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ABSTRACT The increasing focus on the active participation of low-voltage (LV) active distribution
networks (DNs) in electricity markets requires the real-time optimal control of these DNs. To achieve
this goal, a cheap semi-definite programming (SDP)-based optimal power flow (OPF) model for active
neutral-equipped DNs, hosting both wye- and delta-connected loads, is proposed in this paper, aiming
at overcoming the high computational requirement of the primal SDP-based OPF model. The coupled
power injections between conductors are explicitly represented for each conductor by utilizing the network
admittance matrix-based approach. Furthermore, three novel propositions (P1, P2 and P3) are proposed
for the modelling of the constant current component of ZIP end-users in the context of the proposed OPF
model. Moreover, the impact of the voltage-angle deviation on the exactness of the P1- and P2-based models
is discussed. Simulations are carried out on several LV active DNs for various parameters of ZIP end-users,
and the quality of the proposed OPFmodel is verified through the%optimality gap, power mismatch, voltage
violation and root-mean-square error criteria. It is successfully shown that the proposed OPF model provides
an optimal and feasible solution for all load types (wye, delta, mixed wye-delta) under a large range of ZIP
load parameters. Furthermore, among the three propositions, the P3-based OPFmodel appears to be the most
accurate in terms of determining an optimal and feasible solution. Finally, the reduced computational time
of the cheap conic model allows its real-time implementation for medium- and large-sized DNs for which
the primal multi-phase SDP-based model is practically difficulty to realize.

INDEX TERMS Active distribution networks, branch flow methodology, conic models, neutral conductor,
optimal power flow, semi-definite programming, wye- and delta-connected ZIP loads.

ACRONYMS
BFM Branch Flow Model.
BIM Bus Injection Model.
CCI Correction Currection Injection.
CT Computational Time.
DER Distributed Energy Resource.
DG Distributed Generator.
DN Distribution Network.
DNN Distribution Networks which are equipped with

Neutral conductor(s).
EVR Eigen-Value Ratio.
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FR Feasible Region.
FR-FC-V First Row-First Column-Variable.
LM Load Model.
LV Low Voltage.
MV Medium Voltage.
NL Non-Linear.
OF Objective Function.
OG Optimality Gap.
OP Optimization Problem.
OPF Optimal Power Flow.
OV Optimization Variable.
PSD Positive Semi-Definite.
RMSE Root-Mean-Square-Error.
SDP Semi-Definite Programming.
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SOCP Second-Order-Cone-Programming.
ZIP Constant Impedance, constant Current and

constant Power.

I. INTRODUCTION
The optimal power flow (OPF) problem formulation based
on the convex relaxation and approximation techniques has
gained significant attention in the past few years due to
the fact that these techniques ensure global optimality and
problem infeasibility through several sufficient conditions
and criteria. In this context, various relaxations [1]–[8] based
on the concepts of lift-and-project, convex envelopes and
hierarchies of moment have been proposed mainly for the
single-phase equivalent representation of distribution net-
works (DNs). The global optimality of semi-definite pro-
gramming (SDP)-based relaxation for radial andmesh DNs is
proved in [9]–[11], whereas the exactness of SDP-based and
second-order-cone-programming (SOCP)-based OPF mod-
els are discussed in [12], [13]. A detailed survey on these
relaxations can be found in [14]. Due to the large compu-
tational requirements of SDP-based relaxation, the sparsity
of power networks is exploited in [15]–[18], which signif-
icantly reduces the computational time (CT) of SDP-based
relaxation and, therefore, allows its practical realization for
large networks.

