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Abstract: Polygonal meshes have a significant role in computer graphics, 

design and manufacturing technology for surface representation and it is 

often required to reduce their complexity to save memory. An efficient 

algorithm for detail retaining mesh simplification is proposed; in particular, 

the method presented is an iterative edge contraction algorithm based on the 

work of Garland and Heckberts. The original algorithm is improved by 

enhancing the quadratic error metrics with a penalizing factor based on 

discrete Gaussian curvature, which is estimated efficiently through the 

Gauss-Bonnet theorem, to account for the presence of fine details during 

the edge decimation process. Experimental results show that this new 

algorithm helps preserve the visually salient features of the model without 

compromising performance. 
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Introduction 

Nowadays, due to ever-improving computer-aided 

modeling in both the film industry and manufacturing, 

it’s easy to find ultra-detailed 3D models with millions 

of faces. Moreover, 3D scanning techniques often 

produce even larger files due to their redundancy in 

collecting points. While in some cases this enormous 

resolution is necessary, in other scenarios, such as 

mobile applications or in additive manufacturing, it may 

be beneficial to have a reduced number of triangles in 

the mesh while maintaining even the finer details. 

One of the most common approaches in polygonal 

mesh decimation is the iterative edge contraction; in 

order to simplify the mesh, this algorithm iteratively 

selects an edge and collapses it into a single vertex; this 

process is repeated until the number of faces of the 

model is reduced down to the desired quantity. Other 

well-known algorithms are vertex decimation, presented 

for the first time by Schroeder et al. (1997), which 

iteratively picks a vertex for removal, removes its 

adjacent faces and re-triangulates the resulting hole, or 

vertex clustering, which joins vertices that are within 

some threshold distance as presented in Rossignac and 

Borrel (1993) and Hua et al. (2015). Edge contraction 

algorithms often use an error function to decide the way 

edges are collapsed, so the choice of this function leads 

to different results. Among the choices of the error 

metric used in the literature, one of the most well known 

and widely used ones is the quadric error metrics, 

proposed by Garland and Heckbert (1997), which is fast 

and reliable, but cannot account for the presence of key 

features. As later shown by Heckbert and Garland 

(1999), this method implicitly relies on the principal 

curvatures of the surface. Michaud et al. (2017) used an 

error metric based solely on the curvature of the surface, 

computed through the use of algebraic spheres. While 

most of those approaches guarantee a small error in 

terms of distance from the original mesh, they often 

cannot preserve the most visually salient features of the 

model. Zhang et al. (2012) presented a way of taking into 

account relevant features by using the Laplacian operator 

as a measure of saliency, penalizing contractions in the 

most feature-rich areas. Moreover, Li et al. (2010) 

proposed a feature-preserving simplification algorithm 

based on an absolute curvature weighted quadric error 

metric, although the choice of using half-edge collapses 

could lead to suboptimal vertex positions (Garland and 

Heckbert, 1997). Another simpler approach can be found 

in Yao et al. (2015) where the quadratic error metrics is 

modified through an additive term based on a custom-

made curvature estimate.  One of the main drawbacks of 

this approach, other than using a suboptimal curvature 

estimation method (Surazhsky et al., 2003), is that the 

additive term becomes quickly negligible as the 

simplification progresses. 

Among other attempts at providing a reliable 

method to detect perceptually salient features of the 
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mesh, Watanabe and Belyaev (2001) proposed a 

curvature-based ridge finding algorithm and Lee et al. 

(2005) proposed a center-surround mechanism to detect 

important features based on curvature variation on 

different scales; in both paper the estimated importance 

is then used as a weighting on the standard quadric 

error metrics. More recently Song et al. (2014) 

proposed a saliency extraction technique by making use 

of spectral analysis. 

In this study, we present a mesh simplification 

algorithm which makes use of the quadric error metric 

for optimal vertex positioning and that accounts for 

discrete curvature in the model, computed through the 

Gauss-Bonnet scheme, to simplify more aggressively 

flat and rounded regions while maintaining a high 

triangle count in the zones where there are details and 

key features (spikes, sharp edges). The method 

proposed for determining the most visually salient 

areas has the goal to be, other than simple to 

implement, extremely fast to execute in comparison to 

the core simplification routine, which could be a 

competitive advantage over more complex methods 

such as the one proposed by Lee et al. (2005). 

The section Algorithm presentation firstly 

summarizes the edge contraction technique as well as the 

quadric error metric utilization. Secondly, a simple mesh 

saliency estimation method is described, as well as its 

integration into the simplification process. Finally 

pseudocode and a complexity analysis outline are given. 

In the section Results and discussion the practical results 

of this method are exposed through a series of examples 

on benchmark models. 

