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A B S T R A C T

We present a novel technique to solve the problem of managing optimally a pumped hydroelec-
tric storage system. This technique relies on representing the system as a stochastic optimal con-
trol problem with state constraints, these latter corresponding to the finite volume of the reser-
voirs. Following the recent level-set approach presented in O. Bokanowski, A. Picarelli, H. Zidani,
State-constrained stochastic optimal control problems via reachability approach, SIAM J. Control and
Optim. 54 (5) (2016), we transform the original constrained problem in an auxiliary unconstrained
one in augmented state and control spaces, obtained by introducing an exact penalization of the
original state constraints. The latter problem is fully treatable by classical dynamic programming
arguments.

© 2020

1. Introduction

In the current transition to a low carbon economy, one of the most prominent issues is that the most used renewable energy sources
(RES), i.e. photovoltaic and wind, are non-dispatchable: for this reason, there is a strong need to store the energy produced when they
are available in order to use it when they are not.

As for today, the most cost-efficient method to store electricity is with pumped hydroelectric storage (PHS) systems, which in 2017
accounted for about 95% of all active tracked storage installations worldwide, with a total installed capacity of over 184 GW D. of
Energy of the U. S. A, 2017. In brief, these systems consist of two or more dam-based hydroelectric plants, linked sequentially so
that, while the water used to produce electricity in the lower reservoirs is lost as in traditional hydroelectric plants, upper reservoirs
discharge their water in lower reservoirs, where it can be stored and possibly pumped back to upper reservoirs when the electricity
price is low (typically in off-peak periods). In this way, a PHS can produce electricity in peak periods, i.e. when its price is high, and
recharge the upper reservoir in off-peak periods. These systems can be efficiently coupled with non-dispatchable renewable energy
sources (like photovoltaic or wind), thus providing a very effective way to store possible surplus renewable energy when the price is
low, and to use it when needed. An alternative is of course to connect the system directly to the power grid: also in this case, PHS is
likely to use renewable-generated electricity to pump back water in the upper reservoirs, given the very low marginal generating costs
of renewable energy.

In the current literature, the mathematical treatment of PHS is usually done by computing the fair value as the sum of discounted
payoffs when operated at optimum1 To perform this computation, one can find in literature two alternative approaches. The first
one is via operation research techniques by formulating a linear/quadratic programming model, see e.g. Brown et al. (2008), Löhn

⁎ Corresponding author.
E-mail address: athena.picarelli@univr.it (A. Picarelli)

1 In this setting, we assume that the investor is risk-neutral. Although here we are not evaluating financial assets, but rather incomes coming from industrial activity,
this is in line with all the related literature (see e.g. McDonald and Siegel, 1985), and is justified by the following financial argument. Even if the underlying assets
are in principle not traded, a risk-neutral evaluation can be applied as long as one can find hedging instruments that can be storable and liquidly traded: see Thomp-
son et al. (2004) for more economic insight, and (Callegaro et al., 2017, Remark 3.6) for the mathematical derivation of such a result for structured products like power
plants.

https://doi.org/10.1016/j.jedc.2020.103940
0165-1889/© 2020.
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dorf et al. (2013), Vespucci et al. (2012). While these techniques allow to model potentially complex networks and constraints, the
optimal exercise policy of the system within this approach turns out to be given only by the numerical solution of a linear/quadratic
program, from which it is very difficult to extract the policy as a function of the relevant state variables (typically, the spot price of
electricity and the reservoir levels).

The second approach is based on stochastic optimal control in continuous time, where with the dynamic programming approach
one derives a partial differential equation called the Hamilton–Jacobi–Bellman (HJB) equation, i.e. a second-order partial differen-
tial equation, see e.g. Felix and Weber (2014), Shardin and Wunderlich (2017), Thompson et al. (2004), Zhao and Davison (2009),
Chen and Forsyth (2008) and references therein. The HJB equation is usually nonlinear, and without an explicit analytical solution:
thus, one should recur to numerical methods, and this limits the dimensionality that one can reach. Proof of this is that in all these
papers (apart from the notable exception of Felix and Weber, 2014), the lower reservoir has infinite capacity (e.g. is a sea basin): this
entails that their model has one less state variable and much easier state constraints. However, the main advantage of this technique
is that one can obtain the optimal pumping/producing strategy as a feedback control, i.e. as a function of the relevant state variables
(here being time, electricity price and water levels in the basins).

