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Experimental demonstration of sequential quantum random access codes
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A random access code (RAC) is a strategy to encode a message into a shorter one in a way that any bit of
the original can still be recovered with nontrivial probability. Encoding with quantum bits rather than classical
ones can improve this probability but has an important limitation: Due to the disturbance caused by standard
quantum measurements, qubits cannot be used more than once. However, as recently shown by Mohan, Tavakoli,
and Brunner [New J. Phys. 21, 083034 (2019)], weak measurements can alleviate this problem, allowing two
sequential decoders to perform better than with the best classical RAC. We use single photons to experimentally
show that these weak measurements are feasible and nonclassical success probabilities are achievable by two
decoders. We prove this for different values of the measurement strength and use our experimental results to
put tight bounds on them, certifying the accuracy of our setting. This proves the feasibility of using sequential
quantum RACs for quantum information tasks, such as the self-testing of untrusted devices.
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I. INTRODUCTION

A random access code (RAC) is a communication protocol
that requires a transmitter (Alice) to encode a n-bit long
random sequence into a shorter m-bit message, and a receiver
(Bob) to be able to decode any of the n bits with nontrivial
probability p > 1/2. These parameters are often grouped in

expression n
p−→ m that describes the task. A quantum random

access code (QRAC) is the very similar situation in which
Alice sends m qubits rather than bits. This concept was intro-
duced by Wiesner [1] but caught the interest of the scientific
community only after subsequent research by Ambainis et al.

[2] who showed quantum strategies that achieve 2
0.85−−→ 1 and

3
0.78−−→ 1, which beat the best classical RACs for these choices

of n, m. Further studies found that a 4 → 1 QRAC that
reaches p > 1/2 does not exist [3], but a 4m − 1 → m always
does [4]. Other investigations considered different values of
n, m [5], the use of qudits (d-level quantum systems) rather
than qubits [6–8], or the request of decoding more than 1
bit [9]. Applications include communication complexity [10],
network coding [11], locally decodable codes [12], dimension
witnessing of quantum states [13], self-testing of quantum de-
vices [14,15], semi-device-independent quantum randomness
extraction (SDI-QRE) [16–18], and semi-device-independent
key distribution (SDI-QKD) [19,20].

Recently, improvements in the theory and implementa-
tion of weak and sequential quantum measurements [21–27],
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prompted the introduction of sequential QRACs by Mohan,
Tavakoli, and Brunner [(MTB) in what follows] [28]. Their
protocol is a variation of the 2 → 1 QRAC: Alice encodes
a two-bit message into 1 qubit and sends it to Bob, who,
after measuring it, forwards the resulting quantum state to a
third party (Charlie) who shares the same goal as Bob: de-
coding any of the two bits of Alice with nontrivial probability
p > 1/2. The core tenets of quantum physics remind us that
Bob’s measurement disturbs the initial state, making it more
difficult for Charlie to extract information from it. However,
if Bob uses weak measurements rather than projective ones,
he can tune this disturbance and give back some information
to Charlie at the cost of some of his own. This means that
Alice’s qubit can be used more than once, overcoming a
crucial limit of previously studied QRACs, but there is a
trade-off between Bob’s and Charlie’s attainable information
that depends on Bob’s measurement strength. The observation
of decoding probabilities that saturate this trade-off self-tests
the use of a unique set of states and measurements under the
assumption that states are two dimensional and measurements
have binary outcomes. Additionally, even imperfect results
can bind Bob’s measurement strength. This can be important
for the characterization of untrusted quantum devices.

In this paper, we verify MTB’s protocol in a quantum op-
tics experiment for different values of the strength parameter.
We show that it is possible to observe near-optimal decoding
probabilities and we put tight bounds on Bob’s strength using
MTB’s self-testing expressions. Finally, we discuss some
applications of these results.

