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Abstract

In this paper we explore the effects that the presence of a fraction of binary stars has in the determination of a star
cluster mass via the virial theorem. To reach this aim in an accurate and consistent way, we run a set of simulations
using the direct summation, high precision, code NBODY7. By means of this suite of simulations we are able to
quantify the overestimate of open-star-cluster-like models’ dynamical masses when making a straight application
of the virial theorem using available position and radial velocity measurements. The mass inflation caused by the
binary “heating” contribution to the measured velocity dispersion depends, of course, on the initial binary fraction,
fb0 and its following dynamical evolution. For an fb (evolved up to 1.5 Gyr) in the range 8%–42% the overestimate
of the mass done using experimentally sounding estimates for the velocity dispersion can be up to a factor of 45.
We provide a useful fitting formula to correct the dynamical mass determination for the presence of binaries, and
underline how neglecting the role of binaries in stellar systems might lead to erroneous conclusions about their
total mass budget. If this trend remains valid for larger systems like dwarf spheroidal galaxies, which are still far
out of reach for high-precision dynamical simulations taking their binaries into account, it would imply an incorrect
overestimation of their dark matter content, as inferred by means of available velocity dispersion measurements.

Unified Astronomy Thesaurus concepts: Binary stars (154); Star clusters (1567); N-body simulations (1083)

1. Introduction

Binary stars play a very important role in the dynamics of
stellar systems, from small open-star clusters (Hut et al. 1992)
to dwarf spheroidal galaxies (Spencer et al. 2017). There are
both observational and numerical indications that binaries
observed in stellar systems (from loose open clusters to very
dense globular clusters) cannot be entirely explained by
dynamical formation processes, such as three-body dynamics
or two-body tidal capture (Aarseth & Lecar 1975), but should
be, rather, primordial (Hut et al. 1992; Portegies Zwart et al.
2001; Binney & Tremaine 2008; Kouwenhoven & de Grijs
2008). This fraction of tight primordial binaries may affect
dynamical mass estimates most.

The dynamical evolution of a star cluster depends strongly
on its binary population: even a small initial binary fraction can
play a fundamental role in governing cluster dynamics and the
whole cluster stellar evolution (see, for instance, Goodman &
Hut 1989; McMillan et al. 1990, 1991; Hut et al. 1992;
Mathieu 1994; McMillan & Hut 1994; Portegies Zwart et al.
2001; Goodwin & Kroupa 2005; Kouwenhoven et al. 2007;
Kouwenhoven & de Grijs 2008, and references therein).
However, the influence of binaries on properties like the bulk
motion and velocity dispersion of stellar systems has not yet
been fully characterized and understood. From an observational
point of view it is a challenging task to catch the entire binary
population of a stellar system, because binaries can have very
different periods (Geller & Mathieu 2012), and this induces a
clear bias in the determination of the binary fraction in a cluster
if only one or a few epochs are observed, as is customary.
Usually, binaries can be detected in one of the following ways:
by spectroscopy (from radial velocity variations), or photo-
metry (from the abnormal location on Hertzsprung–Russell
diagram). Other types of binaries are the so-called “visual”
binaries (stars too close on the sky to be explained by chance
projection; Goodwin 2010) and the astrometric binaries (visual

binaries that we see orbiting). Clearly, all of these methods are
biased; the first method is biased to close similar-mass
companions while the second and the third methods are biased
toward similar-luminosity or -mass (low-mass) companions
(Goodwin & Kroupa 2005; Goodwin 2010).
In globular clusters, the fraction of binaries is regulated by

two competing effects: the formation of bound systems due to
dynamical segregation, and their destruction due to strong
dynamical interactions in the cluster cores (Ji & Bregman
2013, 2015a, 2015b).
In looser systems, like open clusters or dwarf galaxies,

strong dynamical interactions are rare, and primordial binaries
may survive longer (Portegies Zwart et al. 2001). The fraction
of primordial binaries in open clusters is estimated to range
between 30% and 60% (Portegies Zwart et al. 2001; Sana et al.
2008, 2009, 2011, 2013) approaching 100% in some particular
cases (Fan et al. 1996; de la Fuente Marcos & de la Fuente
Marcos 2008; Sana et al. 2008).
In dwarf galaxies, in particular, the presence of binary stars

has been considered as a potential explanation for the
difference in velocity dispersion with respect to globular
clusters of comparable mass. Actually, the velocity dispersion
in dwarf galaxies is, typically, larger, and also the mass to light
ratio, which would imply a very large content of dark matter
(Spencer et al. 2017).
The possible link between dark matter content and binary

fraction is particularly intriguing. Globular clusters are dark
matter free, and host small fractions of binaries. On the other
side, dwarf spheroidal galaxies (Spencer et al. 2017) seem to be
dark matter dominated and, at the same time, they host many
binaries. The bridge between dark matter content and binary
content could be the velocity dispersion, via the virial theorem.
Previous studies showed that when binary stars are properly
taken into account the velocity dispersion estimation and, in
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turn, the evaluation of the virial mass of dwarf galaxies tend to
decrease (Spencer et al. 2017, 2018).

