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Abstract: Among oxide semiconductors, p-type Mn3O4 systems have been exploited in chemo-resistive
sensors for various analytes, but their use in the detection of H2, an important, though flammable,
energy vector, has been scarcely investigated. Herein, we report for the first time on the plasma
assisted-chemical vapor deposition (PA-CVD) of Mn3O4 nanomaterials, and on their on-top
functionalization with Ag and SnO2 by radio frequency (RF)-sputtering, followed by air annealing.
The obtained Mn3O4-Ag and Mn3O4-SnO2 nanocomposites were characterized by the occurrence
of phase-pure tetragonal α-Mn3O4 (hausmannite) and a controlled Ag and SnO2 dispersion. The
system functional properties were tested towards H2 sensing, yielding detection limits of 18 and
11 ppm for Mn3O4-Ag and Mn3O4-SnO2 specimens, three orders of magnitude lower than the H2

explosion threshold. These performances were accompanied by responses up to 25% to 500 ppm H2

at 200 ◦C, superior to bare Mn3O4, and good selectivity against CH4 and CO2 as potential interferents.
A rationale for the observed behavior, based upon the concurrence of built-in Schottky (Mn3O4/Ag)
and p-n junctions (Mn3O4/SnO2), and of a direct chemical interplay between the system components,
is proposed to discuss the observed activity enhancement, which paves the way to the development
of gas monitoring equipments for safety end-uses.
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1. Introduction

The reliable detection of hazardous/flammable gases is of key importance in a variety of fields,
encompassing disease diagnosis, environmental monitoring and human health protection [1–6]. In this
broad scenario, a key role is played by the early recognition of molecular hydrogen (H2), a zero-emission
and clean fuel, with a high energy density of ≈130 MJ×kg−1 [2,7], which has emerged as a future
energy source for transportation, industrial and residential applications [8–10]. Nevertheless, since
H2 is colorless, odorless and highly flammable, the detection of hydrogen leakages at concentrations
lower than hazardous levels [11–14] is extremely critical towards the emergence of a future hydrogen
economy [7,8,15–19].
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Simple architecture, cost-effective fabrication, stability under the operating conditions, and high
efficiency, are the main requirements and core features of advanced sensors needed for such
applications [16]. Among the various active systems and devices [20–24], metal oxide nanostructures
have been the subject of an increasing interest, thanks to their high carrier mobility, easy fabrication
and excellent stability [9,25–28]. In particular, whereas n-type oxide semiconductors have been largely
investigated as gas sensors [8,9,12,15], p-type ones have not yet been widely studied [4,17,29,30], since
their responses are typically lower than those of n-type systems with comparable morphology [31–33].
Nonetheless, p-type oxide semiconductors have an important potential as gas sensors, and represent
promising platforms for the development of devices exhibiting new functions [32], taking into account
their appreciable activity as oxidation catalysts and the possibility of boosting their performances by
tailoring their chemico-physical properties [2,31,34,35].

Among p-type systems, Mn3O4 has received significant attention due to its low cost, large natural
abundance, environmentally friendly character and versatile chemico-physical properties, including
the coexistence of mixed valence states [36,37]. Over the last decade, different studies have reported
on Mn3O4-containing gas sensors for various analytes, including CH3CH2OH, CH3COCH3, NH3

and chemical warfare agent simulants [31,35–41]. Nonetheless, only two works on Mn3O4-based
gas sensors for molecular hydrogen detection are available in the literature so far [35,42], and the
implementation of H2 sensors endowed with improved sensitivity and selectivity undoubtedly requires
additional research efforts [29,35,37,38].