To determine the optimal active and reactive power oper-
ational point of single- and three-phase distributed energy
resources (DERs) connected to medium-voltage (MV) and
low-voltage (LV) DNs, it is necessary to solve a multi-phase
OPF problem. Since these DNs exhibit significant unbal-
ance loading, solving a single-phase OPF model for them
provides an incomplete picture of the state variables of
these DNs. However, due to the increased complexity and
non-convexity of a multi-phase OPF problem in compar-
ison to a single-phase OPF model, very few researchers
have studied it for three-phase networks. Among the relax-
ation techniques, the single-phase SDP-based relaxation in
its primal1 form is extended in [19] and solved through
an alternative direction method of multipliers (ADMM)-
based distributed algorithm. The single-phase bus injection
model (BIM)-based and branch flow model (BFM)-based
SOCP relaxations are extended in [20], [21] to three-phase
unbalanced DNs, which leads to cheap2 BIM-SDP-based
and BFM-SDP-based OPF relaxations. It must be noted that
the resultant relaxations involve positive semi-definite (PSD)
constraints in their formulation, even for a radial system, due
to the existence of mutual coupling among network phases.
Unlike a single-phase equivalent DN, for which the SDP
and SOCP models have been proved to be equivalent due
to the transformation of SDP constraints into SOCP con-
straints [22], [23], the same has not yet been proved for
three-phase or multi-wire models. Consequently, the primal

1primal: the PSD constraint is enforced on the (n+ 1× γ )× (n+ 1× γ )
OV

2cheap: the PSD constraints are enforced on (γ × 2)× (γ × 2) OVs

multi-phase SDP model is considered a generalization of
cheap multi-phase SDP-based OPF models. However, it must
be noted that the PSD constraints are defined over smaller
matrices, which involve either node voltages (BIM) or a
node voltage along with the branch flow quantities (BFM),
in cheap OPF relaxations. Consequently, the computational
efficiency of these cheap SDP-based OPF models does not
degrade by much relative to the computational requirements
of single-phase SOCP-based relaxations. In fact, the CT
reduces significantly when the PSD constraints are defined
only on the edge minor, three-cycle minor or four-cycle minor
of a full matrix variable.

Quite recently, a chordal-relaxation-based SDP model was
proposed in [24], which exploits the chordal sparsity of a
three-phase SDP-based relaxation to speed up the computa-
tional process. Furthermore, in [25], the chordal relaxation is
embedded inside a convex iterative algorithm, which, on the
one hand, increases the computational efficiency for large
DNs and, on the other hand, guarantees the global optimality
of the recovered solution when the trace of the regularization
terms becomes zero.

In all the above-mentioned proposed single- and
three-phase OPF relaxations, except [21], phase-ground
constant power injections are taken into consideration
by assuming only the wye-connected end-users. In [21],
a BFM-SDP-based relaxation is solved for the mixed wye-
and delta-connected loads. However, the optimization vari-
able (OV) related to the latter load type has a large eigen-value
ratio (EVR), which indicates that the proposed approach fails
to provide a feasible solution for delta end-users. In [26],
an attempt is made to incorporate a constant impedance,
constant current and constant power (ZIP) load into the
SDP-based OPF model by introducing additional voltage-
magnitude-based OVs at load buses. However, the proposed
scheme is developed only for the single-phase equivalent
representation of a DN, and it has been shown in our latest
work [27] that the developed approach cannot be directly
generalized for multi-phase DNs.

In the case of distribution networks equipped with neu-
tral conductor(s) (DNNs) and hosting shunt elements either
between the phase-neutral (wye) or phase-phase (delta) con-
ductors, the assumption of a phase-ground power injection
is no longer valid. Consequently, the existing three-phase
OPF models cannot be extended to 4 or more wire networks
by simply specifying the voltage drop and power balance
constraints corresponding to the additional conductors. This
restriction is due to the fact that in these networks, power
injection is coupled between any two conductors, which is
not the case for a single- or three-phase network configu-
ration. Consequently, for neutral-equipped DNs, a detailed
primal SDP-based OPF model was recently introduced by
the authors in [27], [28]; this model successfully incorporates
both wye- and delta-connected loads and distributed genera-
tors (DGs) without reducing the network configuration from
four conductors to three phases. However, as shown in [27],
[28], the primal SDP-based OPF model suffers from a high
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CT and cannot be realized for medium and large real LV
active DNs. Since LVDNs are rapidly transforming from pas-
sive to active networks and, therefore, can play a significant
role in the near future in the day-ahead and ancillary services
markets, it is therefore necessary to optimally control and
manage these networks on a real-time basis.