As said above, our approach is based on optimal stochastic control in continuous time and dynamic programming, leading to a HJB
equation. Indeed, dynamic programming techniques are usually applied to prove that the value function associated to optimal control
problems is the unique solution of the HJB equation in the viscosity sense and to characterize the optimal policy as feedback of the
state variables. However, while this is a well-established research field for generic unconstrained optimal control problems, PHS has
the peculiarity that, the reservoirs being finite, the state variables corresponding to their levels have to satisfy given constraints: thus,
we have to formulate a state-constrained optimal control problem. There exists a huge literature on state-constrained optimal control
problems and their HJB characterization. We refer the reader e.g. to Barles and Burdeau, 1995; Barles and Rouy, 1998; Ishii and Loreti,
2002; Katsoulakis, 1994 for stochastic control problems and to Capuzzo-Dolcetta and Lions, 1990; Ishii and Koike, 1996; Soner, 1986a;
Soner, 1986b for deterministic ones. In this case, the characterization of the value function as a viscosity solution of a HJB equation
is intricate and usually requires a delicate interplay between the dynamics of the processes involved and the set of constraints, see
e.g. Basei et al. (2014). First, some viability (or controllability) conditions have to be satisfied to guarantee the finiteness of the value
function, second, specific properties on the set of admissible controls must hold to ensure the continuity of the value function and its
PDE characterization. When the behavior at the boundary of the constrained region is clear, one could think in principle to use the
same penalization techniques as in Basei et al. (2014). However, when (as in our case) one does not have natural boundary conditions,
this approach would not characterize the solution uniqluely. This often makes the problem not tractable by the classical dynamic pro-
gramming techniques.

In this paper we follow the alternative approach developed in Bokanowski et al. (2016) to provide a fully characterization of the
value function and optimal strategy associated to the optimal control problem in a general framework. We pass by a suitable auxiliary
reformulation of the problem which allows a simplified treatment of the state constraints. This is achieved by the use of the so called
level-set method, built to permit a treatment of state constraints by an exact penalization technique. Initially introduced by Osher and
Sethian (1988) to model some deterministic front propagation phenomena, the level-set approach has been used in many applica-
tions related to controlled systems (see e.g. Altarovici et al., 2013; Falcone et al., 1994; Kurzhanski and Varaiya, 2006; Margellos and
Lygeros, 2011; Soner and Touzi, 2002).

In our case, the level-set method allows to link the original state constrained problem to an auxiliary optimal control problem,
referred as the level-set problem defined on an augmented state and control space, but without state constraints. This level-set problem
has the great advantage of leading to a complete characterization of the original one and of being, at the same time, fully treatable by
classical dynamic programming argument under very mild assumptions.

The rest of the paper is organized as follows. We introduce the optimal control problem and the main assumptions in Section 2. In
Section 3 we provide a HJB characterization of the associated value function under suitable controllability conditions on the system
dynamics. Then, under a simplified model, we discuss in Section 4 the main difficulties arising from the presence of state constraints
when such assumptions are not satisfied. In Section 5 we present the level set method and provide the main results of the paper. A
numerical validation of the proposed approach is provided in Section 6.

2. Formulation of the problem and main assumptions

Let be a probability space supporting a one-dimensional Brownian motion B · and let be the filtration generated by B.
We consider a finite time horizon T > 0 and the electricity price for the period [t, T] governed by the following stochastic differential
equation in :

(1)

We work under the following assumption:
(H1) and and there exists C0 ≥ 0 such that for any t ∈ [0, T] one has
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Under this assumption there exists a unique strong solution, denoted by to Eq. (1). We also assume the following non negativ-
ity condition:
(H2) for any t ∈ [0, T], x ≥ 0 one has a.s.

Different price models can be taken into account. In order to guarantee assumptions (H1) and (H2) being satisfied we will focus on
the following two dynamics:
a) Price modeled as a Geometric Brownian Motion (GBM): and for some b, σ ≥ 0;
b) Price modeled as an Inhomogeneous Geometric Brownian Motion (IGBM): and for some a, b, σ ≥ 0;

Both models provide non-negative prices. In particular, the second model is used in many financial applications where one wants
a process exhibiting non-negativity and mean-reversion, for example when modeling interest rates, default intensities, volatilities, etc.,
see e.g. Capriotti et al., 2019 and references therein.

We assume to have a water storage, composed of two reservoirs. The two reservoirs are filled with rate and
respectively with β1, β2 given positive bounded functions. The volume Y1, · of water remaining at every time in the first

(upper) reservoir is controlled by ν1 and satisfies

(2)

where ν1 can either be negative (pumping water up) or positive (pulling water down). While for the second (lower) reservoir one has

(3)

for some positive ν2. We will assume that the couple (ν1, ν2), that is our control, is a progressively measurable process taking values
in . We denote by the set of these controls2. For any t ∈ [0, T], y ≡ (y1, y2) and any choice of
we denote by the solution to (2) and (3). For i ∈ {1, 2}, the value is required to remain non negative and
bounded by a maximum value (the reservoir capacity) along the interval [t, T]. This is expressed by the following constraint on the
state:

The amount of electricity instantaneously produced or consumed by the reservoirs is modeled by the function defined
as follows3

(4)

(more generally, one can consider any concave and Lipschitz continuous function c such that ). Here γ is a coefficient which
expresses how much it costs, in terms of expended energy, to store a unit of potential energy back in the upper reservoir. By the physi-
cal impossibility of creating perpetual motion, γ must be strictly greater than 1. The aim of the controller is to maximize the cash flow
obtained by selling the produced electricity κ(u) at the price x. This results in the following state constrained optimal control problem

(5)

with given by

2 Physically, a more sophisticated model could be like that in Thompson et al. (2004), who perform a fine modeling of the physical constraints for the water flows
between the higher and the lower basin (this one still having infinite capacity), and consider the water inflow of the upper basin as stochastic. Differently from this,
for ease of exposition we treat both the water inflow into the two basins, as well as the constraints on the outflow, as deterministic quantities not depending on water
height. Our simplification has no practical consequences when the total height of the higher basin is negligible with respect to its relative height with respect to the
lower one; if this is not the case, however, these constraints could be easily included in our model.

