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Abstract: Accurate detection and tracking of moving targets in underwater environments pose
significant challenges, because noise in acoustic measurements (e.g., SONAR) makes the signal highly
stochastic. In continuous marine monitoring a further challenge is related to the computational
complexity of the signal processing pipeline—due to energy constraints, in off-shore monitoring
platforms algorithms should operate in real time with limited power consumption. In this
paper, we present an innovative method that allows to accurately detect and track underwater
moving targets from the reflections of an active acoustic emitter. Our system is based on a
computationally- and energy-efficient pre-processing stage carried out using a deep convolutional
denoising autoencoder (CDA), whose output is then fed to a probabilistic tracking method based on
the Viterbi algorithm. The CDA is trained on a large database of more than 20,000 reflection patterns
collected during 50 designated sea experiments. System performance is then evaluated on a controlled
dataset, for which ground truth information is known, as well as on recordings collected during
different sea experiments. Results show that, compared to the benchmark, our method achieves a
favorable trade-off between detection and false alarm rate, as well as improved tracking accuracy.

Keywords: underwater signal detection; deep learning; Viterbi algorithm; marine monitoring;
acoustic detection; SONAR; track before detect

1. Introduction

Underwater detection and localization of moving targets is a key enabling technology for
both ecological and security applications. Marine ecology research and well as fishery legislation
decisions rely heavily on abundance indications—in this context, the ability to remotely identify
marine mammals, pelagic species, or other animals like sea turtles is a game changer in environmental
research and management, where abundance is mostly derived from biased, fishery-dependent data [1].
Since acoustic waves propagate well underwater and are known by standards to be safe for marine
animals [2], harnessing active SONAR technology that detects targets by acoustic reflections shows
great potential to obtain reliable, fishery-independent biomass aggregation during ecological surveys.
For example, fish biomass and size spectra can be quantified using directional acoustic methods (echo
sounders), which may reflect also perturbation of the entire ecosystem [3]. Active SONAR technology
is also already widespread for military applications such as detection of submerged vessels and scuba
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divers [4]. However, due to the low reflection signature of such targets, the signal-to-clutter ratio
(SCR) is usually very small, and progress in the detection of submerged mobile targets through active
acoustics is thus still a major challenge.

In this paper, we describe a general detection and tracking framework based on a single
omni-directional acoustic transceiver, which transmits and receives over a wideband frequency band.
This allows flexibility in deployment as well as energy efficiency, such that long-term detection
efforts can by made even from small buoys. Analyzing the reflections obtained from the single
omni-directional receiver, the main challenge considered here is to detect the target’s-based reflection
within the clutter noise. The latter includes stationary reflections (e.g., from rocks or chains) as well as
reflections from waves or volume scatters. An example of a reflection response from a scuba diver is
shown in Figure 1: note that the diver’s reflection is almost invisible within the clutter.
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Figure 1. A single reflection pattern from a scuba diver with a low reflection closed-circuit re-breather.

To detect targets in high clutter, the track-before-detect (TBD) approach has been widely
adopted [5]. This approach aims to increase the clutter-to-noise ratio by performing detection over
a sequence of observations. The method applies tracking by maximum-likelihood probabilistic
data association (ML-PDA) [6], filtering [7], dynamic programming tracking by Markov chain
representation [8] and probabilistic multi-hypothesis tracking [9]. Yet, tracking assumes an underline
dynamics for the tracked target [10], which may be hard to model for the case of marine animals whose
motion tends to be of rapid orientation changes. Considering this, we have recently introduced a
probabilistic approach for the case of tracking a single target [11], which allows to detect the target’s
reflections within the clutter by using the Viterbi algorithm to identify structured patterns within a
time-distance (TD) matrix formed by concatenating matched filter’s outputs sequentially.

However, the main limitation of TBD approaches is the time consuming analysis of sometimes tens
of thousands of samples for each reverberation response. Moreover, besides issues of computational
complexity the above methods are mostly applied for the detection of a single target, while general
solutions should also support efficient detection of multiple targets (see References [12,13] for recent
approaches tackling this issue). A promising emerging technology to cope with these limitations is
represented by deep learning [14], which has recently achieved state-of-the-art performance in a variety
of difficult pattern recognition tasks, ranging from image classification [15] to speech recognition [16,17],
without requiring domain-specific expert knowledge about the signal characteristics.