II. MODEL

We briefly introduce the quantitative relations presented
by MTB and add some comments. Let x = (x0, x1) ∈ {0, 1}2

be the two-bit sequence that Alice wants to encode. Let y
and z ∈ {0, 1} label the positions of the bit in x that Bob
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and Charlie randomly choose, respectively, to decode. Finally,
let b and c be the results of Bob and Charlie’s respective
measurements, associating bit 0 with outcome +1 and bit 1
with −1. We define the two correlation witnesses,

WAB = 1

8

∑
x,y

p(b = xy|x, y), (1)

WAC = 1

8

∑
x,z

p(c = xz|x, z), (2)

which quantify the probabilities that Bob and Charlie cor-
rectly decode the bit they are interested in, averaged over all
possible input sequences and bit choices.

If the parties use classical physics, these probabilities are
independent of each other and limited by WAB,WAC � 3

4 . This
upper bound is reached, for example, if Alice sends the first of
her bits, meaning that when Bob and Charlie want to decode
the second, they can only guess. Yet, MTB found that the two
decoders can both violate this limit in a quantum scenario. The
aforementioned trade-off between the information that each
of them can extract translates into an upper bound to WAC that
depends on the attained value of WAB. In particular,

WAC � 1

8

(
4 +

√
2 +

√
16WAB − 16W 2

AB − 2
)
, (3)

with WAB itself being limited by previous results at WAB � 1
2 +√

2
4 [2]. MTB also proposed a strategy to saturate this trade-off

and proved that it is unique up to unitary transformations and
under the assumption that Alice’s state is two dimensional and
all measurements have binary outcomes. This strategy reads

(C1) Alice encodes her two-bit sequence x = (x0, x1) into
one of four pure states and sends it to Bob. These states form
the angles of a square in the XZ equatorial line of the Bloch
sphere and are equidistant from the eigenstates of σX and
σZ : �x = 1

2 [1 + (−1)x0 σX√
2

+ (−1)x1 σZ√
2
].

(C2) Bob weakly measures σX if y = 0 or σZ if y = 1
on the qubit with strength parameter labeled η ∈ [0, 1] as in
Ref. [28]. The first case (y = 0) entails using the two-outcome
positive operator-valued measure (POVM) (Mb|0, b ∈ {0, 1})
where Mb|0 = 1

2 [1 + (−1)bησX ]. The state is transformed
according to Kraus operator Kb|0 = 1

2 [(cos μ + sin μ)1 +
(−1)b(cos μ − sin μ)σX ], where μ = 1

2 arccos(η). In this
way, K†

0|0K0|0 − K†
1|0K1|0 = M0|0 − M1|0 = ησX . The second

case (y = 1) is similar with σX replaced by σZ . Bob then sends
the resulting state to Charlie.

(C3) Charlie performs projective measurements of σX if
z = 0 or σZ if z = 1.

In this situation, the following relations hold:

WAB = 1

2
+

√
2

4
η, (4)

WAC = 1

2
+

√
2

4

(
1 +

√
1 − η2

2

)
, (5)

which, when combined, make Expression (3) an equality.
Notably, at least, one of these witnesses is always above the

classical limit of 3
4 and if η ∈ [ 1√

2
,
√

2
√

2 − 2] both are. For

η = 4
5 , they take the same value of 1

2 +
√

2
5 .

However, we add that this strategy cannot be straightfor-
wardly extended to a third decoder. Even if Charlie also uses
weak measurements with strength η′ and relays the resulting
qubit to David, there are no values of (η, η′) that provide
correlation witnesses greater than 3

4 for all three decoders.
We show this in Appendix A finding similar results to those
attained in the context of the Clauser-Horne-Shimony-Holt
inequality [29].

One can wonder whether MTB’s protocol can improve
the decoding probability of the entire input sequence. In a
communication scenario in which Bob and Charlie cooperate
and agree to always decode different bits, the joint probability
of both being correct follows the law:

WABC = 1

8

∑
x,y

p(b = xy, c = xz|x, y, z �= y)

= 1

4

(
1 + η +

√
1 − η2

√
2

)
. (6)

It holds that WABC � 1
2 with the bound being reached only for

η = 1√
2
. This agrees with the limits present in the literature:

a m-qubit system cannot make the decoding probability of a
n-bit message better than 2m/2n [5, Theorem 2.4.2].