To realize the real-time implementation of an OPF model
for LV active DNs, a cheap SDP-based model provides an
alternative to the primal SDP-based relaxation because of
its low computational requirements. Therefore, the following
goals are set and successfully achieved in this work.

A. CONTRIBUTIONS
1) Extension of a centralized three-phase cheap SDP-

based OPF model, which utilizes the BFM-based
power system representation, for DNNs containing
both wye- and delta-connected ZIP loads

2) Proposal of three novel techniques for the approximate
modelling of the constant current component of a ZIP
end-user to incorporate it into the proposed OPF model

3) Development of tighter limits for the complex
phase-ground voltage variables involved in proposi-
tions 1 and 2, and proposal of a novel approach for
determining the bounds on neutral conductor voltage
variables

4) Demonstration of the impact of the voltage-angle-
deviation bounds on the exactness of the proposed OPF
models

The rest of the paper is organized as follows. Section II intro-
duces the nomenclature and provides a quick recap of the cor-
rection current injection (CCI)-methodology-based [29], [30]
power decoupling approach presented in [28]. In section III,
a non-linear OPF model, based on the BFM representation,
is initially presented, followed by the three novel modelling
techniques related to the constant current component. More-
over, a complete multi-wire cheap SDP-based OPF model is
presented. In section IV, a quality assessment of the devel-
oped OPF model is thoroughly carried out, whereas section
V concludes this paper.

II. MODELLING OF MULTI-PHASE RADIAL DISTRIBUTION
NETWORK AND DECOUPLED POWER INJECTION
REPRESENTATION
A. NOMENCLATURE
Consider a radial active DN comprising a set N of n + 1
nodes as N = {0, 1, 2, · · · , n} and a set E of branches as
E = {(i, j) ⊂ N × N } having γ conductors between any
two nodes. Let (j : i ∼ j) ∈ E denote a line connecting
node i to node j. Let 0 represent the substation node, and
define N+ as N\{0}. Let φij ⊂ {aij, bij, cij, n1ij , · · · , nwij}
and φi ⊂ {ai, bi, ci, n1i , · · · , nwi} be sets containing the
phase and neutral conductor of a line (i, j) ∈ E and the
phase and neutral conductor of a node i ∈ N , respectively.
Let ωi ⊂ {n1i , · · · , nwi} and ωij ⊂ {n1ij , · · · , nwij} be sets
containing the neutral conductor of a node i ∈ N and line

(i ∼ j) ∈ E , respectively, and define ηi = φi\ωi and
ηij = φij\ωij as sets containing only phase conductors of a
node i ∈ N and a line (i ∼ j) ∈ E , respectively. Consider
ψi ⊂ {ai−n1i , bi−n1i , ci−n1i , · · · , ai−nwi , bi−nwi , ci−nwi}
and χi ⊂ {ai − bi, bi − ci, ci − ai} as sets containing the
phase-neutral and phase-phase connection of a node i ∈ N ,
respectively. Lines are modelled as π -equivalent represen-
tations, and complex series impedance of a line (i, j) ∈ E
is represented by Zij ∈ C|φij|×|φij|, where | X | defines the
cardinality of a general set X .