Beside tailoring the system morphology [25,26,33,39], a proficient way to enhance the functionality
of bare Mn3O4 gas sensors involves their sensitization with suitable metal/oxide agents [8,18,35,42–44].
The ultimate aim of this strategy is the exploitation of synergistical chemical and electronic effects,
in order to obtain improved performances at moderate working temperatures, an issue of key
importance for the development of low power consumption devices [4,37,41]. In this context, the
present study is devoted to the fabrication of Mn3O4-based chemo-resistive sensors for H2 detection,
sensitized through the on-top deposition of selected metal and metal oxide activators. As prototypes
for the two categories, in this work our attention has been focused on the use of Ag, a potential catalyst
promoting the reactions involved in the sensing process [45–49], and of SnO2, by far one of the most
investigated metal oxides for gas sensing applications, endowed with high electron mobility and gas
sensitivity [10,13,25,26,50]. In particular, the occurrence of Schottky (Mn3O4/Ag) or p-n (Mn3O4/SnO2)
junctions between the system components can indeed enhance the modulations of the space charge
region, and of the measured electrical resistance, ultimately yielding improved sensing performances
thanks to electronic effects [18,26,33,43].

At variance with our previous studies, which have involved the fabrication of Mn3O4-based
sensors by means of thermally activated chemical vapor deposition (CVD)-based processes [31,38,39,41],
in this work a novel two-step plasma-assisted route was adopted for the preparation of the present
materials. The fabrication procedure (Figure 1) involved: (i) the initial plasma assisted-CVD (PA-CVD)
on alumina substrates of MnO2 from Mn(hfa)2TMEDA (Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione;
TMEDA = N,N,N’,N’-tetramethylethylenediamine) [51,52], a molecular precursor never utilized so
far for PA-CVD processes; (ii) the functionalization with Ag or SnO2 by means of radio frequency
(RF)-sputtering, and (iii) a final thermal treatment in air to trigger the transformation of MnO2

into Mn3O4. The main focus of the present investigation was directed at elucidating the structural,
compositional and morphological characteristics of the target materials and their interplay with the
resulting sensing performances in hydrogen detection. The latter were investigated at a fixed humidity
level as a function of the operating temperature, with particular regard to the role exerted by the
formation of metal-oxide (Mn3O4/Ag) or oxide-oxide (Mn3O4/SnO2) junctions. The obtained results
indicate that the proposed preparation method yields H2 sensors exhibiting favorable detection limits,
promising responses at moderate temperature, as well as selectivity against carbon dioxide and
methane as potential interferents. To the best of our knowledge, this is the first report on hydrogen gas
sensing by Mn3O4-based composites prepared by a plasma-assisted route.
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MA, USA) D8 Advance X-ray diffractometer with a Cu Kα X-ray source (λ = 1.54 Å) operated at 40 
kV and 40 mA, employing an incidence angle of 1.0°. The average crystallite dimensions were 
calculated by means of the Scherrer equation [29,33,36,55].  

Figure 1. Scheme of the route proposed in the present study for the fabrication of Mn3O4-Ag and
Mn3O4-SnO2 nanomaterials.

2. Experimental Procedure

2.1. Material Preparation

MnO2 nanomaterials were initially deposited using a two-electrode plasmo-chemical
instrumentation [53] equipped with a RF-generator (ν = 13.56 MHz), using Mn(hfa)2TMEDA [51,52] as
the manganese molecular source. Depositions were performed on pre-cleaned [15,31,39] polycrystalline
Al2O3 substrates (99.6%, Maruwa, Owariasahi, Japan; thickness = 0.25 mm), mounted on the grounded
electrode, from Ar-O2 plasmas, using the following pre-optimized experimental settings: RF-power =

20 W; growth temperature = 300 ◦C; total pressure = 1.0 mbar). In a typical process, the precursor
powders (weight = 0.15 g) were placed in an external glass reservoir heated at 70 ◦C, and their vapors
were transported into the reactor using an electronic grade Ar flow (60 standard cubic centimeters per
minute (sccm)) through gas lines maintained at 130 ◦C by means of external heating tapes. Additional
Ar and O2 flows (15 and 5 sccm, respectively) were separately introduced into the reactor.