3 A more realistic model would incorporate in the function κ some parameter for the efficiency of the energy production process. We could for instance consider
for some η1, η2 ≤ 1. To simplify the notation here we assumed .
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and the set of progressively measurable processes in such that for any s ∈ [t, T] a.s..We refer at the function
as the value function of the problem. In the sequel, whenever we use the convention .

Throughout the paper we will also consider a simplified problem of one single reservoir with level managed by ν1 taking values in
. We then restrict to the two-dimensional dynamics (Xs, Y1,s) and consider

To simplify the notation, in this case we will drop the subscript indices. More precisely, one gets the optimal control problem (5) with
L(x, u) ≔ xu subject to (1) and

under the state constraint a.s. with .

3. HJB characterization under controllability assumptions

We outline in this section the way dynamic programming techniques apply to state constrained optimal control problems to obtain
a HJB characterization of the value function V.

3.1. The single reservoir model

We start considering the single reservoir model. To have a meaningful problem we impose that

i.e. the entire amount of water entering the basin in the period [0, T] is not greater than the amount that can be withdrawn.4In what
follows we denote by the state space and by its closure.

In order to have a finite value function on one needs for any . The following assumption en-
sures this.
(H3) there exists η > 0 such that .

Assumption (H3) is known in literature as an “inward pointing” condition (see Soner, 1986a; Soner, 1986b for the earlier intro-
duction of this type of assumptions) and enables to always find, for any level of water y in the reservoir, a suitable control value u
steering the level towards the interior of the interval . In particular, for one has for any t ∈ [0, T] the existence of u ∈ U
such that which pushes down the level of water in the reservoir, while for the positivity of β(t) let the level of water
increase for any choice of u ∈ U such that .

Remark 3.1 To guarantee that it is sufficient that since, in this case, the control ut ≡ β(t), ∀t ∈ [0,
T] is always admissible. However, the stronger Assumption (H3) is what one needs for the well posedness of the state constrained
problem given by Theorem 3.1 below.

We start with the following result concerning some regularity and growth properties of V.
Lemma 3.1 Let assumptions (H1)-(H3) be satisfied. Then, there exists a constant C ≥ 0 such that for any

one has

Moreover, for any

4 We are not assuming, as is the case in real dams, that we have the possibility to eliminate the excess water in the reservoir, i.e. to be able to withdraw from the
reservoir, if it is close to be full, via a safety discharge, thus not producing electricity. This however typically results in a waste of water, i.e. of potential electricity pro-
duction, thus of potential profit (recall that we assume the electricity price being nonnegative). Thus, this should always be regarded as suboptimal, and is not modeled
here.
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Proof Thanks to Assumption (H3), V is finite on and its non negativity follows directly from the definition of L and by As-
sumption (H2). Under Assumption (H1) it is well known that for any

where the constant C only depends on T and the constants appearing in Assumption (H1). By the very definition of L, it follows that

from which the first two statements follow. Let h > 0, from the previous estimate one also has

which gives the last result. □

The following theorem allows us to characterize the value function V as the unique solution of a suitable HJB partial differential
equation. Due to the strong degeneracy of the diffusion term we do not expect to have classical (i.e. ) solutions of the
equation. For this reason we use the notion of viscosity solutions.

Theorem 3.1 Let assumptions (H1)-(H3) be satisfied. Then V is the unique continuous viscosity solution with linear growth of the following
state constrained HJB equation

(6a)

(6b)

where the set Ut,y is defined, for all t ∈ [0, T), as

(7)

The proof follows by the dynamic programming and comparison principle for viscosity solutions of state-constrained HJB equa-
tions. We refer the interested reader to Barles and Burdeau (1995) and Capuzzo-Dolcetta and Lions (1990) for further details.

Problem (6) does not admit, in general, an explicit solution. We then need to approximate its solution (i.e. the value function and
the optimal feedback) numerically. Here, we use a semi-Lagrangian scheme, see e.g. Camilli and Falcone, 1995; Chen and Forsyth,
2007; Chen and Forsyth, 2008; Debrabant and Jakobsen, 2013; Picarelli and Reisinger, 2020. In our numerical experiments, we fix the
time horizon the maximal capacity of the reservoir and take the following function

as the filling rate of the reservoir5

The function β( · ) is plotted in Fig. 1. In this section we assume that the dam under consideration admits maximal discharge rate
. It is immediate to observe that this value is sufficiently large to ensure that Assumption (H3) is satisfied, which allows us to use

Theorem 3.1 to characterize the solution of our problem.
In Fig. 2 we plot a numerical approximation of the value function V at time (left) and the optimal feedback control (right)

obtained solving (6) for a price process following a GBM. This process has the peculiar property of being an exponential Levy process,
thus its log-increments are independent. This makes optimal controls, given the multiplicative structure of the value function, inde-
pendent of the current price level. To see this, notice that, when the price is modeled as a GBM, the value function can be factorized,
as the electricity price depends on the initial value just via a multiplication factor: thus we have