Consider V ϕi as the complex phase-ground voltage
of a phase ϕ ∈ φi of node i, and let Vi =

[V ag
i V bg

i V cg
i V n1g

i · · ·V
nwg
i ]T be the complex phase-ground

voltage vector of node i. Let Wii = ViVH
i be a hermi-

tian voltage matrix for node i. Take V0 = [16 0◦, 1 6 −
120◦, 16 120◦, 0, · · · , 0]T as the slack node voltage vector,
defined as a positive sequence voltage triplet for phases
{a, b, c} and as 0 for neutrals {n1, · · · , nw}. Let I

ϕ
i be the

complex current injected into the phase ϕ ∈ φi of a node i, and
let Iϕij be the complex current flowing on the phase ϕ ∈ φij of a
line (j : i ∼ j). In vector form, let Iij = [Iaij I

b
ij I

c
ijI

n1
ij , · · · , I

nw
ij ]T

be the complex current flowing on a line between nodes
i and j. Let λij = IijIHij be a hermitian current matrix for each
line (j : i ∼ j).
Consider Sg/%i = [Sagi S

bg
i S

cg
i S

n1g
i , · · · , Snwgi ]T as the com-

plex phase-ground (for both DGs and loads) power injection
vector at node i. Let Sij = ViIHij be a complex power flow
matrix for each line (j : i ∼ j). Let x and x denote the
lower and upper limits of a scalar/vector variable x, respec-
tively, and finally, let x∗ denote the conjugate of a complex
variable x.

B. DECOUPLED POWER INJECTIONS BASED ON THE
CORRECTION CURRENT INJECTION APPROACH
Consider a typical branch of a 4-wire DN incorporating loads,
DGs and grounding impedance, as shown in Fig. 1. Based
on the CCI approach [29], [30], any shunt element can be
modelled by a combination of constant admittance and a suit-
able current injector, if required. Consequently, the apparent
power of a single-phase shunt element, referred to as the r-th

FIGURE 1. DN representation with constant wye and delta load
admittances and correction current injections.
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iteration of a load flow, can be written as:

S∗αi(r) = Y αi(0) |V
α
i(r) |

2
− V αi(r)1I

α
i(r) (1)

where i ∈ N , α ∈ {υ, σ }, υ ∈ ψi, σ ∈ χi, 1I is the
CCI term and Yi(0) is the constant admittance, which refers
to the rated apparent power and voltage values. For wye- and
delta-connected end-users, it is defined as follows:

Wye: Y υi(0) =
S∗υi(0)
|V υi(0) |

2 ; Delta: Y σi(0) =
S∗σi(0)

|V σi(0)/
√
3|2

(2)

where subscript (0) refers to the rated value. On the other
hand, the voltage dependency of each component of a ZIP
load can be defined as follows:

Z: 1Iα,Z%i(r)
= 0 (3a)

I: 1Iα,I%i(r)
= kI

Y αi(0)
V αi(r)

(|V αi(r) |
2
− |V αi(r) ||V

α
i(0) |) (3b)

P: 1Iα,P%i(r)
= kP

Y αi(0)
V αi(r)

(|V αi(r) |
2
− |V αi(0) |

2) (3c)

By substituting (3a)-(3c) in (1), the apparent power related
to each component of a ZIP end-user can be expressed as
follows:

S∗α,Z%i(r)
= kZ · Y

α,Z%
i(0)
|V αi(r) |

2 (4a)

S∗α,I%i(r)
= (1− kI ) · Y

α,I%
i(0)
|V αi(r) |

2
+ kIY

α,I%
i(0)

(|V αi(r) ||V
α
i(0) |)

(4b)

S∗α,P%i(r)
= (1− kP) · Y

α,P%
i(0)
|V αi(r) |

2
+ kpY

α,P%
i(0)
|V αi(0) |

2 (4c)

where Y α,(Z/I/P)%i(0)
represents the constant admittance term

related to each component of a ZIP load at node i. Note that
the apparent powers expressed in (4a)-(4c) do not explicitly
represent the power injection in each conductor due to the
presence of a coupled admittance between the conductors.
This indicates that the explicit power injection corresponding
to each conductor can be obtained by splitting the admit-
tance between conductors. To achieve this, the following load
matrices 3Yi and 31i are introduced.