In this work we describe a novel method, referred to as Convolutional Denoising
Autoencoder–Track Before Detect (CDA-TBD), that combines deep learning with dynamic
programming—the former is used as an efficient denoising filter, which removes clutter and highlight
target-based reflections in real-time from the time-distance (TD) matrix, while the latter further
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identifies unique targets and precisely tracks their trajectories. More specifically, we use a convolutional
denoising autoencoder (CDA) [18] to highlight potential lines within the TD. Differently from clutter
(whose structure is random), such lines likely represent reflections from moving targets. We then
apply the forward-backward algorithm, whose states are target’s ID and observations are the values
provided by the denoised TD matrix. The latter are considered as emission probabilities, while the
state transitions are set by limitations over the motion of the tracked target.

A critical aspect that should be considered for improving the performance of deep learning
models is the careful definition of a training data set, which should contain a representative sample of
the statistical distribution of the target signals that will be observed during system testing. Since the
underwater acoustic reverberation channel is difficult to model analytically, both in terms of the channel
impulse response and in terms of the target and clutter reflection patterns, in our work we rely on a large
set of real measurements collected from a multitude of more than 50 sea experiments. Each experiment
includes both verified clutter and target (fish) reflections, which are systematically combined to create
a large-scale training set. To evaluate the generalization capability of the proposed system, we then
test it on separate sea experiments carried out with different moving targets (i.e., scuba divers).

To the best of our knowledge, our CDA-TBD approach constitutes the first attempt to combine
deep learning with dynamic programming for identifying targets within a reflected acoustic signal.
Our contribution is thus threefold:

1. Develop a convolutional denosing autoencoder architecture for the detection of curved lines
within a reflection (TD) image.

2. Implement a computationally efficient method that combines deep learning pre-processing with
a probabilistic algorithm applied over a track-before-detect approach.

3. Create a statistically large-enough database containing clutter and reflections of acoustic patterns,
which we freely share with the community for reproducibility and further research.

Our results show that even in low Signal to Clutter Ratios (SCR), where the reflection pattern
from the target is weak, our method yields a favorable trade-off between precision and recall, which
exceeds the performance of fully probabilistic approaches (i.e., the Viterbi algorithm) at a much lower
computational complexity, and also allows for a more accurate fine-grained tracking of the target path.
Further, the results show that our approach easily scales to scenarios featuring multiple targets.

The paper is organized as follows—in Section 2, we discuss the state of the art in probabilistic
tracking and ML-based detection. Our system’s model and objectives are outlined in Section 3,
along with a description of the sea experiments that allowed to create the large-scale dataset of real
measurements used for training and testing our system. Our CDA-TBD methodology is explained
in Section 4, and system performance is analyzed in Section 5. Conclusions are drawn in Section 6.
Preliminary results, which did not include the TBD method and only explored CDA performance on
simulated data, have been recently presented as a conference paper [19].

2. Related Work

Detection of targets using active acoustic transmission is nowadays performed by continuous
active SONAR (CAS) or by transmission of separated pulses [8]. The former involves multiple
narrowband transmissions across the band to detect Doppler components that indicate motion [20].
However, this may induce significant energy consumption and may also harm the bio fauna in the
surveyed environment. Further, it may not fit the detection of slowly moving targets. We thus focus
on the latter approach. To identify a target within heavy clutter, detection based on a single reflection
pattern may fail, and the available literature turns to detection according to a sequence of reverberation
patterns. Based on the transmission of consecutive wideband signals of high processing gain such
as chirps, single reverberation patterns are analyzed and concatenated to form a TD matrix [21].
This analysis can be performed by a matched filter (MF) [22], a channel equalization such as orthogonal
matching pursuit [23], or detectors based on a local estimation of the noise distribution [24]. Once the
TD matrix is formed, the detection is performed through tracking.
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Tracking over the TD matrix is possible through filtering, for example by exploiting variants of
the Kalman filter [10] or using blind tracking to handle non-Gaussian clutter [21]. Alternatively, clutter
could be classified using a mixture of distributions [25], such that detection is matched to local clutter
patterns within the reflected pattern. A more common approach uses tracking by a particle filter that
learns the clutter’s and target’s probabilistic model though statistically sampling the discrete grid of the
state-space. This can also be applied for multi-target scenario of active SONAR [7]. Yet, such filtering
directs the solution by a most probable grid search and may thus fail to detect targets in high clutter.