5 This filling rate could represent, for example, a water income distributed from April, 1 ( ) to September, 30 ( ) for a glacier-fed water reservoir (of course
in the Northern hemisphere). At snow and ice melting is already significant, and will reach its maximum at (i.e. end of June). From that time on, though
temperatures are still high enough to melt snow and ice in significant quantity, their available amount will start to decline, so the resulting water income will decrease,
and will do it more and more as temperature starts to fall again.
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(8)

where v satisfies a simplified version of the HJB equation, given by

(9)

still with terminal condition . Given this multiplicative decomposition, here we have the optimal control which ends up be-
ing just a feedback control of (t, y), without explicit dependence on x. One can also see from the structure of Eq. (9) that the optimal
feedback control ν* here is of bang-bang type and takes the form with

where the specific values of max Ut,y or min Ut,y depend on (t, y) through Eq. (7). In terms of the dependence on the y variable, we
can see that the graphics reflects quite well the expectations that we have on this model. Indeed, the value function is increasing with
respect to the reservoir level y, and the dependence here seems almost linear: this is maybe due to the fact that, regardless on the
current level y, we always have the maximum possible flexibility in the control u, and one can let the dam fill or use its flow always
at maximum speed in either direction, being the optimal control ν* of bang-bang type. This is also confirmed at where the min-
imum speed is 0, while the maximum speed is β(t) instead of (see Eq. (7)), as is evident from the lower left corner of the right panel
of Fig. 2.

The case of the electricity price modeled as an IGBM is given in Fig. 3. With this process, we cannot use the multiplicative decom-
position of the value function seen in the GBM case, thus the optimal feedback will in general depend on state x. We notice that the
value function exhibits a linear growth both in x as in y, as in the GBM case (even if here, differently from the GBM case, we have
V(t, 0, y) > 0). Here the interpretation is the same as in the GBM case: regardless of the current level y, we always have the maximum
possible flexibility in the control u. Also, the optimal control is again of bang-bang type, now of the form with

and is found out to increase with respect to x, which is quite natural, as it is optimal to produce more and more as the electricity price
increases; conversely, when the price is low, it is optimal to delay production and wait for the price to increase again. Differently from
the GBM case, where the future price evolution is totally independent of the current price level itself, here we have a natural concept
of “high” and “low” prices, as the IGBM is a mean-reverting process, thus possesses a concept like long-term mean (equal to a/b in our
parameterization). Thus, in this case, the intuitive concept above “produce when the price is high and wait when it is low” makes sense
when referring to the long-term mean. This can also be observed in the optimal feedback controls in Fig. 3: the first two subfigures
have x < a/b (equal to 5 there), thus it is optimal to produce only when the dam is filled or the terminal time T is near; instead the
latter two subfigures have x ≥ a/b, thus it is optimal to produce in almost all couples of (t, y).

Observe also in Fig. 3 the particular behavior of the optimal feedback control for and . Indeed, for the minimal
admissible discharge rate corresponds to the value β(t), t ∈ [0, T], which partially appears on the top-right corner of the first two bot-
tom panels of Fig. 3. Instead, for β(t) is the maximal admissible discharge rate, which partially appears in the first three bottom
panels and becomes completely visible on the fourth panel of Fig. 3.

3.2. The two reservoirs model

In the two dams setting, the analogous of Assumption (H3) is the following requirement:
(H3)’ there exists η > 0 such that for all t ∈ [0, T]

Assumption (H3)’ can still be seen as an inward pointing condition on the rectangular domain In particular,
the first two conditions ensure for any t ∈ [0, T] the existence of an inward pointing drift at any point while
the third concerns the case where i.e. where both reservoirs are either empty or full. Indeed, in this latter case
one has to consider that if the dams are both empty the overall system needs to be filled by some positive inflow while
if the dams reached their maximal capacity, to let the level decrease in the upper reservoir one has to release water in the lower one
at a rate greater than β1(t), so the lower reservoir has to be able to discharge at a rate greater than . Under assumptions
(H1)-(H3)’ the value function V is characterized by following HJB equation
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on with where this time Ut,y is much more involved, being defined as

(10)

We plot the results obtained in this case under a GBM and IGBM model in Figs. 4 and 5, respectively. Here, we take
and u2 ∈ [0, 5.5] which ensures (H3)’ being satisfied.