Therefore, the knowledge of the binary content of a stellar
system allows us to clear the bias they induce: the better they
are taken into account, the smaller the velocity dispersion
results are (Kouwenhoven & de Grijs 2008; Spencer et al.
2017). This issue is particularly crucial for low density systems,
like Bootes I (Muñoz et al. 2006; Koposov et al. 2011), or
Segue 1 (Geha et al. 2009; Martinez et al. 2011; Simon et al.
2011).

Direct measurements of the 1D velocity dispersion (σlos) of a
star cluster can be done in three different ways: (i) estimating
the width of spectral lines from observations spanning a
significant part of the cluster (Moll et al. 2009); (ii) measuring
the radial velocities of individual stars (Apai et al. 2007), and
(iii) proper motions (Chen et al. 2007; Tofflemire et al. 2014),
possible only for nearby clusters. Due to the nature of the
observations, the velocity dispersion obtained using techniques
(i) and (ii) might be significantly affected by the presence of
binaries (Kouwenhoven & de Grijs 2008), while proper motion
measurements do not lead to a mass overestimation, even when
the binary fraction is high. For instance, single-epoch velocity
dispersion is larger than multiepoch velocity dispersion, and
the wider the time coverage, the smaller the resulting velocity
dispersion. This means that binary stars can “inflate” the
velocity dispersion of stellar systems. In fact, in a cluster
consisting only of single stars, the velocity dispersion strictly
correlates with the motion of each “particle” in the cluster
potential. On the other hand, in a cluster populated also by
binary stars we cannot easily pick the motion of the binary
center of mass from that of the individual binary components,
which gives two additional degrees of freedom (like roto-
vibrations in a diatomic molecule), the rotational one being
dominant. This may induce, thus, an overestimation of the
dynamical cluster mass (Fleck et al. 2006; Apai et al. 2007;
Gieles et al. 2010) as computed using the virial theorem.

Given all the above, we note that, interestingly, the mean
stellar density and binary fraction of dwarf spheroidal galaxies
is comparable to that of open clusters in the Milky Way disk
(McConnachie 2012; Kharchenko et al. 2013; Spencer et al.
2018). It is therefore tempting to start systematically testing the
binary effect on open clusters first, given the obvious numerical
advantage, to look for similarities and/or differences with
observations.

Open clusters are in fact small enough to allow us to perform
multiple simulations of their dynamics at a level sufficient to
give good statistical coverage of their properties, yet they are
large enough and old enough that both stellar evolution and
stellar dynamics have had time to play significant roles in
determining their present structure. (Portegies Zwart et al.
2001).

Moreover, open clusters contain fractions of binaries larger
than the globular cluster (de la Fuente Marcos & de la Fuente
Marcos 2008; Carraro et al. 2017), and are widely accepted to
be devoid of dark matter halos. The small number of stars
belonging to open clusters allows a tight comparison with
numerical models.

Generally, high precision dynamical models studied so far,
exclude binaries for simple practical reasons (Mikkola &
Aarseth 1998; Portegies Zwart et al. 2001; Trenti et al. 2007):
(i) binaries slow down calculations dramatically and induce
huge numerical errors; (ii) their internal evolution is much more

complicated than the evolution of single stars; (iii) a good
treatment of binaries would require accurate dynamical
regularization tools.
However, from a theoretical/numerical side, given the

relatively small number of open clusters’ member stars it is
easy to explore the role of binaries in such systems.
In this paper we address the role of binaries in open cluster-

like stellar systems in influencing the cluster velocity
dispersion and thus the determination of the cluster “dynami-
cal” mass. Our work is based on high precision, direct
summation, N-body simulations. With the aim to span a wide
range of initial conditions, we model open clusters at varying
the initial fraction of primordial binaries and the cluster initial
virial state (by means of varying the initial virial ratio

= WQ T2 ∣ ∣, where T and Ω are the total kinetic and potential
energy, respectively; Q=1 corresponds to virial equilibrium).
Although this is the most straightforward definition of a virial
ratio, coming directly from the expression of the second time
derivative of the polar moment of inertia of a system of N
gravitating objects, we note that some papers refer to the virial
ratio as the = WQ T ∣ ∣ ratio, that gives 1/2 for a virialized
system. To estimate the velocity dispersion of the cluster, and
hence the system kinetic energy, we use three different
methods, accounting in different ways for the presence of
binary stars.
The paper is organized as follows: in Section 2 we describe

the models and the numerical methods we used; in Section 3
we present and discuss our results. Summary and conclusions
are drawn in Section 4.