For cases of low SCR, the TBD approach has proved useful (a comparison between TBD
approaches can be found in References [5,26]). Instead of detection per-transmission or by relying on a
motion model, tracking is performed probabilistically. A common TBD approach is maximum-likelihood
probabilistic data association (ML-PDA), which applies a likelihood ratio test to parameters observed from
the TD matrix [27], and shows good tracking in low SCRs with applications of SONAR detection [6,28].
Alternatively, TBD can use Bayesian tracking, where dynamic programming is applied on a hidden
Markov model, as shown in Reference [8] and in our recent work [11]. Another approach is probabilistic
multi-hypothesis tracking (PMHT), which tracks possible targets by explicitly separating target and
clutter components [29]. The PMHT approach can be extended to combine features such as the intensity
distribution of observations [5,30] or the spatial information obtained by arrays of acoustic receivers [31].
This method is also flexible enough to handle fluctuations of the clutter and target distribution within
the TD matrix [32] and Reference [33] even offered an indicative metric to determine the conditions
in which tracking is feasible. Yet, while TBD approaches often achieve good results, their main
disadvantages are the sensitivity to different target’s dynamic types (especially those unknown a-priori)
and the high algorithmic complexity, which prevents their application in realistic scenarios (where the
TD matrix might contain hundreds of thousands of elements).

These limitations call for the adoption of innovative computational methods. A promising
approach is offered by machine learning, which allows to effectively recognize recurring patterns in
high-dimensional data by extracting high-order statistical features from a set of training examples.
In particular, deep learning methods are particularly effective in pattern recognition tasks where
domain knowledge is limited, because they can automatically learn intricate statistical structure from
the data by exploiting multiple levels of representation [34]. Furthermore, once trained deep networks
are computationally very efficient, since signal processing can be carried out in parallel hardware
using basic algebraic operations [35,36].

Deep learning is being widely used in many engineering fields, ranging from compressed
sensing [37] and telecommunications [38,39] to fault diagnosis [40] and video surveillance [41].
Deep learning detection methods achieve impressive performance even when the signal is corrupted
by high levels of noise [42,43], suggesting it can be successfully applied also in underwater monitoring.
Preliminary work exploiting deep learning for the analysis of passive SONAR has been recently
proposed [44,45], highlighting the superiority of deep learning over traditional methods based on Mel
frequency cepstral coefficients and Hilbert-Huang transform [46].

Considering the surveyed literature, we can identify three main gaps. The first is the applicability
of modern deep learning frameworks for the task of efficiently detecting moving targets within a TD
matrix. Specifically, we are interested in exploring the denoising performance of stacked autoencoders
when the input image contains high levels of environmental noise. Second, the current statistical and
probabilistic approaches cannot provide accurate tracking performance in low complexity when the
SCR is low and when the target’s characteristics and dynamics are unknown. Third, the application of
active SONAR target tracking is currently performed using large arrays, whose deployment is complex
and expensive. A much preferred solution would be a single transceiver, preferably of low energy,
that can be deployed from small buoys over long periods of time and provide real time detection
capability. Confronting these challenges, in the following we present our CDA-TBD approach that
combines denoising autoencoders with a TBD solution.
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3. Problem Formulation

3.1. System Model

Our CDA-TBD system comprises a single transceiver emitting a sequence of wideband signals
of short duration. In our experiments, we use 20 chirp signals of duration 10 ms and frequency
range 7 kHz–17 kHz. The signals are spaced by a 0.7 s guard interval to suppress reflections from
previous emissions, which corresponds to detection for distances of roughly 530 m. The transceiver is
omni-directional both in transmission and in reception, such that reflections from all directions are
received. We make two assumptions on the target: (1) an upper bound, w, on the size of the target,
and (2) an upper bound, v, on the speed of the target relative to the receiver. While the first bound can
be set loose since the explored area is large, the second bound should fit well the target’s expected
motion to avoid false detection in low signal-to-clutter (SCR) scenarios.