We can observe similar qualitative results as the single dam model. If the price is modeled by a GBM (Fig. 4) one gets an optimal
feedback independent of x and numerically of bang-bang type, though with an analytical form more difficult than the one-dam case.
Similarly to the case of a single reservoir, the optimal control is to wait for the dam to be filled far from the terminal time T and for
a low level of water in the system. Observe that, since γ > 1, water is never pumped from the lower reservoir since this can only be
optimal in view of a price-dependent feedback. Moreover, the maximal discharge rate of the upper reservoir reduces from to β1(t)
when the reservoir is empty (first three panels of Fig. 4), while the one of the lower reservoir reduces from to if the reser-
voir is empty and the upper one is not (fifth and sixth panels on Fig. 4), and further to if also the upper reservoir is empty
(fourth panel on Fig. 4). This is even more visible looking at the last six panels of Fig. 5B corresponding to the IGBM case with price
above the long-term mean (which is 5 here). We recall that, in this case, the optimal strategy is to discharge with the maximal rate
independently of the reservoir level. When the price if modeled by an IGBM, numerically we can observe, as in the one-dam case, a
linear-like structure in the value function, both in x as in y (Fig. 5A), and a bang-bang-like structure in the optimal controls (Fig. 5B),
as follows. The optimal control is always in one of the two states “wait for the lower reservoir to be filled” or “discharge it at the
maximum possible rate”. Instead, the optimal control is always in one of the three states “discharge the upper reservoir at the max-
imum possible rate”, “let it be filled” or “pump water up as much as possible”. In particular, if the price is below the long-term mean,
it is optimal to let the reservoirs be filled and, for very low levels of the price (see the first three panels of Fig. 5B), the water is also
pumped back to the upper reservoir at the maximal rate. Observe that if the lower reservoir is empty (first of the three panels) water
can be pumped back to the upper one with maximal rate min (β2(t), u1) instead of u1. Moreover, we can see in the three panels on the
second line of Fig. 5B that, if the lower reservoir is full its minimal discharge rate is unless the upper reservoir is full
(third of the three panels) where the minimal rate is β2(t) since water cannot be pumped back.

4. State constrained optimal control: controllability issues

The filling rate β (resp. β1, β2) is exogenously given and many structural reasons may prevent Assumption (H3) (resp. (H3)’) to
be satisfied. Considering again the simpler single dam model, a typical situation could be that the dam was built in the past with a
maximum outflow level as suitable to a given inflow intensity which used to be observed in the past, but nowadays, due to climate
changes, the inflow intensity has changed from to β, which could potentially be greater than for some given times t ∈ [0, T]. As
an example, when the inflow intensity was for t ∈ [0, 1], the dam could have been built with thus satisfying
Assumption (H3). In this case we say that the problem is controllable. If we now assume that the current inflow intensity is instead

we can easily see from Fig. 1 that Assumption (H3) is now violated and then controllability is lost.
In order to treat the problem in its full generality we aim in what follows to remove Assumption (H3). Let us then assume that

with possibly (we keep β(t) ≥ 0, ∀t ∈ [0, T], for simplicity). The first difficulty one faces in this scenario is to
determine the maximal “controllable region”, i.e. the set such that

Roughly speaking is the largest subset of K where at time t the value function is well defined. Let us assume the function β is
qualitatively as the one reported in Fig. 1, i.e. such that in the interval [t*, T*], for some 0 ≤ t* ≤ T* ≤ T.

Proposition 4.1 Let
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Then, for any t ∈ [0, T] one has

Proof The result is straightforward if t ≥ T*. Let t* ≤ t < T*. If there exists a control such that a.s., this
certainly implies (taking ) that . Moreover, taking (recalling we are in the case t < T*) it also gives

On the other hand, let : defining the control

where one has (because β(r) ∈ U for r ∉ [t*, T*]) and a.s. thanks to the
construction of . □

Finding explicitly the sets can be in general very complex. An alternative characterization of can be
obtained using the so-called level set approach, see e.g. Bokanowski et al., 2014; Bokanowski et al., 2010; Falcone et al., 1994; Kurzhan-
ski and Varaiya, 2006. In particular, it is possible to define a function such that for any t ∈ [0, T]

(11)

The equivalence above relates the characterization of the set with the one of the zero level set of the real-valued function ϑ. A
possible choice of ϑ is

(12)

where dK(y) denotes the (positive) distance of y to the set K. It is not difficult to show that, for any problem (12)
admits an optimal control such that (this follows by the same arguments used in the proof of Theo-
rem 5.1, in the next section) and, as a consequence, (11) holds. The function ϑ is the value function of an (unconstrained) optimal
control problem fully characterized by a first order HJB equation. Then, thanks to (11), numerically solving this HJB equation leads to
a numerical approximation of the set .

Fig. 6 (left) shows the level sets of the numerical approximation of the function ϑ(t, · ) for t ∈ [0, T]. In particular, the white
region approximates the set of level zero and therefore represents a numerical approximation of the region . Of

Fig. 1. The function used in our numerical tests.
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course, the choice of ϑ is not unique and many different functions may provide the characterization given by (11) (see for instance the
discussion in Bokanowski et al., 2014).

Once defined the set for any t ∈ [0, T], which is in general not trivial, as we have seen, one has to deal with the optimal control
problem associated to V(t, x, y) settled in the domain . For a problem of this form, the regularity
properties of the value function on its domain of definition, its HJB characterization as well as its numerical approximation are very
complex and non standard in optimal control theory. This motivates the study presented in the next section where, to avoid the direct
treatment of the state constrained optimal control problem by dynamic programming techniques, we pass to a suitable reformulation
of the problem that eliminates this difficulty.

5. Treatment of the state constraints without controllability assumptions

Let us go back to the model with two reservoirs. Motivated by the discussion in the previous section, we follow here the alternative
approach presented in Bokanowski et al. (2016) to overcome the issues related to the treatment of state constraints when assumptions
such as (H3) (and (H3)’) are not satisfied.