2. Method and Models

2.1. N-body Models

In order to study the effect of binaries on the estimation of
the dynamical mass of open clusters we made use of high
precision direct N-body simulations performed with the code
NBODY7 developed by Nitadori & Aarseth (2012). NBODY7 is
a direct summation N-body code that integrates in a reliable
way the motion of stars in not too abundant stellar systems and
that implements sophisticated and efficient recipes to deal with
strong gravitational encounters, taking also into account stellar
evolution. The high precision treatment of binary stars is
allowed in NBODY7 thanks to the KS regularization tool
(Kustaanheimo & Stiefel 1965) and the Algorithmic Regular-
ization Chain (Mikkola & Tanikawa 1999).
We defined six simulation groups (A, B, C, D, E, and F)

representing various open clusters, varying the population of
primordial binaries and the cluster virial state. All the clusters
initially contain N0=1000 stars. In all cases, the radial
distribution was set according to a Plummer density profile
(Plummer 1911). The initial total mass of each cluster is, in
dependence on the random seed for the sampling, in the
interval 600–700 M. The cluster core radius is rc=1 pc, and
for each system we adopt solar metallicity (Ze). We assume a
Kroupa (2001) initial mass function with masses in the range
0.01 M�m�100 M. The clusters are supposed to be
isolated and considered as proxies of open clusters of the
Milky Way.
For each model (A, B, C, D, E, and F) we vary the fraction

of primordial binaries, fb0, and the initial virial ratio, Q0 (see
Table 1).
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The first three groups of simulations (A, B, and C) represent
clusters in an initial virial equilibrium (Q0=1) while the other
groups (D, E, and F) refer to subvirial star clusters,
assuming =Q 1 20 .

We consider for each cluster model a primordial population
of binaries in a fraction that varies in the 5%–30% range
(Table 1). The initial fraction of binaries, fb0 is defined as the
ratio of the initial number of pairs of stars, Nb0, to the initial
total number of cluster stars, N0, so that fb0=Nb0/N0, and
N0=Ns0+2Nb0 is the total number of stars, provided Ns as
the number of single stars in the system.

The mass ratio distribution of the primordial binary population
is modeled according to the law µ +f m m m mA B A B

0.4( ) ( )
(where mA�mB are the masses of the two stars in the binary;
Kouwenhoven et al. 2008), while periods are distributed
according a logarithmic distribution (Kroupa 1995) and, for
eccentricities (e), we assumed a “thermal” distribution =g e e2( )
(Jeans 1919). For each model, we run 10 N-body simulations.
Each simulation is a different realization of each cluster model for
which we change the random “seed” when creating the initial
conditions.

In particular, the initial conditions drawn this way are
obtained by updating the procedure followed in Arca-Sedda
et al. (2015). We evolved all the models up to ∼1.5 Gyr. All the
simulations were performed with the multi-GPU workstation
ASTROC16A hosted at Sapienza, University of Rome.

2.2. Strategy

It is intuitive that binary stars play a relevant role when
estimating the mass of a star cluster by means of virial
considerations. This is because their presence can significantly
affect the “observed” velocity dispersion, giving an extra
contribution over the pure kinetic (translational) one that would
provide the correct evaluation of kinetic energy at the
numerator of the virial ratio Q. Of course, any overestimate
of the kinetic energy, at a given Q value, leads to a
corresponding overestimate of the mass of the system.

From an observational point of view, it is really challenging
to disentangle the binary population, especially when binaries
have long periods and small amplitudes, although long period
binaries are the ones that less affect the velocity dispersion
measurements because of their lower velocities around the pair
barycenter. Typically, multiepoch and high precision radial
velocity measurements are required. So, to evaluate the binary
role it is much more feasible to use a “direct” and controlled
approach, which means to build up a set of N-body realizations
of a cluster whose binary content is predefined to get numerical

outputs that allow one to check how the velocity dispersion
evaluations can be biased. Therefore, we estimated the cluster
3D velocity dispersion in all of our models in Table 1 by means
of four different methods, described as follows:

1. Method 1: the total velocity dispersion (hereafter,
denoted with σtot) is estimated accounting for all the
stars of the cluster as if “they were all single stars,” i.e.,
independently of possible binarity. In practice, given N
velocity vectors, vi (i=1,2,K, N), we scaled them to the
proper rest frame to evaluate the total velocity dispersion

ås =
=N

v
1

, 1
i

N

itot
1

2 ( )

where vi is the absolute value of vi.
2. Method 2: here we make a distinction between the Ns

single stars and the Nb binaries, in that, in the velocity
dispersion calculation, we consider for every jth ( j=1,2,
K, Nb) binary composed by the two masses mA j, and mB j, ,
only its center of mass velocity,

=
+

v
v vm m

M
, 2j

A j A j B j B j

j
cm,

, , , , ( )

where = +M m mj A j B j, , is the binary mass, to evaluate
the cluster velocity dispersion as

å ås =
+

+
= =N N

v v
1

. 3
s b i

N

i
j

N

jcm
1

2

1
cm,
2

s b⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

3. Method 3: here we keep a distinction between single and
binary stars but, in this case, for every binary we consider
a luminosity averaged velocity

=
+

v
v vL L

L
,j

A j A j B j B j

j
lum,

, , , ,

where = +L L Lj A j B j, , is the binary total bolometric
luminosity, so to have a dispersion, slum, defined as