Without prior knowledge of the target’s reflection pattern, we estimate the reflection pattern by
the matched filter

MF(τ, r(t)) =

∫ Ts
0 s(t)r(t− τ)dt√∫ Ts

0 s2(t)dt
∫ Ts

0 r2(t− τ)dt
0 < τ < Tguard , (1)

where s(t), 0 < t < Ts and r(t), 0 < t < Tguard are the transmitted signal and received reflections of
duration Ts and Tguard, respectively. We use a normalized matched filter to provide an initial detection
threshold of the direct path based on our previous work [47]. This allows the alignment of each
received signal’s reflection, without the need for time-synchronization. The aligned reflections are then
stored in a TD matrix representing the time and distance for each reflection.

Being a representative of the time-varying reflection pattern, the TD matrix includes reflections of
clutter or either clutter or target. Formally, for the ith emission and at distance j, entry (i, j) of the TD
matrix is

TD(i, j) =

{
MF(j, n̄(i)) clutter
MF(j, ȳ(i)) target

, (2)

where n̄(i), ȳ(i) are the sampled vector of the clutter and target reflections, respectively, and the ratio
MF(j, ȳ(i))/MF(j, n̄(i)) is the SCR. As the expression in Equation (2) hints, a moving target will show
as a curved line in the TD matrix, whereas, due to its random nature, clutter will show as random
points. We also note that the TD matrix can represent reflections from static targets such as rocks and
anchors, which being stationary, will show on the TD matrix as nearly straight lines. In this work we
assume these lines are already discarded, for example, by the process described in Reference [11]. Our goal
in this work is thus focused on the identification and tracking of curved lines within the TD matrix.

3.2. Data Description

Our deep-learning-based solution requires the availability of a large database of TD matrices,
annotated with the corresponding ground truth information about the locations of the target reflections
(if any). Producing annotated samples in underwater scenarios is challenging. One option to
circumvent this issue could be to train the deep network with a simulative model, and perform
data augmentation to generate a large set of annotated images (e.g., References [48–50]). However,
we argue that this approach would fail for the considered task mainly because of two factors: (1) The TD
matrix is a representation of a time-varying impulse response of the underwater acoustic reverberation
channel. This channel is hard to model, especially due to the highly non-linear reflection pattern within
the target’s body, but also even for a simple clutter reflection from the non-homogeneous sea surface.
(2) The creation of the TD matrix based on the normalization in Equation (1) is a non-linear operation
that is hard to simulate. For example, in the proximity of a strong reflection the normalization factor
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would decrease the matched filter result, leading to a shadowing effect that highly depends on the
SCR. In light of this, we opted for the creation of a database based on a sea campaign of measurements.

To obtain our database we performed more than 50 sea experiments. Each experiment included a
single transceiver deployed from a buoy or a small vessel. As shown in Figure 2, data was obtained
from two system configurations: a standalone Subnero M25M acoustic modem, which analyzed the
data on the fly emitting signals at frequency range 20 kHz–30 kHz, and a remotely operated EvoLogics
LF acoustic modem (S2C-R) that emitted 10 ms duration chip signals at the range of 7 kHz–17 kHz.
Both transceivers are fully omnidirectional in the horizontal plane and their response is flat up to 45
degrees in the vertical plane. Since the experiments were performed in shallow area of up to 30 m,
this essentially means the emissions and receptions were fully omnidirectional. In the frequency
range used, the source level used for both the Subnero and EvoLogics projectors was 180 dB re 1 µPa
@ 1 m (the transducer voltage response (TVR) levels are not reported). Balancing the pre-amplifier
levels, the nominal receiving sensitivity for both hydrophones was −180 dBV re 1 µPa. In both cases,
recording of raw acoustic measurements was done in full duplex, allowing capturing of the direct path.
Emissions were done at a period of 0.7 s, allowing reception of targets located up to roughly 530 m
(assuming a sound sea velocity of csound = 1514 m/s). As such, this is a mono-static acoustic system.
In each of the 50 experiments, we recorded at least five hours of data. We then analyzed the recordings
offline, in order to identify TD matrices of 20 rows (i.e., 20 reflection patterns) including targets,
and TD matrices including clutter-only. The identification was based on the sophisticated procedure
discussed in Reference [11], which allows accurate tracking of single targets. This information was
sufficient for the aim of offline training the CDA. The experiments were conducted in four different sea
environments: (1) at the Red Sea near the shores of Eilat, Israel, at water depth of 30 m and a seabed
including a complex reef environment; (2) at the Mediterranean Sea across the shores of Haifa, Israel,
at water depth of 15 m with seabed of rocks; (3) at the Mediterranean Sea across the shores of Hedera,
Israel, at water depth of 20–10 m with seabed of sand; and (4) at the Mediterranean Sea 11 km west
of the northern shores of Israel, at water depth of 160 m with seabed of clay. To verify the reliability
of our tagging system, during the experiments we also included targets with verified ground truth
information, such as divers dragging buoys with GPS receivers or sharks and tuna fish released after
capture for tagging purposes. Further, among others, we identified opportunistic targets such as a
dolphin, mackerel, and parrot fish. Our dataset is made freely available through the Open Science
Framework (https://osf.io/h79mt/).