The uniqueness of the strategy consisting of C1–C3 allows
MTB to conclude that finding WAB and WAC correlated to
saturate Expression (3) self-tests that the state preparation
was that of C1 and the measurements were those of C2 and
C3. This is an important result for protocols of SDI-QRE
or SDI-QKD in which devices cannot be trusted, and their
behavior can be checked only from the outcomes they provide.
Moreover, even if the values of the witnesses are suboptimal,
they still give a lower and an upper bound on parameter η,

η � ηlow =
√

2(2WAB − 1), (7)

η � ηup = 2
√

(2 +
√

2 − 4WAC)(2WAC − 1), (8)

which become tight when conditions C1–C3 are fulfilled.
These bounds can also be extended to self-tests on the in-
compatibility between Bob’s measurements [30], which is a
crucial resource for many quantum information tasks. For
instance, WAB and WAC can be used as self-tests for the
characterization of the QKD state decoders even if the optimal
conditions are not reached.

Finally, we add that trade-off (3) and its inverse,

WAB � 1

2

[
1 +

√
4(4 +

√
2)WAC − 16W 2

AC − 4 − 2
√

2
]

(9)

can provide a security bound in an adversarial scenario in
which Alice and Charlie try to detect a man in the middle
(Bob) or infer the properties of his actions. In particular, if
WAC > 1

2 +
√

2
5 ≈ 0.783, then WAC > WAB (see Fig. 3), mean-

ing that Alice and Charlie can extract a cryptographic key
secure from Bob’s eavesdropping using a SDI-QKD protocol,
such as that of Ref. [19]. Compared to the one present in the
latter, Eq. (9) is a tighter upper bound on WAB and, in turn,
on the mutual information between the legitimate parties’
key and the eavesdropper’s. Therefore, the performance of
the protocol would be increased, although, here, we have the
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FIG. 1. Scheme of the experimental setup. The sequences of
three half-wave plates (HWPs) before and after the Mach-Zehnder
interferometer (MZI) are implemented with a single plate each, but
we show them here to better separate the roles of Alice, Bob, and
Charlie. The arrow indicates that Bob and Charlie only observe the
outcome when the detectors click.

additional assumption that Bob’s measurements have binary
outcomes.

III. METHOD

Our experiment aims at verifying all these relations and
showing that it is feasible to meet conditions C1–C3 and find
the optimal trade-off. We also use Eqs. (7) and (8) to bind
the value of η. We choose single photons as our experimental
platform and their polarization as the degree of freedom that
encodes the information. We produce photon pairs at 808
nm through spontaneous parametric down-conversion using
a periodically poled potassium titanyl phosphate crystal in
a type-II collinear-phase-matching configuration so that the
generated state after the polarizing beam splitter (PBS) is
|ψ〉 = |HA〉 |Vherald〉 [31]. One photon of each pair is selected
in the |V 〉 polarization to filter out imperfections in state
preparation and background light and is sent to a single-
photon avalanche diode (SPAD) detector. Its presence heralds
the other photon of the pair which reaches the core of the
setup.

This is divided into three stages that play the role of Alice,
Bob, and Charlie as shown in Fig. 1. First, Alice changes the
state from |H〉 = trherald(|ψ〉 〈ψ | |Vherald〉 〈Vherald|) to one of the
four optimal states of condition C1 using a pair of HWPs. Bob
carries out the weak measurement with a MZI based on polar-
izing beam displacers [(PBDs), Thorlabs BD40]. A first PBD
entangles polarization with the path qubit, then the two arms
encounter one HWP each, HWPH and HWPV in Fig. 1 with
axes at angles 0 and π/4 relative to the horizontal direction
defined by |H〉. HWPCOM spans across both arms and sets the
strength of the measurement through its angle θ = π−arccos(η)