Deposition of Ag or SnO2 over the obtained systems was subsequently performed through
RF-sputtering experiments, carried out using the above described instrumentation, and utilizing silver
(Alfa Aesar®, Ward Hill, MA, USA; thickness = 0.3 mm, purity ≥ 99.95%) or tin targets (Neyco®,
Vanves, France; thickness = 2.0 mm, purity = 99.99%). In each experiment, the used target and
the Al2O3-supported manganese oxide deposits were mounted on the RF and grounded electrode,
respectively. Depositions were carried out using an Ar flow rate of 10 sccm (total pressure = 0.3 mbar),
a RF-power of 5 W, and a grounded electrode temperature of 60 ◦C. After a preliminary optimization,
the deposition time was set at 45 and 90 min for silver and tin sputtering, respectively.

After preparation, ex-situ thermal treatments in air at a temperature of 400 ◦C for 1 h were carried
out in order to ensure the conversion of MnO2 into phase-pure Mn3O4 [54] and to stabilize the obtained
nanomaterials in view of gas sensing tests [19,48].

2.2. Material Characterization

X-ray diffraction (XRD) patterns were recorded at room temperature using a Bruker (Billerica,
MA, USA) D8 Advance X-ray diffractometer with a Cu Kα X-ray source (λ = 1.54 Å) operated at 40 kV
and 40 mA, employing an incidence angle of 1.0◦. The average crystallite dimensions were calculated
by means of the Scherrer equation [29,33,36,55].

X-ray photoelectron spectroscopy (XPS) analysis was carried out by means of a Perkin-Elmer
(Chanhassen, MN, USA) Φ 5600ci instrument equipped with a hemispherical electron analyzer, using a
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standard Al Kα X-ray excitation source (hν = 1486.6 eV). The charging effect on the measured binding
energies (BEs) was corrected by adjusting the position of the adventitious C1s signal to 284.8 eV [56].
Atomic percentage (at.%; uncertainty = ±2%) values were determined by peak integration using
Φ V5.4A sensitivity factors, after a Shirley-type background subtraction. Silver and tin molar fractions
were calculated as XM = [(M at.%)/(M at.% + Mn at.%) × 100], with M = Ag, Sn [38,46]. Spectra
were fitted with mixed Gaussian–Lorentzian peak shapes using the XPSPEAK program [57]. Auger
parameters α1 and α2 for silver were calculated according to the literature [56]. A Cameca (Gennevilliers
CEDEX, France) IMS 4f spectrometer was used for in-depth secondary ion mass spectrometry (SIMS)
analyses, performed at pressures lower than 1 × 10−10 mbar, using a Cs+ primary beam (14.5 keV,
20 nA, stability 0.2%) and negative secondary ion detection. Depth profiles were acquired using an
electron gun for charge compensation in beam blanking mode and high mass resolution configuration.
Elemental signals were recorded rastering over a 150 × 150 µm2 area and sampling secondary ions from
an 8 × 8 µm2 region to avoid crater effects. The erosion time in the abscissa of the recorded profiles
was converted into depth, based on thickness values measured by field emission-scanning electron
microscopy (FE-SEM) measurements. The latter were carried out on a Zeiss (Oberkochen, Germany)
SUPRA 40VP instrument at operating voltages of 5.00 kV. Sample thickness and nanoaggregate
size values were obtained by analyzing cross-sectional and plane-view images with the ImageJ®

software [58]. Atomic force microscopy (AFM) measurements were performed under normal air
conditions in tapping mode, using a NT-MDT (Moscow, Russia) SPM Solver P47H-PRO apparatus.
Root-mean-square (RMS) surface roughness values were obtained from 3 × 3 µm2 micrographs after
plane fitting.