å ås =
+

+
= =N N

v v
1

. 4
s b i

N

i
j

N

jlum
1

2

1
lum,
2

s b⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

4. Method 4: to have another term of comparison with
observations, we also derived the velocity dispersion over
the set of single stars only, thus excluding binary systems.
The velocity dispersion, referred to as σsing, is so

ås =
=N

v
1

. 5
s i

N

ising
1

2
s

( )

Method 1 is the simplest possible estimate of the velocity
dispersion, but it provides a value of the kinetic energy content
that exceeds the actual (3 degrees of freedom per particle),
contrasting the global potential, because, in a quantity
dependent on the binary fraction, it accounts also for the
binary inner degrees of freedom, which should not be
considered in a virial mass determination. Actually, cluster
observations suffer from the following issues: (i) for many
reasons, we are able to identify only a fraction of cluster stars,
usually the most luminous stars; (ii) binaries are difficult to
detect and to distinguish with respect to single stars. This is

Table 1
Summary of the Initial Conditions Adopted in Our Models

Model fb0 (%) Q0

A 5 1
B 15 1
C 30 1

D 5 0.5
E 15 0.5
F 30 0.5

Note. The columns from left to right represent (1) the label of the model, (2)
the percentage fraction of primordial binaries ( fb0), and (3) the initial virial
ratio (Q0) of the clusters.
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particularly true when dealing with binaries composed of two
stars of significantly different luminosity. In this case it is really
hard to derive the individual velocity components of the two
binary stars with high precision and to pick the center of mass
velocity. Thus the kinematic study requires a lot of radial
velocity measurement data, spanning a wide range of time.
Consequently, Method 3 is the closest to what happens when
dealing with observations.

As said in Section 2.1, the evolution of our open-cluster
models is followed up to ∼1.5 Gyr, the time at which we
estimate the velocity dispersion according to the methods
described above. In order to improve statistical significance we
make averages over a time range ±50Myr around 1.5 Gyr.

To give a reliable comparison with observations, we extract
three different samples of stars from each model cluster based on
their luminosity. We consider the (log Teff, log L) HR diagram as
shown in Figure 1 and select three luminosity biased samples of
stars according to the following thresholds (named according to
the luminosity cut): (1) -L Llog 2( ) , hereafter addressed as
sample2; (2) -L Llog 1( ) , hereafter addressed as sample1;
and (3) L Llog 0( ) , hereafter addressed as sample0.

Thus, for each model we estimate the velocity dispersion for
each selected sample of luminosity. The error of the velocity
dispersion is evaluated according to the standard deviation
measures.

3. Results and Discussion

3.1. Cluster Dynamical Evolution

Many physical processes influence cluster evolution, among
which the most important are stellar evolution, the Galactic
tidal field, and the fraction of binary and multiple stars. The
abundant mass loss from individual stars during their early
evolution is of greatest importance and, carrying away much of
the cluster binding energy, it may result in the disruption of the
entire cluster (Portegies Zwart et al. 2001). If the cluster
survives this early phase, stellar evolutionary timescales

become longer than the timescales for dynamical evolution,
hence two-body relaxation and tidal effects become dominant.
Moreover, the presence of a population of primordial binaries
is crucial to both stellar and dynamical evolution of a cluster
(Hut et al. 1992). Actually, the mass transfer between binary
components allows new stellar evolutionary states to arise and,
in addition, the presence of binaries may enhance the rate and
type of stellar collisions, making possible the temporary
capture of single stars and other binaries in three-body
encounters (Heggie 1975; Portegies Zwart & Yungelson 1998).
In addition to the mass loss due to stellar wind, clusters also
lose mass in the form of escaping stars. The fraction of escapers
is enhanced if clusters are considered embedded in the external
tidal field of the host galaxy (the escaper rate is estimated to be
of the order of about 10% per relaxation time; Spitzer 1987).
The external tidal field induces truncation of the cluster sizes
and lowers the escape speed, significantly enhancing the mass-
loss rate (Vesperini 2010). This makes the cluster dissolution
time significantly shorter than in the isolated case. We stress
here that in our models the clusters are all isolated systems.
Although this assumption is surely questionable for real open
clusters, which are embedded in an external potential and
subjected to galactic differential rotation, it constitutes a needed
initial step in this type of investigation. Isolated systems
undergo mass loss through escapers as due to the combined
effects of close and distant encounters (Heggie & Hut 2003).
A summary of the configuration of the clusters is given in

Table 2, where we report the clusters’ properties after 1.5 Gyr
from the beginning of the simulations. The ±50Myr indicates
that the results are averaged over a time of 100Myr around
1.5 Gyr.
We notice that in models corresponding to an initial virial

equilibrium (A, B, and C) the number of retained stars (and
thus the total bound mass á ñMcl ) is larger (∼70%) with respect
to models on a initial subvirial state (D, E, and F) after 1.5 Gyr.
Additionally, initially virialized models show also a somewhat
larger fraction of retained binaries: 5%, 17%, and 35%, which
corresponds to ∼41, ∼123, and ∼250 binaries for models A, B,
and C, respectively. In subvirial models, the effect of
encounters is enhanced and leads to destruction of a large
number of binaries, which are, after 1.5 Gyr, respectively, ∼40,
∼117, and ∼226 for model D, E, and F. The opposite trend in
the fraction column of Table 2 is due to the fact that in the
subvirial models the enhanced ejection of single stars covers
the enhanced binary disruption.