(a) Standalone system. (b) Remotely controlled system.

Figure 2. Pictures of the two configurations of transceiver system from two of the sea experiments.

Overall, our experiments yielded roughly 1000 different target-based TD matrices, and more than
20,000 clutter-based TD matrices. To balance the database and improve the generalization ability of the
CDA, we implemented a data-mixing approach. More specifically, referring to the block diagram in
Figure 3, we augmented our database to create a larger number of 10,000 target-based TD metrics by
slicing buffers of normalized matched filter outputs around identified target’s reflection, and inserting

https://osf.io/h79mt/
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those over clutter-based TD matrices according to a desired SCR value. Using this methodology,
we could also generate different types of reflection lines to reflect various target’s dynamics. This was
performed by a smoothed drunken step of an auto-regression model of the TD matrix column number
where the target is inserted. These locations where then served as the ground truth information for the
training and testing of the CDA. The result is a balanced database of 20,000 clutter- and target-based
TD matrices: an example of such a formed target-based TD matrix is shown in Figure 3.

Figure 3. Illustration of the process of data augmentation to create time-distance (TD) matrices. Targets
identified by the process described in Reference [11].

4. Detection and Tracking Methodology

4.1. Convolutional Denoising Autoencoder (CDA)

The TD matrix is initially filtered using a deep Convolutional Denoising Autoencoder (CDA),
which receives as input the noisy image representing the TD matrix and returns as output a denoised
version of the same image (see Figure 4 for a graphical representation). The denoised matrix is then
given as input to the TBD algorithm for further processing (see next section).

The autoencoder is composed by four convolutional layers containing, respectively, 24, 48, 72
and 96 kernels of size 4× 4, 6× 6, 8× 8 and 12× 16. In order to reduce the dimensionality of the
input, the first, second and third layers are followed by pooling layers, with with pool size 1× 2
and stride 1× 2. Pooling and stride are applied only column-wise because the TD matrix usually
contains few rows but tens of thousands of columns. Convolutional (encoding) layers are followed by
four deconvolutional (decoding) layers of the same size, which used nearest neighbor as upsampling
function. Rectified linear units (ReLUs) are used as activation functions in all layers. A final layer
using logistic units is added as a final step to produce output values ranging between zero and one.
The CDA architecture and hyperparameters were optimized over a separate validation set using a
random search procedure. The CDA was entirely implemented in TensorFlow [51].

To monitor overfitting, the complete data set is split into separate training (60%), validation (20%)
and test (20%) sets. The CDA is trained with error backpropagation, using weighted cross-entropy
as loss function (the positive class weight was set to 100 in order to counterbalance the sparsity of
target detections; extensive simulations showed that the CDA training is robust to variations in this
hyperparameter). Learning occurs over mini-batches of 100 images, and continues until the validation
loss starts to increase (early stopping).
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noisy TD image denoised TD image

Figure 4. Diagram of the Convolutional Denoising Autoencoder (CDA). The noisy TD image is given
as input and processed by a stack of convolutional layers, which detect increasingly more complex
features in the signal that are then used by the decoder to produce a denoised TD matrix.

4.2. Detection through Dynamic Programming

In Reference [11], we offered a track-before-detect approach to follow sequences of observations
using the Viterbi algorithm constrained to upper bounds on the motion of the target. Specifically,
we considered the distance domain of the TD matrix as problem states while the matrix’s rows reflected
observations. Each entry of the matrix served as an emission indication, while transition probabilities
were chosen by an uniform distribution bounded by the maximum states the target can pass between
consecutive observations. While this approach yielded acceptable results also in low SCR, it fits the
tracking of only a single target. Further, its computational complexity is extremely high. In this work,
building on top of the CDA denoised matrix, we modify the above approach to solve both challenges.