2.3. Gas Sensing Tests

To avoid any influence from the external environmental conditions, the used gas sensing test
system is composed of a stainless-steel chamber located inside a temperature-stabilized climatic
chamber, which was set at 20 ◦C for all measurements. The relative humidity level inside the
stainless-steel chamber was constantly monitored and controlled to be exactly 40% at 20 ◦C. As the
sensing devices are completely sealed inside the test chamber (dark conditions), there is no effect
from external room illumination. Gas sensing properties of the fabricated systems were investigated
using the flow-through method at atmospheric pressure. A constant synthetic air flow (300 sccm)
was used as a carrier for the dispersion of H2 (and of CH4 and CO2 in the selectivity tests) at the
desired concentrations. Pt interdigitated contacts and a Pt heater were deposited by sputtering
(applied power = 30 W, Ar plasma, room temperature) on the active material surface and on the
alumina substrate backside (lateral dimensions = 3 × 3 mm2), respectively. Resistance values were
obtained by applying a bias voltage of 0.2 V, measuring the flowing current through a picoammeter.
The measurements were performed in the 100–300 ◦C temperature interval, after pre-stabilization for
8 h at each temperature to reach a steady state. In line with our previous studies on Mn3O4-based
gas sensors [31,38,39,41], no appreciable resistance variations upon gas exposure were obtained for
working temperatures <150 ◦C, whereas the use of temperatures higher than 300 ◦C was intentionally
avoided in order to prevent Mn3O4 thermal alterations during sensing tests.

No significant baseline resistance drift was detected after testing up to 12 h. The sensor response
was calculated from the measured values of equilibrium resistances in air (RA), and in the presence of
the target gas (RG), using the following relation [7,31,38,43]:

Response =

(
RG −RA

RA

)
× 100 (1)

A detailed comparison of the present results with previous literature studies was performed by
converting the reported response values into those defined by Equation (1). Repeated measurements
under the same operating conditions on up to 10 identical sensors yielded stable and reproducible
responses (maximum uncertainty = ±10%). The same variation was also estimated to be the response
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drift upon repeated tests up to 4 months, highlighting thus the system stability, an important issue in
view of eventual real-world end uses [37,38,48].

The experimental response vs. concentration trends were fitted by the typical power law relation
for metal oxide sensors [9,30,42]:

Response = a×Cb (2)

where C is the gas concentration, whereas a and b are constants dependent on the active material
and the stoichiometry of the involved reactions [8,31,44]. Detection limits (maximum estimated
uncertainty = ±1 ppm) were extrapolated at a response value of 3, assuming the validity of Equation (2)
at low analyte concentrations.

3. Results and Discussion

3.1. Chemico-Physical Characterization

The fabrication process of the target materials is illustrated in Figure 1. Particular efforts were
dedicated to elucidating the interplay between the adopted processing conditions and material chemical,
physical and functional properties.

The system structure was investigated by XRD analyses (Figure 2). All the observed reflections
located at 2θ = 18.0◦, 28.9◦, 31.0◦, 32.3◦ and 36.1◦ could be indexed to the (101), (112), (200), (103) and
(211) planes of tetragonal hausmannite (α-Mn3O4; a = 5.762 Å and c = 9.470 Å [31,38,59]). The occurrence
of relatively weak and broad diffraction peaks suggested the formation of defective nanocrystallites [11],
whose average dimensions were close to 25 nm for all the target specimens. A comparison of the
signal relative intensities with those of the reference pattern [59] did not reveal any significant
orientation/texturing effect, and no appreciable reflections from other Mn oxide polymorphs could be
distinguished, highlighting the occurrence of phase-pure systems. Upon functionalization of Mn3O4