Figure 1. Example of the HR diagram for a simulation of model B at 1.5 Gyr.
The three lines refer to the different luminosity cuts: dashed line for sample2,
dotted–dashed line for sample1, and dotted line for sample0, respectively. The
spread in the main sequence track is due to the binaries.

Table 2
Some Parameters of the Model Clusters at t=1.5 Gyr

Model á ñN á ñMcl (Me) á ñfb (%)

A 730 290.20 5.6
B 723 279.40 17.1
C 706 275.60 35.1

D 637 251.87 6.3
E 614 240.98 18.9
F 601 240.19 37.9

Note. From left to right the various columns give (1) the model identification
label (see Table 1); (2) the averaged number of bound stars (á ñN ); (3) the mean
cluster mass (á ñM ;cl and (4) the mean percentage of binaries bound to the
cluster (á ñ = á ñf N Nb b ). The reported values are averaged over all the
simulations performed in each set.
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A similar result is discussed in Sana et al. (2013). Note that
initially we set Nb0=50 for models A and D, Nb0=150 for
models B and E, and Nb0=300 for models C and F.

Actually, primordial binaries may be disrupted or may
exchange components with other stars, and, in addition,
because of the gravitational interactions within the stellar
systems, new binaries may form (Hut et al. 1992). However, in
open-cluster-like systems strong gravitational encounters are
rare and the disruption of binary systems is generally less
pronounced (apart from wide binaries, which are likely to
become unbound) with respect to globular clusters (Terlevich
1987). Moreover, binaries are generally heavier than single
stars and tend to segregate toward the central region of the
hosting star cluster, where the escape velocity is higher and, so,
the probability to escape from the clusters is lower.

In Figure 2 we show the time evolution of the cluster mass
(Mcl) and of the half-mass radius (rh) for two simulations of
models B and E. We notice, in both cases, a quick mass loss
from the systems (few hundreds of megayears) followed by a
secular trend. Model E (initially subvirial) loses more mass
than model B. Both systems globally (right panel) expand, but
after ∼200Myr, we notice that the half-mass radius of the
initially subvirial model shows a larger expansion. This is a
consequence of the initial violent collapse of model E whose
following relaxation determines its further, secular, increased
expansion and mass loss with respect to the virial case (model
B; see also Terlevich 1987; Binney & Tremaine 2008).

3.2. Cluster Velocity Dispersion

As discussed in Section 2.2 (see Figure 1) we have extracted
three samples of cluster stars from each model basing on
different luminosity cutoff. We estimate the velocity dispersion
for each sample by means of the four methods described in
Section 2.2. Figure 3 shows the averaged cluster velocity
dispersion at 1.5 Gyr as a function of the binary fraction for
sample2, sample1, and sample0. The values of the velocity
dispersion (averaged over a time range of about 100 Myr) are
means over the whole set of the 10 N-body simulations
performed for each model. A summary of the results is given in
Tables 3–5 for sample2, sample1, and sample0, respectively. In
Table 6, we summarize the properties of the clusters (number of

stars, mass, and percentage of binaries) averaged for each
model at 1.5 Gyr for the three samples.
Since binaries are usually more luminous (and also more

massive, so less likely to escape) than single stars their
contribution to the sample results larger than the contribution of
individual stars. Such an effect is thus reflected in the
percentage of binary at that time.
Considering sample2, from Figure 3 (first column, top panel)

and Table 3, we note the expected result that the velocity
dispersion estimated with method 1 (σtot) is significantly larger,
being in the range between 1.215 km s−1 s  4.715tot km s−1,
with respect to the velocity dispersion derived with the other
methods. Actually, in this case, the binary orbital motion inflates
the estimate of the velocity dispersion with respect to the
global orbital motion. On the other hand, when evaluating the
velocity dispersion with method 3, thus weighing the binary
contribution with the luminosity of the components, the result
ranges between 0.445�σlum (km s−1)�1.405 . Both σtot and
slum increase as the fraction of binaries in the sample increases.