3Yi = ĨTY ∗ diag(L̂Yi ) ∗ ĨY (5)

31i = ĨT1 ∗ diag(L̂1i ) ∗ Ĩ1 (6)

where ĨY and Ĩ1 are the incidence matrices and are defined
as follows:

ĨY =

 1 0 0 −1
0 1 0 −1
0 0 1 −1

 ; Ĩ1 =
1
√
3

 1 −1 0 0
0 1 −1 0
−1 0 1 0


and L̂Yi = [Y ani(0) Y

bn
i(0)
Y cni(0) ]

T and L̂1i = [Y abi(0) Y
bc
i(0)
Y cai(0) ]

T are
3 × 1 vectors containing constant admittances of wye- and
delta-connected shunt elements, respectively, as shown in (2).
Through 3Yi and 31i , it eventually becomes possible to

obtain the explicit power injections as expressed below for
a ZIP end-user connected at node i.

S∗Z%i = V∗i ⊗ {3
Z
i Vi} (7)

S∗I%i = V∗i ⊗ {(3
Ic
i −3

I
i )Vi} +3

I
i (|Vi| ⊗ |Vi(0) |) (8)

S∗P%i = V∗i ⊗ {(3
Pc
i −3

P
i )Vi} + V∗i(0) ⊗ {3

P
i Vi(0)} (9)

where 3Ic ,3Pc are load matrices that are independent of
the ZIP parameters, whereas load matrices 3Z ,3I and 3P

are formed by multiplying the kZ , kI and kP coefficients
by the admittances of the respective load components. Once
explicit injections are obtained, they can be represented in
terms of the OVs, which are based on the chosen modelling
approach. In [27], [28], the primal SDP-based approach is
used to develop an OPF model. In this paper, the cheap
SDP-based OPF model is adopted for this purpose, which is
comprehensively reported in the next section.

III. NON-LINEAR AND CHEAP SDP-BASED OPF MODELS
The BFM-based power system representation was introduced
in [31] and later adopted by [32] and [20] in the context
of the OPF problem formulation for the single-phase equiv-
alent and three-phase representation of electrical networks,
respectively.

M1: Non-Linear BFM-Based OPF Model for DNNs

Var : Sgi ∈ C|φi|,Vi ∈ C|φi| (∀i ∈ N )

Sij ∈ C|φij|, Iij ∈ C|φij| (∀i ∼ j ∈ E)

subject to :

Vj = Vi − ZijIij ∀(j : i ∼ j) ∈ E (10a)∑
k:k∼i

(Ski − diag{ZkiIkiIHki })+ (Sgi − S%i )

=

∑
j:i∼j

(Sij)+ diag{(ViVH
i )Y

H
gnd,i} ∀i ∈ N (10b)

Sgi ≤ Sgi ≤ Sgi ∀i ∈ N (10c)

|V|2i ≤ diag(ViVH
i ) ≤ |V|

2
i ∀i ∈ N+ (10d)

diag(IijIHij ) ≤ |I|
2
ij ∀(j : i ∼ j) ∈ E (10e)

Sij = diag(ViIHij ) ∀(j : i ∼ j) ∈ E (10f)

In this paper, the non-linear (NL) and cheap SDP-based
OPF models are proposed for a 4-wire DN. The resultant
models are based on the BFM-based power system represen-
tation and are shown in models M1 and M2, respectively.
Notably, the non-convexity in M1 appears due to the lower
bound in (10d) and the bilinear product in (10f), whereas in
M2, the non-convexity is removed by specifying the PSD
constraints in (11g)-(11h). Furthermore, note that all terms,
except the load injection S%i term, involved in the constraints
of both models either are based on the variables of these
models or come from the network data.
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M2: Cheap BFM-SDP Based OPF Relaxation for DNNs

Var : Sgi ∈ C|φi|,Wii ∈ H|φi|×|φi| (∀i ∈ N )

Sij ∈ C|φij|×|φij|,λij ∈ H|φij|×|φij| (∀i ∼ j ∈ E)

subject to :

