgK
is fully faithful.

Proof. There is nothing much to prove. To get the fully faithfulness we just need
to note that the forgetful functor

MFOgK → FOgK , (T, (Tv)v, F
•)→ (T, (Tv)v) ,

is faithful. �

3. Devissage of Laumon 1-motives

LetMa
1 be the category of Laumon 1-motives andM×1 ,M1 be the subcategories

of 1-motives of the form M = M× = [u× : F → G×], resp. Mét = [uét : Fét → G×].

3.1. first devissage. Let W (M×) = Ext1(M×,Ga)∗

4. Extending the realisation to Laumon 1-motives

In this section we drop the index (−)K when possible.

Let us denote sumply by T : M1 →MFOg the realisation functor defined in the
previous section. We aim to extend this functor to the category Ma

1 of Laumon 1-
motives. For this reason we have to introduce another category MFOga1 containing
MFOg1 as a full subcategory and such that there exist a functor T a : Ma

1 →
MFOga1 extending T .

4.1. The target category. Recall that FOg1 is the category of filtered Ogus
structure of level ≤ 1 4. Then we can define MFOg1 to be the subcategory of
MFOg given by (T, (Tv), F

•) such that (T, (Tv)) is of level ≤ 1.

Definition 4.1. Let MFOga1 be the category of systems (T, (Tv), F
•, U0, U1, δ)

where

• (T, (Tv), F
•) is in MFOg1.

• U0, U1 are finite dimensional K-vs.
• δ : U0 → T/F 0 × U1 is a linear map.

Morphisms are systems (f, f0, f1), f : T → T ′, fi : Ui → U ′i compatible with
respect to all structures.

Proposition 4.2 (???). MFOga1 is an abelian category containing MFOg1 (as a
full subcategory) via

(T, (Tv), F
•) 7→ (T, (Tv), F

•, 0, 0, 0) .

4I’ll add the definition later!



4 NICOLA MAZZARI

4.2. The realisation.

Proposition 4.3. Let M = [u : L→ G] be a Laumon 1-motive over K. Then the
association

T a(M) = (TMFOg(Mét),Lie(L),Lie(V ), du)

induces a functor

T a :Ma
1 →MFOga1

extending T .
Moreover T a is fully faithful5

Remark 4.4. Recall that Ma
1 is equivalent to the category M`

1 given by systems

([uét : Lét → G],Lie(G),Lie(L), du) .

Then T a is the composition of Ma
1 →M`

1 and

M`
1 → ...

Appendix A. 1-motives (Only as glossary)

A.1. Laumon 1-motives. Let be a (fixed) field of characteristic zero (later it
will be a number field). Let Ab is the category of abelian sheaves on the category
of affine k-schemes w.r.t. the fppf topology. We will consider both the category
of commutative group schemes and that of formal group schemes (over ) as full
sub-categories of Ab.

A.1.1. Objects. A Laumon 1-motive over (or an effective free 1-motive over , cf.
[BVB09, 1.4.1]) is the data of

i) A (commutative) formal group F over , such that LieF is a finite dimensional
k-vector space and F () = lim[′:]<∞ F (′) is a finitely generated and torsion-free
Gal(/)-module.

ii) A connected commutative algebraic group scheme G over .
iii) A morphism u : F → G in the category Ab.
Note that we can consider a Laumon 1-motive (over ) M = [u : F → G] as a

complex of sheaves in Ab concentrated in degree 0, 1.
It is known that any formal -group F splits canonically as product F ◦×Fet where F ◦

is the identity component of F and is a connected formal -group, and Fet = F/F ◦

is étale. Moreover, Fet admits a maximal sub-group scheme Ftor , étale and finite,
such that the quotient Fet/Ftor = Ffr is constant of the type Zr over . One says
that F is torsion-free if Ftor = 0.

By a theorem of Chevalley any connected algebraic group scheme G is the ex-
tension of an abelian variety A by a linear -group scheme L that is product of its
maximal sub-torus T with a vector -group scheme V . (See [?] for more details on
algebraic and formal groups)

A.1.2. Morphisms. A morphism of Laumon 1-motives is a commutative square in
the category Ab. We denote by Ma

1 = Ma
1, the category of Laumon -1-motives,

i.e. the full sub-category of Cb(Ab) whose objects are Laumon 1-motives.

Remark A.1. (1) The category of Deligne 1-motives (over ) is the full sub-
category M1 of Ma

1 whose objects are M = [u : F → G] such that F ◦ = 0
and G is semi-abelian (cf. [Del74, §10.1.2]).

(2) The categoryMa
1 of Laumon 1-motives (over ) is an additive category with

kernels and co-kernels.

5Fithfulness seems ok, need to check fullness
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(3) According to [Org04] we define the category Ma,iso
1 = Ma

1Q of Laumon
1-motives up to isogenies: the objects are the same ofMa

1; the Hom groups
are HomMa

1
(M,M ′)ZQ. The category of Laumon 1-motives up to isogenies

is abelian.