Let us start introducing the following auxiliary unconstrained optimal control problem:

(13)

where is the set of adapted processes α such that and

for with .
We refer to W as the level set function for problem (5). The fundamental link of W with the original control problem in Eq. (5) can

be seen by analyzing the structure of W: in particular, the link is with the level set . In fact, we can see
that in the definition of W we are minimizing two non-negative addends. The latter is linked to the value function θ of the problem
in Eq. (12): in particular, we have that there exists a such that a.s. if and only if and in that case

too. The former addend instead is zero if and only if a.s., i.e. a.s.. Since
can be controlled too, it makes sense to choose it in such a way that the stochastic integral represents all the randomness of the first
integral, i.e. in such a way to obtain that . Of course, we can pick the

largest z having this property when maximizes the first addend, i.e. when it is also the optimal control of the original problem
(5). In conclusion, it turns out that only if is not empty and if

The following theorem states rigorously this fundamental link between the original optimal control problem (5) and the auxiliary
problem (13).

Theorem 5.1 The following holds

(14)

with .

Proof We start proving that

If there is nothing to prove. Let us then assume that . For any define
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Since by the martingale representation theorem there exists such that a.s.

This implies that

which gives the following inclusion

from which the desired inequality follows.We now prove that

Let z ≤ 0 such that (if such z does not exists there is nothing to prove). Let be a minimizing sequence
for W(t, x, y, z). Therefore for any ε > 0 there exists k0 such that ∀k ≥ k0 one has

Being νk uniformly bounded in norm (because ν takes values in a compact set), there exists a weakly convergent subsequence (for
simplicity still indexed by k), i.e.

for some . Applying Mazur’s theorem one has that there exists with λi ≥ 0 and such that

We then consider . Observe that still belongs to because U is convex and is a convex
space. Let us now consider . One has

where we used the Lipschitz continuity with Lipschitz constant Lc ( for the particular choice in (4)) of the function c. Moreover,
from the strong convergence in -norm it follows that there exists a subsequence such that a.e. One also has

for some constant C depending on the uniform bound of elements in . Being integrable under the classical Assumption (H1), we
can apply the dominate convergence theorem on the subsequence to get
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In conclusion, there exists a suitable subsequence (indexed with k for simplicity) such that

Similarly one has

Then, for any ε > 0 there exists k1 such that ∀k ≥ k1 one has

Moreover, one has (using the fact that c( · ) is concave and ):

and (Y being linear in ν)

Putting these things together (observing that max (z, 0) is convex and that being K convex also dK is) one has for k ≥ max (k0, k1):

From the previous inequality we can immediately conclude that because for any arbitrary ε > 0 one has
. Moreover, one also has

which gives

and then . □
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Corollary 5.1 If there exists an optimal that realizes the infimum in (13).
Proof Given as in the proof of Theorem 5.1 and such that

one has

□

Remark 5.1 The use of the modified cost instead of L guarantees the non-positivity of the running cost which is a useful property
in view of the HJB characterization provided in Bokanowski et al. (2016). Notice that the computation of the function G(t, x) typically
does not add any difficulty and we can consider it given by the problem data.

The following regularity result turns out to be particularly useful for the PDE characterization of W.
Proposition 5.1 The function W is uniformly continuous in (x, y, z) and satisfies uniformly.Moreover, for

any z ≥ 0 one has .

Proof The uniform continuity of W with respect to (x, y, z) is straightforward. Moreover, by the definition of W, the Lipschitz con-
tinuity of dK and and classical estimates on the processes (X · , Y · ), one has for any h > 0 such that and

where by C we denote any generic nonnegative constant. If z ≤ 0 by the nonegativity of W one immediately has
. Otherwise if z > 0, by the nonegativity of dK, the martingale property of stochastic integrals and classical

estimates on the process X, one has

which concludes the proof of . Let us now assume that z ≥ 0. Minorating the positive part by its argument
and using the martingale property of stochastic integrals one always has

The reverse inequality is obtained observing that

and using the non negativity of the process . □

Corollary 5.2 Let V(t, x, y) be finite. Then, there exists z* ≤ 0 that realizes the supremum in (14) and if (ν*, α*) is an optimal control for
the level set problem (13) at point (t, x, y, z*), then ν* is admissible and an optimal control for the original optimal control problem (5) at (t,
x, y).

Proof Being the supremum in (14) defined on a nonempty (because V is finite) set closed and bounded from above, one can always
find z* ≤ 0 realizing this supremum. It follows by the proof of Theorem 5.1 that there exists such that
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Recalling that one can immediately conclude that ν* is an optimal control for the original problem. □

In conclusion, by Theorem 5.1 and Corollary 5.2, on its domain of definition the optimal value function V(t, x, y) and the associated
optimal strategy is completely determined by the unconstrained optimal problem (13).

It is possible to show that the value function W is associated to the following HJB equation:

We refer the interested readers to Bokanowski et al., 2016, Section 4 for the complete characterization of W as the unique continuous
viscosity solution of this generalized equation.

6. Numerical simulations

In this section we apply the results of Theorem 5.1 and Corollary 5.2 to numerically approximate the original value function V
solution of (5) and the associated optimal feedback strategy. For details and discussions concerning the numerical approximation of
this particular type of equations, we refer the interested readers e.g. to Debrabant and Jakobsen, 2013, Section 9.4 and Benezet et al..