Algorithm Presentation 

The STL Format 

This paper is focused on the STL file format, which 

is one of the simplest and yet more widespread ones to 

represent meshes in 3D modelling and computer 

graphics. The surface of an object is represented, with 

obvious limits in resolution, as a list of triangular facets 

each written in the following form (Szilvśi-Nagy and 

Matyasi, 2003): 
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where, n is the normal of the facet represented as the 

position of its endpoint and vi are the vertices. The STL 

file does not store any topological information about the 

way the triangles form the actual object. There are thus 

no data structures about adjacency relation nor any way 

to understand on-the-go whether a file represents a valid 

mesh or not. A big drawback of this implementation is 

that each vertex is stored one time for every triangle it is 

part of, causing a severe redundancy in the information 

stored in the file. Due to this organization of the file, it is 

necessary to traverse the entire mesh at the beginning of 

the simplification process and store information about 

the topology of the model. The algorithm keeps track of 

the triangles and the edges adjacent to each vertex in 

dedicated data structures. 

Edge Contraction 

An edge contraction, which can be written as (v1, v2) 

 v̂ , is the process of joining v1 and v2 by removing 

them, connecting all their incident edges to a new vertex 

v̂  and then removing all degenerate faces created in the 

process, as shown in Fig. 1. If the mesh is manifold and 

closed, which means that the infinitesimal neighborhood 

of every point is topologically equivalent to a disk, the 

faces removed at each step are two. Note that in the 

original paper of Garland and Heckbert (1997) the 

approach used is slightly different, in fact, they contract 

pairs of vertices even if there is no edge between them. 

While this method is effective in simplifying small 

disjoint models, it can produce non-manifold meshes 

which, especially for additive manufacturing, can lead to 

serious problems during the printing phase; for this 

reason, we decided to enable only edge contractions. The 

quality of the decimation algorithm lies in the solution 

adopted to solve two main problems: How to place the 

new vertex v̂  and in which order to process the edges. 

 

 
 

Fig. 1: The contraction of an edge 

Contract v2 

v1 

v  

Before After 
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Error Minimization 

To solve the problems mentioned above, as presented 
in (Garland and Heckbert, 1997), the error at a vertex v = 
(xv, yv, zv, 1)⊤ has to be properly defined. Let v be a set of 
planes, each defined by the equation ax + by + cz-d = 0, 
with a2 + b2 + c2 = 1. Each plane is then represented as p = 
(a, b, c, d)⊤. Recall that the distance from the point v to the 
plane p is p⊤v. The error at vertex v is then defined as the 
sum of squared distances of the vertex from the planes: 
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Rearranging the expression above, the following is 

obtained: 
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The error at vertex v is thus the quadratic form v⊤Qv. In 

the starting mesh, for each vertex, p is the set of planes 

adjacent to it. Note that the initial error at each vertex is 0 

for it lies on its adjacent planes. In the contraction (v1, 

v2) v̂  the set of planes of the resulting vertex is the 

union of the two starting ones. This can be approximated 

by using the rule that 
1 2

v̂ v v
Q Q Q  , even if this means 

double-counting some of the planes. During each 

contraction, the algorithm places v̂ so that it minimizes the 

error of the resulting vertex, ans the resulting mesh will be 

as close as possible to the initial one. Being the error a 

quadratic form, the optimal position for v̂  can be easily 

found by solving a system of partial derivatives of  with 

respect to x, y and z; as stated in Garland and Heckbert 

(1997) solving this system is equivalent to solving: 
 

00 01 02 03

10 11 12 13

20 21 22 23

0

0

0

10 0 0 1

q q q q

q q q q
v

q q q q

   
   
   
   
    

  

 (3) 

1

00 01 02 03

10 11 12 13

20 21 22 23

0

0

0

10 0 0 1

q q q q

q q q q
v

q q q q



   
   
   
   
    

  

  (4) 

 
If the matrix isn’t invertible one can simply search 

for the minimum along the edge. This is thus a reliable 
method for choosing the position of the new vertex. Note 
that the error of the new vertex is also a good measure of 
the cost of an edge contraction, the algorithm will then 
process edges in increasing cost order. 

Mesh Saliency Estimation 

While the error minimization technique presented in 
Garland and Heckbert (1997) yields extremely good 
results in uniform surfaces, it has no way of detecting the 
presence of detail in the mesh, thus some of the features 
of the model could be washed away in the process. By 
taking into account the Gaussian curvature of the 
surface, the algorithm can penalize edges with larger 
absolute values of Gaussian curvature, increasing their 
cost so that they are processed later than edges in flatter 
and less detailed regions. The resulting mesh will have 
larger and coarser triangles where the surface is smooth, 
while finer triangles where more detail is needed. 