Appendix B. Ext computation (to be trashed? - incomplete)

We already know that the category of Laumon 1-motives up to isogeny is of
cohomoogical dimension 1. In fact we can say something more about the ext groups
(not much, but the perspective will be used in the next section). LetMc,iso

1 be the

subcategory of Ma,iso
1 whose elements are 1-motives of the form [Fét → G], i.e. F ◦

is trivial.

B.1. Laumon 1-motives as 2limit. Consider the following functors

α :Mc,iso
1 → V , α([X → G]) = Lie(G)(1)

β : V2 → V , β([V0 → V1]) = V1(2)

The above functors are exact and we can define the category G whose objects are
triples (M,f : V0 → V1, φ) where M is a Deligne 1-motive, f a linear map of given
fd vector spaces, φ is an isomorphism between V1 and LieG. Accoridng to Huber
(mixed motives) this is a glued exact category. It follows that

(1) G is an abelian category.
(2) There is a long exact sequence

ExtnG → ExtnMc,iso
1
×ExtnV2 → ExtnV → +

Lemma B.1. The functor g :Ma,iso
1 → G induced by

g([u : F → G]) = (uét : Fét → G, du : Lie(F )→ Lie(G), id)

is an equivalence of categories.

Proposition B.2. Let M,M ′ be two Laumon 1-motives. Then there is an exact
sequence

0→HomMa,iso
1

(M,M ′)→ HomMc,iso
1

(M,M ′)×HomV2(M,M ′)→ Homn
V(Lie(G),Lie(G′))→

(3)

→Ext1
Ma,iso

1
(M,M ′)→ HomMc,iso

1
(M,M ′)×Hom(ker(du), coker(du))

(4)

Proof. This follows from the Lemma and the Huber sequence. Also use “Extension
of formal Hodge structures” to get the last term. �

Appendix C. Not good at all

C.1. The Ogus category. Let P be a cofinite set of absolutely unramified places of
K. We define CP to be the category whose objects are systemsM = (MdR, (Mv, φv, εv)v∈P )
such that:

(1) MdR is a finite dimensional K-vector space;
(2) (Mv, φv) is a F -Kv-isocrystal, that is, Mv is equipped with a σv-linear

automorphism φv;
(3) ε = (εv)v∈P is a system of Kv-linear isomorphisms

εv : MdR ⊗Kv →Mv .

A morphism f : M →M ′ is then a collection (fdR, (fv)v∈P ) where:

(1) fdR : MdR →M ′dR is a K-linear map;
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(2) fv : Mv →M ′v is Kv-linear morphism compatible with Frobenius and such
that ε−1

v ◦ fv ◦ εv = fdR ⊗Kv.

Note that by the second criterion, to specify a morphism it is enough to specify
fdR. There are obvious ‘forgetful’ functors CP → CP ′ whenever P ′ ⊂ P and we can
form the Ogus category Og(K) as the 2-colimit

Og(K) = 2 colim
P
CP

where P varies over all cofinite sets of unramified places of K. For an object
M ∈ Og(K) and n ∈ Z we denote by M(n) the Tate twist of M , that is where
each Frobenius φv is multiplied by p−nv .

C.2. Weights. A weight filtration on an object M = (MdR, (Mv, φv, εv)v∈P ) ∈ CP
is an increasing filtration W•M by subobjects in CP such that for all v ∈ P the
graded pieces GrWi Mv are pure of weight i. That is, all eigenvalues of the linear
map φnv

v are Weil numbers of qv-weight i (i.e. all their conjugates have absolute

value q
i/2
v [Chi98]). Again, to give a weight filtration on M it it suffices to give a

filtration on MdR which induces a weight filtration on all Mv.

C.3. The filtered Ogus category. We can therefore consider the filtered Ogus
category FOg(K) whose objects are objects of Og(K) equipped with a weight
filtration, and morphisms are required to be compatible with this filtration.

Lemma C.1 ([ABVB16], Lemma 1.3.2). The filtered Ogus category FOg(K) is a
Q-linear abelian category, and the forgetful functor

FOg(K)→ Og(K)

is fully faithful.

C.4. The cateogory FOga1. (First try) The objects are systems (V, V +, V0, V1)
where V ∈ FOg, V +, V0, V1 are finite dimensional K vector spaces and there is a
diagram

VdR
α←− V + β−→ V1

γ←− V0

such that α, β are surjective with disjoint kernels6.

C.5. The functor. With the above notation we immediately have a functor

T aFOg :Ma
1 → FOga1

defined as follows

• V = TdR(Mét) (in order to extend TFOg)
• V + = T]([Fét → G])
• γ : V0 → V1 = du : Lie(F )→ Lie(G)

and the diagram can be deduced by [Sharp de Rham p. 14]. Note that V + =
T]([Fét → G]) 6= T]([F → G]) since we prefer to isolate the contribution of F ◦.

C.6. Fully faithfullness. Now we can prove that this functor is fully faithful too
(I have to think about it)

Also we can compute Ext1, since I’m writing a paper computing Ext1 in FOg
[Maz10, Maz11]

6Because of [Sharp de Rham p. 14, line 1]
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