We focus on the single dam model as described in Section 2. We recall that in this case the set of admissible controls is defined as

where and

The value function is defined by

with . Along the entire section we take and

6.1. Electricity price modeled by a GBM process

In order to better understand the technique we use, let us start considering the electricity price evolving as a geometric Brownian
motion (GBM). In particular, we consider the same parameters used in Section 3, i.e.

with b ≔ 0.05 and σ ≔ 0.1. We point out that in this case we simply have for any .
In order to validate the approach presented in the previous section we first suppose that Assumption (H3) is satisfied choosing, for

instance, . The procedure is outlined in Fig. 7. As here V depends linearly on x (recall Eq. (8)), to visualize the results we can
freeze the variable x and concentrate ourselves just on the dependence on t, y and z. On the top we show the function W(t, x, y, z)
(left) and its level sets (right) for and . Then, using (14) we obtain (bottom, left) the value function V(t, x,
y) for and . Observe that in the region outside the interval the level-set function W is positive which means,
using again (14), that in those points V is equal to represented by the dashed grey line in the figure. This is aligned with the fact
that points outside K are not controllable. The resulting value function V(t, x, y) for x ≥ 0 and y ∈ [0, 1] is finally visible on the
bottom-right panel, here plotted together with the original value function to assess the difference. In this case, being Assumption (H3)
satisfied, Fig. 7 (bottom, right) can be compared with the value function which was directly computed by HJB equation in Fig. 2, and
we can notice that the reconstructed value is very near to the value obtained with the HJB equation.

We now remove Assumption (H3), taking for instance . The decomposition in Eq. (8) holds also in this
case, with the consequence that the optimal control is still a feedback control of (t, y) only, but neither V nor v here satisfy an
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Fig. 2. Single dam, price modeled as a GBM with and maximal discharge rate (Assumption (H3) is satisfied). Left: numerical approxi-
mation of the value function V at . Right: optimal feedback as a function of (t, y). Discretization steps used in numerical tests: .

HJB equation (at least with the simple structure of Eq. (6a)), and one must reconstruct V via the function W instead. We recall that,
in this setting, the plot of the controllable region is given in Fig. 6. We plot the level sets of W and the reconstructed
value function at point in the first two lines of Fig. 8 on the left and right column, respectively. On the first line we choose
and on the second . We point out that in the second case the finiteness region for V, i.e. the region where is reduced to an
interval strictly contained in . This corresponds to the finding in Fig. 6. The reconstructed value function is plotted for
and respectively, at the bottom line of Fig. 8.

One can observe that the value function is still increasing with respect to the reservoir level y, but the almost linear slope here
seems to have a discontinuity for y ≃ 0.2: this is due to the fact that here, for levels of y sufficiently high, we lose flexibility in the
control u, as one must check whether the strategy which was optimal in the previous case now ends up being not admissible: as a
result, one could be forced to empty the dam when it would be not optimal. As a consequence of the lower discharge capacity of the
dam and of the necessity to release water for high levels of the reservoir, the value function at does not surpass the value 25,
while under Assumption (H3) the value 30 was almost achieved (compare with Fig. 2). Observe that for the value function is
defined only for values of y below ≃ 0.8. Indeed, as can be observed looking at Fig. 6, this is approximately the value of (see the
definition in Proposition 4.1) at so that for y above this value the function V is not defined being .

6.2. Electricity price modeled by an inhomogeneous GBM (IGBM) process

Let us now discuss the case where the electricity price evolves according to an IGBM, obtained by taking

Considering again the parameters used in Section 2, we take b ≔ 1, σ ≔ 0.1 and a ≔ 5. Using the level set method we can approximate
the value function and the optimal feedback, in the cases when Assumption (H3) holds (again when ) and when it does not (
). First of all, since we have

The reconstructed value function and optimal feedback are plotted in Figs. 9 and 10 in the two cases when Assumption (H3) holds (
) and does not hold ( ), respectively.

When we can see from Fig. 9 (top) that the reconstructed value function well approximates the one obtained by the direct
solution of the HJB equation (Fig. 3, top). Also the optimal feedback reconstructed by mean of the level set approach (Fig. 9, bottom
panels) looks qualitatively close to the one in Fig. 3.

When Fig. 10 represents the reconstructed value function (top) and the optimal control (four bottom panels). In this case,
the value function exhibits a linear growth in x (again here V(t, 0, y) > 0), while in y we have the same kind of discontinuity in
the linear growth that we had with the GBM, i.e. the slope lowers from y ≃ 0.2 on. The interpretation here is similar: for levels of y
sufficiently high, we lose flexibility in the control u, as the strategy of letting the dam fill far from the terminal time T for low levels
of the price and the reservoir, which was optimal under Assumption (H3) (see Fig. 3), does not look admissible any more. Indeed, as
the four panels at the bottom of Fig. 10 show for large levels of y, one is compelled to discharge the dam even if the price is low.
As a consequence, also here the ranges of the value functions are different: when Assumption (H3) is satisfied the value function at

has a maximum value above 20, while in this case it is slightly greater than 16. Even if with a much restricted flexibility, as dis-
cussed above, the feedback is still of bang-bang type and increases with respect to x, with the same interpretation given under Assump
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Fig. 3. Single dam model, price modeled as IGBM with and maximal discharge rate (Assumption (H3) is satisfied). Top: numerical approx-
imation of the value function V at . Bottom: optimal feedback as a function of (t, y) for different values of (from left to right). Discretization steps
used in numerical tests: .

tion (H3). In particular, observe that when the price is high (last bottom panel in Fig 10) it is always optimal to discharge at the
maximal admissible rate; this is equal to if the dam is not empty and coincides with otherwise, explaining the shape of
the optimal feedback for . The empty area on the top-right corner of the four bottom panels of Fig. 10 coincides with the region
where the value function V is not defined (compare with the shape of the admissible region in Fig. 6), i.e. at those points no admissible
control exists.