4 .
A second PBD has the dual purpose of closing the interferom-
eter and performing the measurement. It does this by selecting
the outcome 0 and sending the corresponding photons to the
one exit that continues to the rest of the setup where they meet
a HWP at angle π/4. This MZI + HWP scheme implements
K0|0: Two more HWPs, one before and one after it, can be
rotated to select the other outcome or change the measurement
basis. This means that Bob’s apparatus observes one outcome
at a time; extensions that allow observing both in separate
exits, thus, performing a full measurement, are possible (see
Appendix B) but beyond the scope of this experiment. Char-

lie’s measurements are projective, therefore, his setup consists
of a fixed linear polarizer (LP) preceded by a HWP that selects
one combination of basis and outcome at a time. To reduce
the number of components, we replaced the two groups of
three consecutive HWPs with a single HWP each, which is
controlled by two parties (HWPAB and HWPBC in Fig. 1).
Finally, light is coupled into a single-mode fiber and sent to a
SPAD detector. Its electrical signals are correlated with those
of the herald and coincidences (within a ±1-ns window) are
counted for a fixed exposure time of 2 s. The total number of
coincidences in this time and for each measurement choice is
approximately 8 × 103.

Our implementation represents a proof of principle demon-
stration of a QRAC without active random choice of prepara-
tion and measurements. Moreover, Bob and Charlie do not
observe their outcomes independently, but only when the
detectors at the end of the setup click. We iterate sequen-
tially over all the possible configurations of preparation (x),
measurement choice (y, z), and outcome (b, c) by rotating
HWPAB and HWPBC, whose angles are listed in Table I
(Appendix C). For each, we record the number of coincident
counts. These are proportional to the joint probability of the
outcomes selected by Bob and Charlie, and we use them to
compute the conditional probabilities required by Eqs. (1) and
(2) to find the correlation witnesses.

IV. RESULTS

We measure WAB and WAC for 11 different values of the
strength parameter, equally spaced in [0, 1]. We use the HWP
inside Bob’s MZI to set its value of ηset . All the results that
we report here are extracted from the same experimental data.

Figure 2 plots WAC as a function of WAB and compares it
with the optimal trade-off that saturates Expression (3). The
quantum features of the experiment are most evident from
the fact that not only all points are outside of the classical
region, but also they lie on the boundary of the set of quantum
correlations between the witnesses, which certifies that we
were able to match the optimal conditions C1–C3.

Figure 3 compares the individual witnesses with the ex-
pected values of Eqs. (4) and (5). We clearly see that we could
sample the very interesting region in which both WAB and WAC

are nonclassical.
Figure 4 confirms the validity of Eq. (6) and shows that

if Bob and Charlie cooperate to decode the entire input
sequence, they cannot succeed with probability better than 1

2 .
However, this scheme does allow them to saturate the upper
bound for a specific measurement strength.

Finally, we evaluated the self-testing capabilities of the
protocol, computing upper and lower bounds on η from the
experimental WAB and WAC using Eqs. (7) and (8). Figure 5
plots them as a function of ηset . The tightness of the bounds is
another proof that our setup achieved the optimal conditions
C1–C3.

V. DISCUSSION

Our experiment confirms the relations presented by MTB
and proves that it is possible for two decoders in a QRAC to
share higher success probabilities than admitted by classical
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FIG. 2. Experimental correlation witnesses (dots) plotted against
each other and compared with the optimal trade-off of Eq. (3) (solid
line). Here, and in all the following figures, error bars are one
standard deviation, obtained from 104 Monte Carlo simulations of
the experiment, which consider the Poissonian error on the detected
counts.

physics. The quantum weak measurement is the key to this as
it allows reducing the disturbance on the state observed by the
first decoder so that it can be used again by the second. This
is a new situation in which weak measurements prove to be
useful and to be able to overcome the limitations of axiomatic
projective measurements.

A crucial point of this protocol is that it offers a different
way to self-test quantum devices with limited assumptions:
Observing the optimal values of WAB and WAC pinpoints (up
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FIG. 3. Experimental correlation witnesses (dots) as a function
of the strength parameter that we set using Bob’s HWP. We also show
the behavior predicted by Eqs. (4) and (5) (solid lines). We can see
that there is region in which both witnesses are above the classical
limit ( 3

4 , dashed line).
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Information thoeretical limit
Experimental WABC

FIG. 4. Probability of correctly decoding both of Alice’s bits
when Bob and Charlie agree to target different bits.

to unitary transformations) Alice’s state preparation and Bob
and Charlie’s measurements. Even without optimality, some
properties of Bob’s measurements can be bounded. This is
important for the characterization of setups that implement
qubit measurements and require accurate strength setting or
exploit incompatibility. We have also shown that the concept
of sequential QRACs can provide a security bound for a SDI-
QKD scenario. Additionally, in a communication scenario in
which Bob and Charlie cooperate to decode the entirety of
Alice’s string, there is one value of strength that can reach the
performance limit imposed by information theory.