On the contrary, the velocity dispersion derived with method
2 (σcm) is independent of the binary content in the sample as
shown in Figure 3. In fact, it does not show any trend and
correlation with the fraction of binaries in the sample. The
velocity dispersion obtained with such a method is much
smaller, ranging between 0.2 km s−1 s  0.3cm km s−1, than
when considering all stars individually.
We also estimated the velocity dispersion excluding binary

stars (method 4): the velocity dispersion estimated in this way,
σsing, is very similar to σcm for all the samples.
Similar results are found for sample1 (Figure 3, second

column and Table 4) and for sample0 (Figure 3, third column
and Table 5). As the luminosity threshold increases (from
sample2 to sample0) the velocity dispersion estimated with σtot
and σlum increases too. This outcome is coherent with the fact
that such methods are binary-dependent (the more luminous the
sample, the larger the fraction of binaries).
If we compare the models studied, see top and bottom rows

of Figure 3, we notice that the “virial” models A, B, and C
show generally smaller values of the velocity dispersion with
respect to subvirial models D, E, and F. Such an outcome is
common to all the three samples and it is evident for stot and
σlum. This effect is a combined consequence of the different

Figure 2. Evolution of the mass (Mcl, left panel) and of the half-mass radius (rh, right panel) for two of the simulations in the sets of models B (initial virial
equilibrium) and E (subvirial).
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fraction of binary stars between models on an initial virial and
subvirial equilibrium as described in Table 6. On the other
hand, the velocity dispersion scm and that obtained from single
stars, σsing, match each other very well, over the three samples.

3.3. Time Evolution of the Velocity Dispersion

In Figure 4 we show the evolution of the velocity dispersion
averaged over all the simulations of each of the six models

studied (A, B, and C: top panels, left to right; C, D, and E:
bottom panels, left to right) for sample2. We indicate with
different line-style the velocity dispersion estimated with the
four methods explained in Section 2.2.
As expected, σtot is at any time larger than the velocity

dispersion estimated with the other methods.
For the sake of clarity Figure 5 displays a comparison among

σsing, σlum, and σcm for models B (left panel) and E (right panel)
that shows the overlap between σcm and σsing. This outcome is

Figure 3. Velocity dispersions estimated according to the four methods described in Section 2 vs. the percentage of binaries at 1.5 Gyr ±50 Myr (see Table 6) for
models A, B, and C (top panels), and D, E, and F (bottom panels) for sample2, sample1, and sample0, respectively, from left to right.

Table 3
The Velocity Dispersions (in Kilometers Per Second) Obtained with Each Method Described in Section 2.2, for Sample2

Sample2

Model σtot σcm σlum σsing

A 1.215±0.109 0.302±0.063 0.475±0.075 0.305±0.069

B 2.255±0.106 0.260±0.032 0.700±0.052 0.265±0.041

C 3.530±0.341 0.215±0.063 1.040±0.096 0.235±0.141

D 1.305±0.117 0.210±0.036 0.445±0.073 0.210±0.039

E 2.845±0.266 0.265±0.069 0.845±0.101 0.295±0.093

F 4.715±0.523 0.210±0.066 1.405±0.142 0.205±0.034

Note. The columns indicate, from left to right (1) the model ID, (2) the velocity dispersion obtained with method 1 (σtot), (3) the velocity dispersion obtained with
method 2 (σcm), (4) the velocity dispersion obtained with method 3 (σlum), (5) the velocity dispersion obtained with method 4 (σsing). The error of the velocity
dispersion is evaluated according to its standard deviation measures.
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typical of any model as anticipated by the results of
Section 3.2. Cluster models on an initial virial equilibrium
(A, B, and C) show lower values (a factor of two) of σ with
respect to initially subvirial models (D, E, and F).

We notice a general decreasing of the velocity dispersion
with time, independently on the method, that is common to all
the models studied. The velocity dispersion decreases as a
consequence of the evolution of the clusters that, as discussed
in Section 3.1, undergo mass loss due to stellar evolution and
dynamics in the form of escaping stars.

3.4. Dynamical Mass Estimates

The simplest way to estimate the mass of a star cluster is by
mean of the assumption of virial equilibrium, Q=1. In this
case the dynamical (or virial) mass Md of a star cluster can be
estimated with the following relation (Spitzer 1987):

h s
=M

R

G
, 6d

1D
2

eff ( )

where σ1D is the (1D, i.e., along the line of sight) velocity
dispersion, G is the gravitational constant, Reff is the effective

Table 4
Same as Table 3 but for Sample1

Sample1

Model σtot σcm σlum σsing

A 1.390±0.227 0.230±0.013 0.480±0.158 0.230±0.016

B 3.015±0.424 0.240±0.034 1.000±0.124 0.230±0.049

C 4.735±0.585 0.205±0.020 1.480±0.170 0.208±0.019

D 1.370±0.303 0.210±0.012 0.535±0.185 0.210±0.016

E 3.610±0.741 0.210±0.040 1.180±0.173 0.205±0.042

F 6.235±1.003 0.215±0.145 1.955±0.260 0.190±0.024

Table 5
Same as Table 3 but for Sample0

Sample0

Model σtot σcm σlum σsing

A 1.460±0.561 0.235±0.021 0.465±0.275 0.230±0.025

B 2.888±0.558 0.235±0.039 1.095±0.277 0.210±0.047

C 5.505±1.082 0.210±0.023 1.515±0.300 0.195±0.027

D 1.455±0.724 0.215±0.015 0.555±0.331 0.215±0.022

E 3.370±1.427 0.215±0.048 1.005±0.513 0.210±0.052

F 7.325±1.561 0.225±0.079 2.065±0.502 0.160±0.031

Table 6
Parameters Characterizing the Cluster Stellar Population for the Three Samples Studied, at t=1.5 Gyr