7. Conclusions

In this paper, we have framed the problem of modeling a system of one or two hydroelectric power plants with linked basins, so
that, besides discharging water to produce electricity, it is also possible to pump up water in the higher basin in order to store it when
the electricity price is lower and use it when price rises up again. This system is framed as a stochastic optimal control problem with
state constraints, this latter due to finite reservoirs’ volumes, which turn out to be, in general, highly non-trivial. In the case that the
system is controllable, i.e. when for each possible state there exists a control which does not make the system violate the state con-
straints, we show that the value function satisfies a suitable HJB equation. Instead, in the case that the system is not controllable, we
show that it is not trivial at all to characterize the states where we are at risk of violating the constraints. We then present a novel
level-set approach, which consists in adding one more state variable to the system to account for the constraints’ violation. The value
function of this augmented control problem is the solution of a HJB equation, and thus it is possible to characterize numerically the
states of the original problem where constraints can be violated, as well as the optimal control.

We also present numerical implementations for our findings. Both in the one reservoir as in the two reservoirs case, the resulting
optimal controls are of bang-bang type: in fact, the peculiar form of the problem makes optimal to produce electricity when its price
is high, and to postpone production when the price is low. Moreover, in the two reservoirs case, there are particular states (notably
when the electricity price is particularly low) when it is indeed optimal to pump water in the upper basin and store it for future
production. These numerical experiments are performed in the controllable case both solving the original HJB equation and solving
the HJB equation for the augmented problem: in this case, we find out that this latter technique gives results which are very near to
the original formulation, both in terms of value function as in terms of optimal controls. We also implement the problem in the case
when the system is not controllable: in this case of course we have to resort to the HJB equation for the augmented problem. Here
we can notice a difference between this case and the controllable one. In fact, in the controllable case the value function exhibits a
linear growth in y, while in the uncontrollable case this linear growth exhibits a discontinuity at certain values of y. This is due to the
fact that a strategy which is optimal in the controllable case can end up being not admissible in the uncontrollable case: as a result,
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Fig. 4. Two dams, price modeled as GBM with and maximal/minimal discharge rate and (Assumption (H3)’ is sat-
isfied). Top: numerical approximation of the value function V at . Second (resp. third) line: optimal feedback u1 (resp. u2) as a function of (t, y1) (resp. (t, y2)) for
different values of y2 (resp. y1). Discretization parameters used in numerical tests: .

one could be forced to empty the dam when it would be not optimal in order not to violate the state constraints.
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Fig. 5A. Two dams, price modeled as IGBM with and maximal/minimal discharge rate and (Assumption (H3)’ is
satisfied). Numerical approximation of the value function V at . Discretization steps used in numerical tests: .
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Fig. 5B. Two dams, price modeled as IGBM with and maximal/minimal discharge rate and (Assumption (H3)’ is
satisfied). Numerical approximation of the optimal feedbacks u1 and u2. Discretization steps used in numerical tests: .

Fig. 6. The set with β as in Fig. 1. Left: level sets of the function ϑ (the white region corresponds to the set of level zero). Right: plot of the function
explicitly defining in Proposition 4.1.

Fig. 7. Single dam, price modeled as a GBM with and maximal discharge rate (Assumption (H3) is satisfied). Top: the level set function
W (left) and its level sets (right) for and . Bottom: reconstruction of the value function for (left) and reconstructed value function at together
with the “original” one (in dark red), obtained as the numerical solution of the HJB Eq. (6a) reported on Fig. 2 (right). Discretization steps used in numerical tests:

. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 8. Single dam, price modeled as a GBM with and maximal discharge rate (Assumption (H3) is not satisfied). First and second lines:
the level sets of the function W (left) and the reconstructed value function (right) for at two different time (first line) and (second line). Last line:
reconstructed value function V for any x ≥ 0 at different times (left) and (right).
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Fig. 9. Single dam, price modeled as a IGBM with and maximal discharge rate (Assumption (H3) is satisfied). Top: the reconstructed
value function together with the “original” one (in dark red), obtained as numerical solution of the HJB Eq. (6a) reported in Fig. 3. Bottom: the approximated optimal
feedback as a function of (t, y) for different values of (from left to right). Discretization steps used in numerical tests:

. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Single dam, price modeled as a IGBM with and maximal discharge rate (Assumption (H3) is not satisfied). Top: the recon-
structed value function. Bottom: the approximated optimal feedback as a function of (t, y) for different values of (from left to right). Discretization steps
used in numerical tests: .
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