4.2.1. Tracking

As illustrated in the block diagram in Figure 5, we start by setting a threshold, Th over the
CDA matrix activation output, ai,j, for each transmission/row i = 0, . . . , T − 1 and each distance
slot/column j = 0, . . . , D− 1. Setting the sigmoid

āi,j =

{
0 ai,j < Th
1/
(
1 + e−ai,j

)
else

, (3)

We transform each matrix entry to a measure of probability. This threshold is determined during
the CDA training phase and can be set loose since it lies at the beginning of the detection chain.

Next, considering our upper bound on the size of the target’s reflecting surface, w, we identify
unique line detections. Specifically, denoting c as the sound speed and Fs as the sampling frequency,
for each row j, we unify non-zero entries āi,j, j = 0, . . . , D − 1 that are spaced less than w/c · Fs

entries away, to a merged entry whose value is the average of the unified entries while zero forcing its
surrounding. The result is a sparse matrix, Ã, of non-zero entries, each reflecting a unique line detection
concentrated in one column. On the next step, utilizing our expectation of the target’s maximum
speed, v, we further compress the smoothed matrix and create a lattice the size of T observations and
K possible targets. These targets are identified by vectors tk, pk, k = 0, . . . , K − 1, whose entries ti,k
and pi,k contains a non-zero value ãi,j from Ã and its location j, respectively, such that pi,k is spaced
no more than v/c · ∆TFs from location pi−1,k, where ∆T is the guard time between each transmission
(in our setting 0.7 s). The result is a merge of the CDA matrix into filtered identified target lines.
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Figure 5. Block diagram for the processing of the CDA matrix before dynamic programming-based tracking.

Lattice tk as much smaller dimension of K× T compared to the original TD matrix. As a result,
we can now apply dynamic programming while still maintaining real-time capability. To that end,
we consider the identified targets k = 0, . . . , K− 1 as the problem states, the values ti,k, i = 0, . . . , T− 1
as observations, and the transition probability between targets k, q is set by the average of pk and pq.
Running a dynamic programming like the Viterbi algorithm over the lattice yields the most probable
path of a single target. This path reflects the target’s line whose probability entries are the highest and
their position in the original TD matrix are the most homogeneous such that the least number of leaks
to other targets is found. Then, more targets can be found by discarding the already found targets from
the lattice and running the dynamic programming again. Finally, to filter detections, assuming the
target should exist throughout most of the observation window T, we only regard targets k whose
tracked path by the dynamic programming’s solution is stable throughout at least ρ · T of the lattice,
where ρ is a user parameter.

4.2.2. Detection

Once the tracking of several targets is achieved, we turn to make a binary detection regarding the
existence of a target. Our detection approach compares the likelihood ratio between the elements of
the chosen path to non-identified paths, that is, clutter noise. To that end, for the chosen path k̂ and a
reference path j, we place a threshold, TL, over the log-likelihood ratio

LLRj = log
(

t1,k̂t2,k̂ . . . · tT,k̂

)
− log

(
ā1,j āj2,j . . . · āT,j

)
, (4)

which compares the likelihood of the chosen path with that of an arbitrary path j across the denoised
matrix. Then, identifying a set j = {j1, j2, . . .} of arbitrary paths, none of which belong to lattice
tk, k = 0, . . . , K, we test

Detect =

{
0 ∃jm ∈ j : LLRj < TL
1 else

. (5)

4.3. Computational Complexity

We consider the emission of T consecutive signals whose reflections are recorded to yield a
D× T matrix. The complexity of a direct track-before-detect run over this matrix using the Viterbi
algorithm is O(TD2) (cf. Reference [11]) which, since D can be on the order of 104 samples, would be
very high. Instead, in the CDA-TBD method we propose the denoised TD matrix produces a a
lattice of K× T entrees, where K is the maximum number of possible targets, which allows to greatly
reduce the computational load compared to a pure TBD method. Regarding the CDA pre-processing,
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the computational cost of a forward pass through a 2D convolution is O(FI MNmnFO), where FI and
FO are the number of input and output channels, M× N is the size of the feature map, and m× n is
the size of the kernel. This bound can be further reduced in the case of deep architectures with square
kernels and increasing number of filters [52], as in our case, leading toO(pFI FO), where p is the largest
kernel size.