Sample2 Sample1 Sample0

Model á ñN á ñMcl (Me) á ñf %b ( ) á ñN á ñMcl (Me) á ñf %b ( ) á ñN á ñMcl (Me) á ñf %b ( )

A 392 277 8.3 136 156 8.8 50 81 12.0
B 441 266 22.1 138 137 25.3 54 73 22.3
C 507 278 40.1 168 147 41.5 68 74 41.0

D 352 251 9.1 109 134 9.2 47 75 9.0
E 377 251 25.3 124 135 26.6 50 66 24.1
F 444 275 42.1 155 141 42.2 67 81 42.1

Note. The columns represent (from left to right): (1) the model ID, (2) the total number of stars (N), (3) the mass of the cluster (Mcl), and (4) the percentage of binary
stars ( fb). The reported values are averaged over all the simulations performed for each model.
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Figure 4. Time evolution of the various velocity dispersions for each model of sample2. The different lines represent the different method used to estimate σ: σtot solid
line, σlum dotted line and σcm dotted–dashed line. The shaded region on each line indicates the error which is estimate as the standard deviation of the measures of σ.
For display clarity, the results of σsing are not plotted here (see Figure 5).

Figure 5. Enlargement of Figure 4 for models B and E showing the evolution of σsing (black line), σcm (dotted–dashed line), and σlum (dotted line). The behaviors of
σcm and σsing overlap each other in both the models.
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radius of the cluster, usually assumed as the half light radius of
the systems (Gieles et al. 2010), and η is a dimensionless factor
that depends on the cluster density profile (in the ideal case of a
self-gravitating homogeneous sphere of radius Reff in energy
equipartition, η=5).

It is relevant to note that the assumption of virial equilibrium
is questionable for open-star clusters in our Galaxy because of
the tidal galactic field, which can be relevant to the sizes of
these star clusters (through differential rotational velocity).

Actually, what likely affects the dynamical mass estimate is
the presence of binary stars in the stellar system, because they
would naturally induce a bias of σ due to the fact that their pair
orbits may increase the value of σ significantly. Once inserted
in Equation (6), this leads to an overestimate even if the
assumption of global virial equilibrium is valid.

Using our simulations of isolated open clusters containing an
evolving binary population we can make a straightforward
comparison between the different dynamical mass estimates
derived by each of the methods described before. The
comparison is done by measuring the various ratios between
the σ2 derived with each method and the scm

2 which, in its turn,
would be the one giving the correct evaluation of mass.

The results of this analysis are summarized in Table 7 for the
three luminosity-limited samples.

The overestimate of the dynamical mass produced by method 1
is large in all our models and samples. We find s<16.2 tot

2

s < 504.1cm
2 for sample2, s s< <36.5 841tot

2
cm
2 for sample1,

and s s< <38.6 1060.8tot
2

cm
2 for sample0. As expected, the

overestimate increases with the fraction of binaries. Moreover,
the bias is greater for the subvirial models D, E, and F. This
difference reflects their larger fraction of binaries as estimated at
1.5 Gyr (see Table 6). Since models on an initial subvirial state
show a high percentage of binaries, their velocity dispersion stot

is larger yielding to a significant overestimate of Md with respect
to models with a lower fraction of binaries.

A similar outcome is found when considering s lum
2 .

The overestimate of the mass reflects the corresponding velocity
dispersion variation, s s< <2.5 44.7lum

2
cm
2 for sample2,

s s< <4.4 82.7lum
2

cm
2 for sample1, and s s< <3.9 lum

2
cm
2

84.2 for sample0. As already mentioned, method 3 is the method
that better mimics what observations give for measurements of
the velocity dispersion of a star cluster. Thus, the results reported
in column 2 of each box of Table 7 provide a reliable estimate of
the correction to apply to observations to account for the binary
population of the stellar system.
On the other side when we estimate the ratio s ssing

2
cm
2 we

obtain values very close to 1. This outcome reflects what we
derived in Section 3.2.
In Table 8 we report, for each sample, the parameters of log-

linear fits of the results of Table 7:

s s = +a f blog log , 7i i b icm
2( ) ( )

where σi for i=1, 2, and 3 corresponds, respectively, to σtot,
σlum, and σsing.
Now, recalling Equation (6), we can see that the value of the

dynamical mass as estimated by observations is actually

s
s

=
M

M
log log , 8d

d

i,obs

cm

2⎛
⎝⎜

⎞
⎠⎟ ( )

where s slog i cm
2( ) come from Equation (7). The formula

above is a good correction formula to use to have a proper
estimate of the virial mass from observed values of velocity
dispersion biased by the presence of a binary population.
Given the values in Table 7, taking as the most

representative sample that with the deepest luminosity
(sample2) and calling the most likely σ determination σlum,
we determine that the logarithmic ratio between the observa-
tional and correct dynamical mass estimate varies in the range

 M M0.4 1.4d d,obs for  f0.08 0.40b in the virial
models (A, B, C) and in the range  M M0.7 1.7d d,obs for