It would also be interesting to study robust self-testing
relations for MTB’s scheme that can bound other properties
of the quantum devices in suboptimal conditions. If needed,
other assumptions could be added, e.g., perfect knowledge of

FIG. 5. Lower and upper bounds on the strength parameter,
obtained by applying relations (7) and (8) to the experimental cor-
relation witnesses.

033205-4



EXPERIMENTAL DEMONSTRATION OF SEQUENTIAL … PHYSICAL REVIEW RESEARCH 2, 033205 (2020)

Alice’s preparations could help characterize Bob and Char-
lie’s operations in a measurement-device-independent sce-
nario.

Finally, extensions of Bob’s MZI scheme that allow full
polarization measurements should be explored, considering
also an implementation in integrated optics where polarizing
directional couplers and polarization rotators are now feasible
and could provide better accuracy than free-space discrete
components [32–35].
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APPENDIX A: EXTENSION OF THE PROTOCOL
TO MORE RECEIVERS

The protocol can be extended to any number of receivers if
they all use weak measurements like Bob. However, we show
here that this strategy does not allow more than two receivers
two achieve correlation witnesses higher than 3

4 together.
Suppose the first receiver (Bob) uses strength parameter η1,
then,

WAB(η1) = 1

8

∑
x,y

tr(�xMxy|y) = 1

2
+

√
2

4
η1, (A1)

where �x = 1
2 (1 + (−1)x0 σX√

2
+ (−1)x1 σZ√

2
) is the state pre-

pared by Alice and Mb|y are the operators,

M0|0 = 1
2 (1 + η1σX ),

M1|0 = 1
2 (1 − η1σX ),

M0|1 = 1
2 (1 + η1σZ ),

M1|1 = 1
2 (1 − η1σZ ). (A2)

Note that {M0|0, M1|0} and {M0|1, M1|1} are two two-
outcome POVMs, indeed,

∑
b Mb|y = 1, ∀ y. Moreover∑

b(−1)bMb|0 = η1σX and
∑

b(−1)bMb|1 = η1σZ , which is
why these POVMs correspond to weak measurements of
σX and σZ , respectively. To each Mb|y corresponds a Kraus
operator Kb|y such that K†

b|yKb|y = Mb|y,

K0|0 = 1
2 [(cos μ1 + sin μ1)1 + (cos μ1 + sin μ1)σX ],

K1|0 = 1
2 [(cos μ1 + sin μ1)1 − (cos μ1 + sin μ1)σX ],

K0|1 = 1
2 [(cos μ1 + sin μ1)1 + (cos μ1 + sin μ1)σZ ],

K1|1 = 1
2 [(cos μ1 + sin μ1)1 − (cos μ1 + sin μ1)σZ ], (A3)

where μ1 = 1
2 arccos(η1).

Bob

Charlie

MZI Recombination stage

PBD HWPPBS SPADMirror

FIG. 6. A possible scheme that extends the MZI used in the
experiment to perform a full measurement. Charlie also performs a
full measurement by placing detectors at both exits of his PBS.

The second receiver (Charlie) ignores Bob’s measurement
choice y and outcome b, therefore, his correlation witness
must be calculated from the postmeasurement state averaged
over y and b,

�B
x = 1

2

∑
y,b

Kb|y�xK†
b|y

= 1

2

⎛
⎝1 +

1 +
√

1 − η2
1

2

(−1)x0σX + (−1)x1σZ√
2

⎞
⎠. (A4)

This expression is remarkably similar to the initial state �x

but contains factor
1+

√
1−η2

1

2 that shortens the Bloch vector of
the state. Supposing that Charlie also performs weak measure-
ments with strength parameter η2, his correlation witness is as
follows:

WAC(η1, η2) = 1

8

∑
x,z

tr
(
�B

x Mxz |z
)

= 1

2
+

√
2

4
η2

1 +
√

1 − η2
1

2
, (A5)

which coincides with Eq. (5) for η2 = 1.
This can continue for any number of receivers, and the

witness for the nth one is as follows:

WARn (η1 · · · ηn) = 1

2
+

√
2

4
ηn

n−1∏
i=1

1 +
√

1 − η2
i

2
. (A6)

This is an increasing function of ηn but a decreasing one of
ηi, ∀ i < n. It can be seen as a generalization of Eq. (15) of
Ref. [28] and is similar to Eq. (24) of Ref. [29] (for the case
of n = 3), which was obtained in the context of Bell inequality
violations.