Overall, the computational complexity of our CDA-TBD method is thus in the order ofO(pFI FO)+

O(TK2), with p, FI , FO, K < 102.

5. Results

For the case of single target images, the performance of our CDA-TBD method is validated
against two alternative approaches. The first benchmark method, denoted CDA-Max, is derived
by considering the output provided by the CDA alone. For the tracking task, the target position is
estimated by considering the maximum CDA activation at each row: elements should be 1 only in
correspondence to the target positions (i.e., the center of the line in the TD image) and 0 elsewhere.
For the detection task, in CDA-Max we compare the number of logistic activation along the best path
that passes a desired probability Pact to threshold ρ · T. This detection strategy checks that the number
of valid reflections along the identified path is significant. Formally, let k̂ be the chosen path and
ti,k̂, i = 0, . . . , T − 1 its related activation. Then, we set the detection flag

Detect =

{
1 ∃i = {i1, i2, . . .} : tij ,k̂

> Pact, |i| > ρ · T
0 else

, (6)

which yields a per-TD matrix detection hard decision. The second benchmark method, denoted Viterbi,
is the “pure TBD strategy” reported in Reference [11], which was shown to outperform other TBD
approaches surveyed above. This method compares the emission probability accumulated throughout
the chosen path by the Viterbi algorithm to a number of random paths (excluding the chosen path)
along the columns of the TD matrix.

As quality metrics, we consider both detection and tracking performance. The former is measured
in terms of the receiver operating characteristics (ROC) to explore the trade off between detection and
false alarm probability. Tracking error is measured as the average Euclidean distance between predicted
position and ground truth. In the following, we show that our CDA-TBD approach clearly outperforms
both benchmark solutions. However, we should note that CDA-TBD holds the disadvantage of setting
threshold TL by for example, training, whereas, in the CDA-Max approach, both Pact and ρ can be set
by some knowledge about the motion and shape of the expected target. This observation emphasizes
the need for a sufficiently large dataset, such as the one we share.

Results are first qualitatively shown in terms of representative examples of TD matrices and
their denoised version, over which we highlight the target path detected by our CDA-TBD approach.
Samples might contain either a single target or multiple targets, and refer to different sea experiments.
We then present quantitative measures referring to average errors and ROC curves computed over the
entire dataset of more than 20,000 clutter-based TD matrices, separately grouped according to SCR level.

5.1. Representative Results and Sea Trial Demonstration

A representative set of TD matrices, their denoised version, and the final tracking result is shown
in Figure 6 for three different levels of SCR (ground truth target position is reported in the bottom
panels), and for cases of a single target and of multiple targets. The leftmost columns demonstrates
detection in the case of multiple targets: all target positions are accurately tracked over time. Successive
columns show reflections from single targets, where the target’s motion varies between the TD matrices.
We observe that in all cases our CDA-TBD method can accurately track the target, even in the presence
of very noisy input (e.g., SCR of 4 dB), as indicated by the close match between the tracked line and
the ground truth position. Note how the CDA output provides a denoised version of the TD matrix,
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where the most likely target positions are highlighted. We observe how, after the denoising operation,
the position of the target is much better identified than over the original TD matrix.

While the above examples show results for TD matrix created by combining real recordings of
clutter and of target’s reflections, our solution should be readily applied also in realistic scenarios
where the TD matrix includes both reflection types. Such is the case in Figure 7, where we show the
original TD matrix, its denoised version, and the tracking result for two sea experiments including
scuba divers. These particular experiments were performed in the Mediterranean Sea, across the
shores of Northern Israel, at water depth of roughly 90 m. The sea level was “2” with waves exceeding
0.5 m height. The seabed was a combination of rocks and clay, and the sound speed was roughly
steady at 1525± 5 m/s at the top 25 m and decreasing linearly to 1510± 5 m/s near the bottom.
The target were two scuba divers swimming closely. The divers used closed re-breather systems with
neoprene-covered air tanks, which made their target strength particularly low. Observing the original
TD matrix we note that, while the divers’ path is visible, per acoustic emission, the reflection pattern
is very low and compares to the clutter (i.e., low SCR). This motivates the need for pattern-based
detection. The denoised matrices shown in Figure 7 emphasize the divers’ path, making it easier to
track the target. As clearly observed, the chosen track matches the motion of the target divers.
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Figure 6. Tracking examples for several TD matrices featuring multiple and single moving targets,
at different levels of Signal-to-Clutter ratios. The top row shows the input (noisy) images. The middle
row shows the CDA (denoised) images, with the tracked path discovered by our CDA-TBD algorithm
superimposed as a red curve. Bottom panels show the corresponding ground truth position of the targets.