by RF-sputtering, no net variation in the recorded XRD patterns took place. The absence of noticeable
diffraction peaks related to Ag or SnO2 was traced back to their low content and high dispersion into
the Mn3O4 systems [19,41,44,46] (see also XPS and SIMS results).
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The surface chemical state of the developed materials was analyzed by means of XPS. Figure 3a
displays the survey spectra for the target specimens, that revealed the presence of oxygen, manganese
and eventually, silver or tin signals, for the functionalized systems, together with a minor carbon
contribution (<10 at.%) resulting from adventitious contamination. The detection of manganese
signals even after RF-sputtering suggested only a partial coverage of Mn3O4 by the deposited silver-
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and tin-containing species. Accordingly, Ag and Sn molar fractions were evaluated to be 47.0% and
31.0%, respectively. For bare Mn3O4, the Mn2p3/2 component was located at BE = 641.8 eV (spin-orbit
splitting (SOS) = 11.5 eV, Figure 3b), in accordance with previous literature data [31,35,38,41]. For the
functionalized systems, a lower Mn2p3/2 BE was observed (641.7 eV, for Mn3O4-Ag, and 641.5 eV, for
Mn3O4-SnO2). This finding suggested the formation of Schottky and p-n junctions for Mn3O4-Ag and
Mn3O4-SnO2, respectively [33,37,38,41,42], resulting in an Ag→Mn3O4 and SnO2→Mn3O4 electron
transfer. This phenomenon, more pronounced for SnO2-containing samples, as testified by the higher
BE decrease, exerted a favorable influence on the resulting gas sensing performances. As regards
silver (Figure 3c), the Ag3d5/2 position (BE = 368.5 eV, SOS = 6.0 eV), as well as the pertaining Auger
parameters (see also Figure S1; α1 = 719.7 eV and α2 = 725.6 eV), revealed a partial Ag surface oxidation,
i.e., the coexistence of Ag(0) and Ag(I) oxide, as typically observed in similar cases [38,46,49,60].
Finally, the main tin photopeak (Figure 3d; BE(Sn3d5/2) = 486.9 eV; SOS = 8.4 eV) was located at higher
energies than those reported for SnO2 [14,56,61], in line with the above mentioned charge transfer
process. Taken together, these results highlighted the formation of nanocomposites in which the single
components maintained their chemical identity, and enabled us to discard the formation of ternary
phases, in line with XRD results. The deconvolution of O1s photopeaks (Figure S2) revealed the
concurrence of two distinct bands at BE = 530.0 eV, resulting from lattice oxygen in Mn3O4, Ag(I) oxide
(Mn3O4-Ag) or SnO2 (Mn3O4-SnO2) [14,31,38,60,61], and 531.6 eV, assigned to oxygen species adsorbed
on surface O defects [4,41,51,52,55]. The contribution of the latter component to the overall O1s signal
increased from ≈36.0%, for bare Mn3O4, to ≈58.0%, for the functionalized specimens, indicating a
parallel increase of the oxygen defect content. The latter feature had a direct beneficial impact on the
resulting gas sensing behavior.
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Complementary information on material chemical composition was obtained by SIMS in-depth
profiling (Figure 4). Upon functionalization of Mn3O4, no significant variations in the overall deposit
thickness took place (for all specimens, the average value was (400 ± 50) nm, as determined by
cross-sectional FE-SEM analyses (see below and Figure 5)). The almost parallel trends of manganese
and oxygen ionic yields suggested their common chemical origin, in line with the formation of
phase-pure Mn3O4. Silver and tin trends could be described by an erfchian profile, such as in thermal
diffusion processes [49]. For the Mn3O4-SnO2 sample, Sn yield underwent a progressive decrease
throughout the outer 100 nm, subsequently followed by a plateau, whereas, for the Mn3O4-Ag specimen,
the silver curve continuously declined even at higher depth values. In spite of these differences,
a penetration of both Ag and Sn up to the interface with the alumina substrate was observed, and
ascribed to the synergistical combination between the inherent RF-sputtering infiltration power and
the Mn3O4 deposit open morphology [38,41,44,48] (see also Figure 5). This intimate contact between
the system components is indeed an issue of key importance in order to benefit from their mutual
electronic interplay, as discussed in detail below.
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Figure 4. Secondary ion mass spectrometry (SIMS) depth profiles for Mn3O4, Mn3O4-Ag and
Mn3O4-SnO2 specimens.

The system morphology was investigated by the complementary use of FE-SEM and AFM.
FE-SEM micrographs (see Figure 5, left side) highlighted that bare Mn3O4 was characterized by
the presence of elongated nanoaggregates (mean size = 100 nm), whose interconnection resulted in
the formation of arrays with an open morphology. This feature is indeed favorable in view of gas
sensing applications, since a higher area available for the interaction with the surrounding gases has
a beneficial effect on the ultimate material functional performances [15,19,25,31,40]. After Ag and
SnO2 introduction, no marked variations involving aggregate coalescence/collapse could be observed,
validating the potential of the adopted synthetic route in functionalizing Mn3O4 nano-deposits without
any undesired morphological alteration. AFM analyses (Figure 5, right side) confirmed the presence
of the aforementioned aggregates uniformly protruding from the growth substrate, resulting in a
crack-free and homogeneous granular topography, yielding an average RMS surface roughness of
40 nm for all the analyzed specimens.
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3.2. Gas Sensing Performances