Table 7
Ratios of Various Determinations of s2 with Respect to scm

2 , which Would Be the Correct One to Provide the Cluster Dynamical Mass, in Sample2, Sample1, and
Sample0

Sample2 Sample1 Sample0

Model s stot
2

cm
2 s slum

2
cm
2 s ssing

2
cm
2 s stot

2
cm
2 s slum

2
cm
2 s ssing

2
cm
2 s stot

2
cm
2 s slum

2
cm
2 s ssing

2
cm
2

A 16.2 2.5 1.020 36.5 4.4 1.00 38.6 3.9 0.9
B 75.2 7.3 1.039 157.8 17.4 0.918 151.1 21.7 0.8
C 269.6 23.4 1.195 533.5 52.1 1.029 687.2 52.1 0.8
D 38.6 4.5 1.000 42.5 6.5 1.000 45.7 6.6 1.0
E 115.2 10.2 1.239 295.4 31.6 0.953 245.3 21.8 0.9
F 504.1 44.7 0.953 841.0 82.7 0.781 1060.8 84.2 0.5

Table 8
Values of the Parameters in the Log-Linear Fitting Formula Equation (7) of the Results of Table 7 for Each Sample and Each Model

Sample2 Sample1 Sample0

Model A, B, C Model D, E, F Model A, B, C Model D, E, F Model A, B, C Model D, E, F

a b a b a b a b a b a b

s stot
2

cm
2 1.71 −0.95 1.52 0.18 1.8 −0.53 1.8 −0.3 2.34 −2.18 2.17 −1.22

s slum
2

cm
2 1.51 −2.51 1.53 −2.18 2 −3.5 1.9 −2.9 1.68 −2.29 1.83 −2.48

s ssing
2

cm
2 0.03 −0.06 −0.02 0.07 0.05 −0.17 0.01 −0.04 −0.03 −0.04 −0.38 0.9
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 f0.09 0.42b in the subvirial models (D, E, F). This
indicates an overestimate from a factor of 2.5 to a factor of 45,
which is absolutely nonnegligible.

4. Summary and Conclusions

In this work we have presented a large suite of numerical
simulations performed with the high precision, direct summa-
tion, NBODY7 code with the aim to investigate the effect of the
presence of binary stars in the determination of the dynamical
mass of stellar systems.

In particular, we focused our attention on models of Galactic
open clusters, since these systems harbor abundant populations
of binary stars, and are made of a relatively small number of
stars, which makes numerical simulations affordable in terms
of computational effort and, hence, allows an easier exploration
of the parameter space.

In this study, we considered clusters containing, initially,
1000 stars, spanning a wide range of initial conditions,
including different primordial binary fractions (5%, 15%, and
30%) and initial virial ratios ( =Q K W20 0 0∣ ∣) Q0=0.5 and
Q0=1. We followed the evolution of each model up to
1.5 Gyr. Our simulations neglected the effect of the tidal field
of the Milky Way, which we plan to include in the future.

The time evolution of various models’ mass and half-mass
radius were as expected: the mass decreases in all models,
while the half-mass radius increases because of the combined
effects of stellar evolution and two/three-body encounters that
produce escapers. As expected, in subvirial (Q0=0.5) models
the mass loss is more significant than in initially virialized
(Q0=1) systems.

In addition, for each model we looked at the internal velocity
dispersion. In detail, we normalized each estimate of the
velocity dispersion (σsing, σtot, and σlum) to σcm, this latter being
the one that best represents the actual kinetic content of the
cluster, so it would be the proper one to evaluate a virial mass.
The various estimates of the velocity dispersion we used have
the aim to reproduce what observers obtain as estimates of the
velocity dispersion of a star cluster.

Independently of the adopted initial model and of the
specific velocity dispersion estimate considered, a clear trend
emerges of larger velocity dispersion at larger binary fractions.
This, in turn, produces an overestimate of the cluster dynamical
mass when computed using blindly Equation (6). The
overestimate depends on the way the velocity dispersion is
derived. For reasonable values of the actual binary percentage
(8%–42%) it can be up to a factor of 45. This implies that
neglecting in part or completely the binary population in a
cluster has a profound impact in the total mass estimate.

To take the binary effect into account, we provide in
Section 3.4 fitting formulae which can be used to correct the
cluster mass evaluation whenever some estimate of the binary
fraction is available.

This has an impact on Galactic open clusters that is limited
by the increasing precision of observational data which,
nowadays, makes it possible to infer the binary fraction and
the mass with enough precision from photometry only
(Seleznev et al. 2017; Borodina et al. 2019). However, when
considering other stellar systems, like dwarf galaxies in the
Local Group, it is clear that a quantitative insight of the
overestimate of the velocity dispersion caused by the binary
population together with the assumption of virialization could
be extremely helpful to determine the quantity of dark matter

present. We are aware that the application of the present results
to dwarf spheroidal galaxies can be done just in a tentative way,
because the primordial binary fraction and their evolution due
to the internal dynamics are, likely, significantly different from
those in open clusters.
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