We can see from Eq. (A1) that WAB > 3
4 for η1 = 1√

2
+

ε1, ∀ ε1 > 0. Plugging this value into Eq. (A5) shows that
WAC > 3

4 for η2 = 2(
√

2 − 1) + ε2, ∀ ε2 > (6
√

2 − 8)ε1 +
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TABLE I. HWP angles and coincident counts for each configuration of x0, x1, y, b, z, and c.

Settings Angles (rad) Coincident counts in 2 s. ηset = · · ·
x0 x1 y b z c HWPAB HWPBC 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0 0 0 0 0 π/16 π/4 2864 4709 5062 5313 5797 5379 5779 6437 6278 6517 6618
0 0 0 0 0 1 π/16 π/2 450 624 502 461 356 274 219 138 98 36 1
0 0 0 0 1 0 π/16 π/8 2840 4298 4461 4472 4363 4277 4209 4249 4137 3874 3396
0 0 0 0 1 1 π/16 3π/8 529 986 1200 1400 1561 1638 1978 2145 2483 2627 3521
0 0 0 1 0 0 5π/16 0 2988 3736 3402 2885 2298 1810 1486 1036 685 332 8
0 0 0 1 0 1 5π/16 π/4 425 784 792 863 861 801 927 954 1039 1021 1096
0 0 0 1 1 0 5π/16 −π/8 2944 4000 3798 3643 3373 2925 2422 2111 1709 1258 511
0 0 0 1 1 1 5π/16 π/8 598 657 432 353 177 118 44 16 18 101 563
0 0 1 0 0 0 −π/16 3π/8 2852 4476 4325 4556 4647 3964 4233 4026 4317 3797 3423
0 0 1 0 0 1 −π/16 5π/8 432 846 948 1172 1354 1491 1714 1872 2319 2459 3331
0 0 1 0 1 0 −π/16 π/4 2799 4492 4704 5124 5454 5270 5664 5809 6278 6565 6454
0 0 1 0 1 1 −π/16 π/2 570 716 688 533 434 354 314 209 149 82 1
0 0 1 1 0 0 3π/16 π/8 2970 4161 3992 3534 3447 2407 2543 2135 1931 1458 632
0 0 1 1 0 1 3π/16 3π/8 475 563 370 241 132 47 21 6 40 124 627
0 0 1 1 1 0 3π/16 0 2967 3849 3494 2881 2520 1984 1657 1132 816 358 3
0 0 1 1 1 1 3π/16 π/4 565 857 907 991 1035 1024 1058 1087 1218 1169 1227
0 1 0 0 0 0 −π/16 π/4 2757 4524 5024 5048 5342 5312 5971 6066 6399 6337 6672
0 1 0 0 0 1 −π/16 π/2 554 693 627 548 442 400 293 206 134 71 1
0 1 0 0 1 0 −π/16 π/8 540 886 1127 1258 1451 1338 1990 2062 2415 2703 3462
0 1 0 0 1 1 −π/16 3π/8 3006 4363 4543 4409 4451 3995 4320 4021 4062 3832 3522
0 1 0 1 0 0 3π/16 0 2999 3960 3516 2957 2426 1949 1654 1113 746 403 9
0 1 0 1 0 1 3π/16 π/4 561 885 972 962 1047 939 1162 1068 1205 1242 1248
0 1 0 1 1 0 3π/16 −π/8 456 547 402 281 169 82 23 7 20 129 701
0 1 0 1 1 1 3π/16 π/8 2981 4118 4014 3712 3373 2819 2725 2168 1952 1419 575
0 1 1 0 0 0 −3π/16 3π/8 2889 3920 3767 3441 3080 2788 2441 2015 1761 1300 513
0 1 1 0 0 1 −3π/16 5π/8 558 677 483 339 198 92 42 10 11 91 617