Note that being the mesh a non-C2-differentiable 
surface, the curvature is not defined. The Gaussian 
curvature K in a vertex can be approximated using the 
Gauss-Bonnet theorem as described in Surazhsky et al. 
(2003) and Szilvśi-Nagy and Matyasi (2003). Let i be 
the angle of the i-th triangle in the immediate 
neighborhood of the vertex of interest. Then the Gauss-
Bonnet theorem states that: 
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Assuming that K is constant in the local 

neighborhood of the vertex, which can be approximated 
as the Voronoi area or the barycentric area around it 
(Fig. 2), one can solve for K: 
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Fig. 2: The neighborhood of the vertex 
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As stated in Surazhsky et al. (2003), this estimation is 

one of the best among the various approximation 

algorithms. This approach offers at the same time a 

precise approximation of the Gaussian curvature of the 

mesh as well a very simple way to implement the 

curvature penalization, in fact, the curvature at each 

vertex can be calculated very efficiently through a series 

of sums of angles and areas. 

Let 
  1 21 2, v vv v

K K K  . Once the curvature of each 

vertex has been pre-calculated, one can scale the cost of 

each edge contraction through some function as so: 

 

     1 2 1 2 1 2ˆ ˆ, , ,
,

v v v v v v v v
f K

 
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 (7) 

 

Note that K might vary very harshly, so it is 

reasonable to map it to [0, 1]. We found that good results 

can be obtained through the following function, where  

is a parameter to tune the effect of curvature: 

 

     
1 2 1 2ˆ ˆ, ,

1 K

v v v v v v
e 

 
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Figure 3 shows the plots of our estimation for the 

remapped curvature on two models often used in the 

literature in mesh processing. 

 

 
 

 
Fig. 3: Curvature estimation on two models 

Pseudocode 

The algorithm can be summarized as follows: 

 

1. Compute Q and K for every vertex 

2. Compute the best contraction vertex v̂  for every 

edge and enqueue the pair using the resulting cost 

3. Poll an edge from the queue and get its adjacent 

triangles and edges 

4. Replace the edge with the best possible vertex, 

updating its matrix as well as the adjacent triangles 

and edges 

5. Return to (3) until the desired size of the mesh is 

reached 

 

Simplify-Mesh(m) 

1  for TRIANGLE t in m 

2  for VERTEX v in t 

3  Qv = Qv + t.Fp 

4  Kv = curvature at v 

5 edgeQueue = PRIORITYQUEUE keyed on edge 

error 

6 for TRIANGLE t in m 

7  for EDGE e in t 

8 v̂  = vertex that minimizes error 

9 add e in edgeQueue keyed on the error of v̂  

10 while m.size() > TARGET SIZE 

11  e = edgeQueue.pollFirst() 

12  SET ad jTrgs = 

 {triangles adjacent to the vertices of the 

edge} 

13 SET ad jEdges = 

 {edges adjacent to the vertices of the edge} 

14  v̂  = vertex that minimizes error 

15  
1 2

ˆ
v v

v e e
Q Q Q  // sum of the parents’ matrices 

16  for TRIANGLE t in ad jTrgs 

17 update t according to the contraction 

18 update the curvatures of t’s vertices 

19 if t isDegenerate() 

20 remove t from the mesh 

21 else 

22  add the modified edges to edgeQueue 

23  for EDGE edg in ad jEdges 

24  remove edg from edgeQueue 

25  return m 

 

Algorithm Analysis Outline 

To analyze the running time complexity of the 

above algorithm, the following assumptions are needed. 

Being all matrices 44, operations such as sums and 

inversions can be considered as O(1); indeed many of 

such operations can be precomputed for actual 

constant-time performance. Moreover, the sets used to 

0 0.2 0.4 0.6 0.8 1 
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store information about the vertices can be 

implemented as hash sets with custom hash code 

functions to get O(1) operations. 

Let T be the number of triangles in the starting 

model. Being the mesh manifold, it’s easy to see that 

the number of edges and vertices are O(T) Lines 1-4 

contribute for O(T) operations, while lines 5-9, having 

O(T) insertions in the priority queue, which take 

O(logT) time each, contribute for a total of O(TlogT) 

operations. There are n iterations of the while cycle. 

Considering that at each pass two triangles are 

removed, it holds that n  O(T). Lines 11-24 

contribute for O(logT) amortized operations due to the 

extraction and the insertions into the queue, as the 

operations on the elements of the sets ad jTrg and ad 

jEdges add up to O(T) over the n iterations. 

This leads to an overall complexity of O(TlogT). 

Results and Discussion 

Various tests were performed on a wide range of 

parameters, executing our mesh simplification routine on 

models widely used in the literature. A comparison 

between the models simplified with and without the 

curvature-based penalization follows. 

In Fig. 4a the results of a compression from 32 to 

6.4 k triangles with  set to 150 on the left and to +inf 

(standard QEM error function) on the right are shown. 