Figure 6 displays representative dynamical responses of the developed sensors towards square
concentration pulses of gaseous hydrogen. All the target materials exhibited a p-type sensing behavior,
as indicated by the resistance increase upon H2 exposure due to the reaction of the analyte with
adsorbed oxygen species, resulting in a decrease of the major p-type carrier concentration [2,16,31,35,39].
This phenomenon is in agreement with the fact that Mn3O4 is the main system component, as indicated
by structural and compositional characterization [44].

Remarkably, data in Figure 6 evidence that the on-top deposition of Ag and SnO2 was an effective
mean to increase the electrical property modulation upon H2 exposure with respect to pure Mn3O4.
For both composite systems, the measured resistance underwent a relatively sharp rise upon hydrogen
exposure, and a subsequent slower increase up to the end of each gas pulse. This phenomenon
suggested that the rate-limiting step in the resistance change was the chemisorption of molecular
hydrogen on the sensor surface [15,31,41,48]. In spite of an incomplete baseline recovery after switching
off hydrogen pulses, the measured resistance variations were almost proportional to the used hydrogen
concentrations, enabling us to rule out significant saturation effects, an important starting point for
eventual practical applications [15,38,39].
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Figure 6. Dynamical responses of Mn3O4 (a), Mn3O4-Ag (b) and Mn3O4-SnO2 (c) nanosystems vs.
different H2 concentrations, at a fixed working temperature of 200 ◦C.

To account for the performance increase yielded by composite systems, it is necessary to consider
the mechanism of hydrogen detection by the target p-type materials, which can be described as follows.
Upon air exposure prior to contact with the target analyte, oxygen molecules undergo chemisorption
processes, yielding the formation of various species [6,9,29,36,43,55], among which O− is the prevailing
one in the present working temperature interval [14,17,30,33]:

O2 (g) � 2O− (ads) + 2h+ (3)

As a consequence, the formation of a low resistance hole accumulation layer (HAL) in the
near surface Mn3O4 region takes place (Figure 7; HAL thickness = 20.6 nm, see the Supporting
Information) [32,33,37,47]. The subsequent analyte chemisorption is accompanied by electron injection
into the system conduction band [3,4,7,29,40,44,62]:

H2 (ads) + O− (ads) � H2O (g) + e− (4)

A process which decreases the hole concentration and the HAL thickness, resulting, in turn, in an
increase of the measured resistance [5,16–18,42,43]. Finally, upon switching off the gas pulse, the sensor
surface is again in contact with air, and the original situation is restored, with a recovery of the pristine
HAL width [30,31,41].

Since all the investigated systems have almost identical mean crystallite dimensions, grain size
and RMS roughness values, a significant influence of these parameters on the different gas sensing
performances can be reasonably ruled out. Indeed, the enhanced responses of composite sensors
with respect to the pristine Mn3O4 can be first explained in terms of electronic effects occurring at the
interface between Mn3O4 and the functionalizing agents, a key aspect to be considered for a deep
understanding of gas sensing phenomena [26].
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Figure 7. Schematics of the hydrogen gas sensing mechanism and corresponding hole accumulation
layer (HAL) modulation for nanosystems based on: (a) bare Mn3O4; (b) functionalized Mn3O4.
The dashed black and red lines indicate the HAL boundaries in air in case of bare and functionalized
Mn3O4, respectively. Red spheres, yellow areas, and orange ovals indicate adsorbed oxygen,
HAL thickness, and functionalizing agent (Ag or SnO2), respectively. Blue arrows indicate electron
flow due to H2 oxidation (see reaction 4).