0 1 1 0 1 0 −3π/16 π/4 415 692 803 861 899 896 984 980 992 967 1151
0 1 1 0 1 1 −3π/16 π/2 2996 3923 3428 2983 2594 1868 1485 1122 723 339 10
0 1 1 1 0 0 π/16 π/8 2782 4381 4514 4463 4530 4358 4474 4188 4445 3852 3493
0 1 1 1 0 1 π/16 3π/8 575 946 1152 1370 1568 1664 1984 2234 2556 2754 3472
0 1 1 1 1 0 π/16 0 584 712 625 514 526 390 326 223 168 103 4
0 1 1 1 1 1 π/16 π/4 2875 4625 5018 5150 5543 5709 6184 6094 6379 6315 6570
1 0 0 0 0 0 −5π/16 π/4 540 854 930 953 1043 1008 1058 1140 1170 1159 1174
1 0 0 0 0 1 −5π/16 π/2 2920 3788 3365 2771 2268 1794 1416 1124 685 343 10
1 0 0 0 1 0 −5π/16 π/8 2827 4005 3724 3382 3210 2822 2602 2215 1810 1474 598
1 0 0 0 1 1 −5π/16 3π/8 443 528 346 242 151 54 16 7 53 147 652
1 0 0 1 0 0 −π/16 0 443 580 467 374 352 266 188 150 73 23 6
1 0 0 1 0 1 −π/16 π/4 2757 4601 4685 5179 5466 5458 5724 5854 6204 6432 6628
1 0 0 1 1 0 −π/16 −π/8 2766 4380 4347 4296 4365 4190 4357 4141 3959 3767 3128
1 0 0 1 1 1 −π/16 π/8 376 829 1007 1175 1370 1542 1723 1889 2290 2532 3253
1 0 1 0 0 0 −7π/16 3π/8 576 994 1153 1290 1504 1729 1860 2180 2546 2725 3414
1 0 1 0 0 1 −7π/16 5π/8 2872 4271 4389 4500 4339 4071 4244 4275 4031 4108 3212
1 0 1 0 1 0 −7π/16 π/4 2979 4670 4999 5214 5531 5557 6258 6090 6263 6660 6219
1 0 1 0 1 1 −7π/16 π/2 423 571 498 480 392 270 236 152 97 46 5
1 0 1 1 0 0 −3π/16 π/8 520 551 412 283 150 94 25 1 33 114 586
1 0 1 1 0 1 −3π/16 3π/8 2914 4136 3730 3380 2996 2664 2379 1995 1757 1296 523
1 0 1 1 1 0 −3π/16 0 2997 3692 3306 2869 2304 1843 1542 1030 669 293 13
1 0 1 1 1 1 −3π/16 π/4 383 686 706 816 816 887 945 961 1040 1043 970
1 1 0 0 0 0 −3π/16 π/4 415 691 744 762 838 860 950 1013 977 1059 1043
1 1 0 0 0 1 −3π/16 π/2 2975 3948 3352 2930 2434 1904 1535 1066 755 353 8
1 1 0 0 1 0 −3π/16 π/8 506 562 406 246 165 92 28 2 30 119 555
1 1 0 0 1 1 −3π/16 3π/8 2859 3977 3695 3384 2984 2687 2509 2011 1765 1392 515
1 1 0 1 0 0 π/16 0 551 776 649 599 430 402 281 268 171 82 6
1 1 0 1 0 1 π/16 π/4 2916 4722 5020 5356 5233 5407 5946 6202 6538 6627 6289
1 1 0 1 1 0 π/16 −π/8 523 935 992 1230 1421 1563 1901 1947 2379 2728 3400
1 1 0 1 1 1 π/16 π/8 2904 4386 4334 4475 4119 4218 4205 3970 3940 3914 2964
1 1 1 0 0 0 −5π/16 3π/8 462 479 386 228 146 64 15 7 36 119 637
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TABLE I. (Continued.)