5.2. Statistical Analysis

5.2.1. Detection Performance

Figure 8 shows the ROC performance of all the methods considered, where the different detection
and false alarm rates are obtained by changing the detection threshold for each method. We test
performance for two relatively low SCR of 4 dB and 6 dB. We observe that, without the denoising
step provided by the CDA, performance of the Viterbi algorithm is poor. This is because at low SCR,
while the Viterbi approach may catch the right track, the combined probability of the reference tracks are
similar to that of the chosen path, thus the likelihood ratio is low. Instead, thanks to the denoising step,
in the CDA-TBD case the probability of the reference tracks is low compared to the best path, and the
ratio Equation (4) is high even at low SCR. This insensitivity to the clutter noise is also the reason why
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performance of CDA-TBD is better than CDA-Max. That is, while the latter is making detection decision
based on a single denoised observation, the former combines tracks before making a hard decision.
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Figure 7. Application of the proposed methodology to TD matrices recorded from the movement of
scuba divers.
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Figure 8. Receiver operating characteristics (ROC) for the three compared methods for SCR = 4 dB and
6 dB. Results shows a favourable trade-off between detection and false alarm rates for CDA-TDB.

5.2.2. Tracking Performance

Next, we explore the tracking capability of the three approaches. The tracks are obtained by
separately setting the detection thresholds for the Viterbi, CDA-Max and CDA-TBD using the ROC
curves in Figure 8, according to a desired false alarm rate of 10−4. Results are shown in Figure 9 as a
function of the SCR. We observe that, already at SCR of 6 dB, tracking capability of CDA-Max is low.
This happens because taking the maximum value only considers the instantaneous reflection, whereas
the other methods observe a global pattern in the denoised matrix. Still, considering a single reflection
holds the advantage of independence of the motion of the target. Thus, CDA-Max outperforms the
Viterbi approach at high SCR, for which the denoising step is able to filter out much of the clutter.
However, the best performance is always given by the CDA-TBD approach, which considers a much
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lower number of possible targets and it is thus able to produce very accurate results even at low SCR
levels. In particular, a sub-meter accuracy is still obtained for low SCR of 8 dB.
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Figure 9. Average tracking error for the three detection approaches as a function of the SCR. Results show
resilience of CDA-TBD to high clutter.

6. Conclusions

In this paper, we presented an innovative CDA-TBD approach for the efficient detection of
multiple mobile submerged targets by active acoustics. Our method takes as input a time-distance
(TD) matrix, which concatenates reflections from a train of emitted signals. Motivated by the
curved-like pattern created by the target along the time domain, the TD matrix is then filtered
through a convolutional denoising autoencoder (CDA) in order to highlight potential patterns in
the images. The CDA is trained by an augmented database collected during 50 designated sea
experiments, performed under a variety of sea environments. The denoised image is further processed
by a probabilistic track-before-detect (TBD) approach to choose paths that fits user-defined expectations
about the targets’ maximum size and velocity. This is performed through dynamic programming such
that, rather than exploring single reflections, all reflections are considered, thereby allowing detection
and tracking even at very low signal-to-clutter ratios. Notably, combining dynamic programming with
deep learning allows to cut down computational complexity, which makes the proposed approach
a perfect candidate for low-power marine monitoring devices. Moreover, results over the collected
dataset of sea experiments show a favourable detection-false alarm trade-off and far better tracking
performance over two benchmark schemes. In order to promote further developments, we freely share
our dataset with the community.

As a promising research directions, in future work we will explore how detection performance
might be improved by training the CDA in a completely unsupervised way, for example by implementing
an anomaly detection scheme where a change in the structure of the clutter could be interpreted as the
presence of a potential target. Moreover, we plan to implement a real-time version of the proposed method
for our SYMBIOSIS monitoring platform, possibly extending the operating range into longer distances.
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