For Mn3O4-Ag sensors, these processes result from the formation of Mn3O4/Ag Schottky junctions,
whose occurrence produces a Ag→Mn3O4 electron flow [38,63] (see also the above XPS data), and a
consequent thinning of the HAL width in comparison with bare Mn3O4 (compare Figure 7a,b). As a
consequence, HAL variations upon contact of the sensor with gaseous H2 produce higher responses
by increasing the registered resistance modulations [38,44]. An analogous phenomenon occurs for
Mn3O4-SnO2 systems (Figure 7b; HAL thickness = 12.4 nm, see the Supporting Information), although
in this case the SnO2→Mn3O4 electron flow is triggered by a different phenomenon, i.e., the presence
of p-n Mn3O4/SnO2 junctions [32,33,37,41–43,55].

The latter effect can, in principle, result in enhanced variations of the HAL extension with respect
to the case of Mn3O4-Ag sensors, since the occurrence of a partial silver oxidation (as evidenced by
XPS analysis, see above) precludes a full exploitation of electron transfer effects resulting from the
establishment of Mn3O4/Ag Schottky junctions [38,46].
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Nonetheless, the enhanced hydrogen detection efficiency of Mn3O4-based nanocomposites with
respect to bare manganese oxide is likely due to the concurrence of additional cooperative phenomena.
For both Mn3O4-Ag and Mn3O4-SnO2 systems, the higher content of oxygen defects at the composite
surface with respect to bare Mn3O4 (see the above XPS data and Figure S2), as well as the exposure of a
high density of heterointerfaces, can in fact supply active sites for a more efficient chemisorption of
both oxygen and analyte molecules, which, in turn, boosts the resulting gas responses [4,8,16–18,30,43].
In addition, the intimate component contact enabled by the adopted preparation route, yielding a
good intergranular coupling, enables a proficient exploitation of their chemical interplay [38,44,48],
related to the synergistical combination of materials with different catalytic activities [10,27,37,41,47].
Hence, the improved sensing performances of functionalized Mn3O4 systems can be related to the
concomitance of electronic and catalytic effects.

Taken together, the above observations can account for the improved performances at lower
working temperatures of SnO2-containing systems with respect to Ag-containing ones. This result
is exemplified by an inspection of Figure 8, showing that, apart from the appreciable response
enhancement, deposition of Ag and SnO2 onto Mn3O4 resulted in different trends as a function of the
operating temperature. In the case of Mn3O4-Ag sensors, the progressive response rise indicated an
enhanced extent of reaction (4) upon increasing the thermal energy supply [2,8,15,31,38,39]. Conversely,
as concerns Mn3O4-SnO2, a maximum-like response behavior was observed, the best operating
temperature being 200 ◦C. Such a response trend, in line with previous reports regarding H2 detection
by other metal oxides [7,9,17,19,29,43,64], suggested the occurrence of a steady equilibrium between
hydrogen adsorption and desorption at 200 ◦C, whereas an increase of the working temperature
resulted in a predominant analyte desorption [27,33,55,64,65]. The lower value of the optimum
operating temperature for Mn3O4-SnO2 in comparison to Mn3O4-Ag is in line with the more efficient
SnO2→Mn3O4 electron transfer (see the above XPS data).
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Figure 8. Gas responses to a fixed H2 concentration (200 ppm) for the target Mn3O4-based sensors at
different working temperatures.

The potential of the present results is highlighted by the fact that the best H2 responses obtained
for Mn3O4-Ag (at 300 ◦C) and Mn3O4-SnO2 (at 200 ◦C) were higher than those reported for sensors
based not only on Mn3O4 [35,42], but even on other p-type oxides, including CuO [3,29], NiO [2,30],
BiFeO3 [7], Co3O4 [16,19], NixCo3-xO4 [16], as well as nanocomposites based on CuO-Pt [4] and
CuO-WO3 [18]. In addition, the same responses compared favorably with those pertaining to various
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MnO2-based nanomaterials/thin films in the detection of the same analyte [1,64,65]. A comparison of
selected representative data is reported in Table S1. It is also worthwhile highlighting that the optimal
operating temperature for H2 detection by the present materials (200 ◦C for Mn3O4-SnO2 systems)
was lower than the ones reported for Mn3O4 [35], MnO2 [8], CuO [3,17,29], Co3O4 [16], NiO [9],
NiO-ZnO [43], NixCo3-xO4 [16], BiFeO3 [7] and CuO-WO3 sensors [18]. This result is of importance,
not only to avoid dangerous temperature-triggered explosions, but also to implement sensing devices
with a higher service life and a lower power consumption [11,25,38,41].