Settings Angles (rad) Coincident counts in 2 s. ηset = · · ·
x0 x1 y b z c HWPAB HWPBC 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 1 1 0 0 1 −5π/16 5π/8 2942 4123 3801 3568 3064 2703 2678 2145 1817 1458 590
1 1 1 0 1 0 −5π/16 π/4 542 837 879 986 937 1034 1055 1002 1139 1114 1225
1 1 1 0 1 1 −5π/16 π/2 2844 3816 3398 2632 2203 1872 1467 1012 731 317 8
1 1 1 1 0 0 −π/16 π/8 497 910 1149 1300 1466 1675 1874 2055 2370 2581 3239
1 1 1 1 0 1 −π/16 3π/8 2969 4372 4605 4466 3927 4339 4399 4043 3961 3899 3235
1 1 1 1 1 0 −π/16 0 460 588 466 428 283 238 217 131 77 30 8
1 1 1 1 1 1 −π/16 π/4 2710 4428 4619 5019 4935 5534 5571 5918 6186 6298 6435

O(ε2
1 ). A third receiver would then find

WAR3

(
1√
2

+ ε1, 2(
√

2 − 1) + ε2, η3

)

� WAR3

(
1√
2
, 2(

√
2 − 1), 1

)

= 1

2
+ (

√
2 + 1)(1 +

√
8
√

2 − 11)

16
≈ 0.735 <

3

4
, (A7)

where the first inequality is justified by the above monotonic-
ity relations for Eq. (A6). This means that if Bob and Charlie
use measurements strong enough to overcome the classical
bound, a third receiver cannot do so even with maximal
strength.

APPENDIX B: FULL MEASUREMENTS WITH THE
MACH-ZEHNDER INTERFEROMETER

The apparatus made up of a MZI and a HWP that Bob
uses to perform the weak polarization measurements can
only implement one Kraus operator at a time. As described
in Sec. III, it is possible to switch from one to another by
rotating HWPs before and after the MZI. However, there are
many ways to change the scheme to make a full measure-
ment possible without moving optical components. One is the
replacement of PBDs with polarizing beam splitters which
would make both exits available. A more detailed description
of this proposal is in Ref. [27]. The feasibility of bringing this
idea to integrated optics should be explored, because direct
translations of PBSs and wave plates exist [32,35] and could
allow better accuracy in a much more compact setup. How-
ever, if implemented with discrete optical table components,

this scheme has the disadvantage that PBS-based MZIs are
difficult to align. A more practical idea is the use of large
PBDs that offer three exits, two of which would correspond
to the other measurement outcome. They would still need
to be recombined with further PBDs, which, if identical to
the ones in the MZI, would not ruin the optical coherence.
The beams could then reach Charlie, who could implement
a full measurement using a PBS and two detectors for each
input beam. HWPs would need to be rotated only to select the
measurement basis. Figure 6 depicts this idea.

Note that, with this scheme, Charlie would know Bob’s
outcome by observing which detector clicks. If this informa-
tion cannot be simply ignored and must be physically erased,
one can imagine to further recombine Bob’s exit beams using
a (nonpolarizing) beam splitter and delay lines before reach-
ing a single PBS in Charlie’s setup.

APPENDIX C: MORE DETAILS ON THE EXPERIMENT

Table I reports the angles of HWPAB and HWPBC that
correspond to each setting of Alice’s preparation (x0, x1),
Bob’s measurement basis (y), Bob’s outcome (b), Charlie’s
measurement basis (z), and Charlie’s outcome (c). As stated
in the main text, HWPH and HWPV are fixed at angles 0 and
π/4, respectively, whereas HWPCOM changes only with the
measurement strength η, and its angle is θ = π−arccos(η)

4 . A
description of a very similar setup is also present in Ref. [27]
with the difference that HWPH and HWPV are at angles −π/8
and π/8, respectively, and θ = π/8 − arccos(η)/4. Indeed,
the MZI works in the same way for any angle α of HWPV

as long as HWPH is at angle α − π/4 and HWPCOM is at
θ = α − arccos(η)/4. The coincident counts observed in the
exposure time of 2 s for each configuration are also included
in Table I.
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