Note in Fig. 5 that while in the smoother zones of the 

model the triangles are coarser, in the more detailed 

ones such as the eyes and nostrils there are finer 

triangles that lead to much greater detail in 

comparison to the standard method. A similar result 

can be obtained in the compression down to 1.6 k 

triangles (Fig. 4b). 

Similar results are obtained on other meshes, such 

as the models in Fig. 6 and 7. Note that the back of the 

bunny presents larger triangles while the ears and the 

face present densification of vertices, increasing the 

level of detail maintained after the simplification; 

similarly, the smoother zones of the heart model 

present coarser triangles while the veins maintain a 

higher triangle count. 

 

 
(a) 

 

 
(b) 

 
Fig. 4: Results with curvature penalization enabled (left) or disabled (right); (a) Model reduced down to 6.4 k triangles; (b) Model 

reduced down to 1.6 k triangles 
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 (a) (b) 

 
Fig. 5: A detail of the models with 6.4 k triangles; (a) Curvature penalization enabled; (b) Curvature penalization disabled 

 

 
 

Fig. 6: Models reduced down to 5 k triangles. Curvature penalization enabled (left) or disabled (right) 

 
Table 1: Mesh-Mesh deviation comparison 

Model RMS error (std. method) RMS error (curv. penal.) 

Cow 0.0530  0.0508 

Cow (Head) 0.0514  0.0473 

Heart 0.0349  0.0339 

Heart (Veins) 0.0325  0.0309 

 

Table 1 shows, comparing our method to the standard 

one, the root mean squared error of the simplified 

models (20% of original triangles), which were 

computed in Rhinoceros 6 by “Mesh-Mesh Deviation” 

tool of the “Rhino Open Projects” (Savio et al., 2013), 

which computes the distance between the surface of 

the original mesh and the simplified one1. It must be 

noted that the metric itself has no way of detecting the 

presence of detail, thus heavily penalizing the coarser 

triangles that are created in the smoother zones of the 

model. In order to account for the quality of the 

simplification of salient areas, the tests were run, 

other than on the whole model, on selected parts of 

the mesh, namely on the head for the cow model and 

on the veins for the heart model, which are also shown 

in Fig. 5 and 7b. In general, using the curvature 

penalization method yields a smaller standard deviation 

between the meshes than the original method. The 

advantage, in terms of root mean squared error of the 

                                                           
1 Rhino Open Projects. https://www.food4rhino.com/app/rhino-

openprojects. [Accessed: 07-21-2020] 

simplified model, of our algorithm over the standard 

QEM one becomes even larger when considering only 

the visually salient areas. Moreover, one of the 

strengths of our approach is that the user can decide to 

what extent the curvature will affect the overall result 

of the simplification; by tuning the parameter a, one 

can choose the result that best fits his needs. 

From the tests it resulted that the overhead of 

estimating the curvature through Gauss-Bonnet, which is 

due mainly to the computation of the angles between the 

edges of the triangles and updating the values after each 

contraction, is minimal (Table 2). The tests were run on 

a Java implementation of the method proposed, using an 

AMD FX-8320 processor; it has to be noted that the 

code we produced is only for demonstration purposes 

and thus lacks any form of optimization. 

Experimental results thus show that this algorithm is 

capable of preserving the smaller features of the mesh 

without impacting performance. This could be useful 

especially in areas of research such as medicine or 

archaeology, where the models returned by 3D scanning 

techniques must retain even the smaller features. 

https://www.food4rhino.com/app/rhino-openprojects
https://www.food4rhino.com/app/rhino-openprojects
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(a) 

 

 
(b) 

 
Fig. 7: Model of a human heart simplified from 85 to 17 k triangles; (a) Curvature penalization enabled (left) and disabled (right); (b) 

A detail of the veins 

 
Table 2: Running time comparison 

Model Tot. CPU time curv. Estimation CPU time 

Bunny (250 k to 12k tr.) 15.97s  0.185s (1.2%) 

Cow (32 k to 1.6k tr.) 1.51s  0.034s (2.2%) 

 

Conclusion 

In this study we presented a simple mesh saliency 

detection method based on discrete curvature 

estimation, which in turn is accomplished through the 

use of the Gauss-Bonnet theorem. This measure of 

visual importance is then embedded into the 

simplification routine to preserve the features of the 

mesh. The algorithm presented offers a good 

improvement over the original one, adding an 

alternative approach to the already existing ones. While 

the results obtained are encouraging, this algorithm has 

still room for improvement. Among the upgrades that 

are to be done in future work, we enumerate improving 

overall performance through the use of better data 

structures for keeping track of vertex neighboring 

triangles and edges, as well as not enqueuing edges that 

will be removed before being processed and 

implementing a better system to detect the formation of 

degenerate or non-manifold surfaces. 
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