Gas responses were also analyzed as a function of H2 concentration (Figure S3). The obtained linear
trends in the log-log scale confirmed the absence of appreciable saturation phenomena, an important
prerequisite for a quantitative analyte detection [37–39,44,48]. The best detection limits obtained
by fitting experimental data with equation (2) ((18 ± 1) ppm and (11 ± 1) ppm for Mn3O4-Ag and
Mn3O4-SnO2 sensors, respectively) were close to those previously reported for MnO2 [8], CoO [6]
and CuO-TiO2-Au [44] sensors, and inferior than those pertaining to ZnO ones [15]. It is also worth
noticing that these values were nearly three orders of magnitude lower than the H2 lower explosion
limit (LEL, 40000 ppm) [2,11,12,23,43], highlighting thus the detection efficiency of the present systems.

Beyond sensitivity, selectivity is an important parameter for the eventual utilization of gas sensing
devices [6,11,19,27,30]. The responses towards a specific test gas are in fact required to be higher
than those of other potential interferents, in order to avoid false alarms in real-time gas monitoring
equipment [36,38,39]. In particular, the choice of CH4 and CO2 as potential interferents in real-time
hydrogen leak detection is motivated by the fact that: (i) hydrogen and methane are common reducing
gases, either stored, or used together [1,13]; (ii) the presence of carbon dioxide may hamper hydrogen
recognition [5,21,43] in the case of fuel cells eliminating CO2 and producing electricity and H2 [66].
As shown in Figure S4, the present sensors yielded no responses towards CO2, and only weak signals
upon exposure to CH4. In the latter case, the selectivity was estimated as the ratio between the
responses to H2 and CH4 [32,41], yielding values of 22 and 24 for Mn3O4-Ag and Mn3O4-SnO2 at the
best working temperatures (300 and 200 ◦C, respectively). Though preliminary in nature, the latter
results are an attractive starting point for further studies aimed at implementing exclusive H2 sensors,
which are highly required for practical applications [13].

4. Conclusions

In summary, in this work we have proposed an unprecedented fabrication route to Mn3O4-Ag and
Mn3O4-SnO2 nanocomposites, consisting in: (i) the PA-CVD of MnO2 on alumina substrates; (ii) the
subsequent introduction of Ag and SnO2, as prototypes of metal and oxide functional activators, by
means of RF-sputtering; (iii) final thermal treatment in air. A thorough chemico-physical investigation
revealed the formation of high purity nanocomposites, characterized by the presence of phase-pure
hausmannite Mn3O4 featuring a close contact with Ag and SnO2. The successful obtainment of
Schottky (Mn3O4/Ag) and p-n junctions (Mn3O4/SnO2) offered significant benefits in view of gas
sensing applications, resulting in a nearly ten-fold enhancement of hydrogen responses in comparison
to bare Mn3O4 (up to 25% to 500 ppm H2 at a working temperature as low as 200 ◦C). This improvement,
reinforced by the concurrent chemical interplay between the system components, was accompanied
by a good sensitivity (detection limits down to 11 ppm, significantly inferior than the H2 LEL of
40,000 ppm) and selectivity in the presence of CH4 and CO2 as potential interferents. Overall, these
issues represent a step forward in the use of p-type Mn3O4-based nanocomposites for an efficient and
early recognition of H2 leakages in low power consumption sensors.

Future developments of the present activities will concern the extension of the proposed preparation
route to different multifunctional materials for (photo)electrochemical water splitting and solar-driven
catalysis for air/water purification. In addition, more detailed selectivity studies, including other
gaseous species and the evaluation of sensing performances under different environmental conditions,
are undoubtedly important issues to be properly considered for the eventual real-world implementation
of the developed materials.
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