Wjj =Wii − (SijZHij + ZijSHij )+ ZijλijZHij
∀(j : i ∼ j) ∈ E (11a)∑

k:k∼i

diag(Ski − Zkiλki)+ (Sgi − S%i )

=

∑
j:i∼j

diag(Sij)+ diag(Wii3
H
gndii) ∀i ∈ N (11b)

Sgi ≤ Sgi ≤ Sgi ∀i ∈ N (11c)

|V|2i ≤ diag(Wii) ≤ |V|2i ∀i ∈ N+ (11d)

diag(λij) ≤ |I|2ij ∀(j : i ∼ j) ∈ E (11e)

[W]φ0×φ0 = V0VH
0 (11f)

Wii � 0 ∀i ∈ N+ (11g)[
Wii Sij
SHij λij

]
� 0 ∀(j : i ∼ j) ∈ E (11h)

In the case of an NL model, the load injection term is
equal to the summation of the power injection terms (7)-(9).
However, in the case of the cheap SDP-based OPF model,
the load power injections (7)-(9) have to be transformed into
M2 variables. Since in M2, the OV Wii = ViVH

i (∀i =
1, · · · , n) is defined for each node, the modelling of constant
impedance, constant power and the first term of constant
current (V∗i ⊗ {(3

Ic
i −3

I
i )Vi}) injections can easily be done

through this variable. However, for the latter constant current
term, which involves the absolute voltage term {3I

i (|Vi| ⊗

|Vi(0) |)},Wii cannot be used directly. Consequently, to model
this component, three novel propositions are proposed in
section III-B, which ultimately complete the modelling of the
constant current component of a ZIP load.

The representation of each ZIP component in terms of the
OVs ofM2 is presented in the subsequent sections.

A. REPRESENTATION OF CONSTANT IMPEDANCE AND
CONSTANT POWER LOADS
The presence of the product of same-phase and different-
phase voltage terms inWii allows for the quick representation
of constant impedance and constant power components with-
out requiring any newOV. To this extent, the decoupled power
injections related to these components can subsequently be
defined as shown in (12)-(13):

SZ%%i = diag{3Z
Y/1i

Wii}
∗ (12)

SP%%i = diag{(3Pc
Y/1i
−3P

Y/1i
)Wii + (3P

Y/1i
W0ii)}

∗ (13)

whereW0 = VintVH
int and Vint is defined as the vector of the

initial voltage at each node and the 3Z/P/Pc
Y/1i

matrices can be

determined by multiplying kZ and kP by the 3Y/1i matrices
as defined in (5)-(6).

B. REPRESENTATION OF CONSTANT CURRENT LOADS
The constant current injection (8) contains both the product
and absolute value of the voltage variable terms; therefore,
additional mathematical modelling is required to represent
this component mainly due to the presence of the latter term.
The representation of the former term is pretty straight for-
ward and follows the steps described in the previous section
for the constant impedance and constant power components.
To this end, it can be modelled as:

SI
sq

%i
= diag{(3Ic

Y/1i
Wii)− (3I

Y/1i
Wii)}∗ (14)

On the other hand, to incorporate the former term, three novel
independent mathematical models are developed due to the
fact that the approach presented in [28] for the modelling of
the absolute part cannot be directly extended to the cheap
SDP-based modelling framework.

To begin, consider the last term in (8) for a load connected
between the phase a and neutral n of a node i.

S∗ani = kIY ani(0){|V
an
i | · |V

an
i(0) |}

= kIY ani(0)

{√
(V ag

iR − V
ng
iR )2 + (V ag

iIM − V
ng
iIM )

2
}

(15)

S∗ani ≈ kIY ani(0){(V
ag
iR + V

ag
iIM )− (V ng

iR + V
ng
iIM )} (16)

where R and IM represent the real and imaginary component
of a complex variable, respectively. Note that (16) is the first-
order Taylor series approximation of (15), evaluated at Va0 .
The decoupled injections at phase a and neutral n can now be
expressed as follows:

S∗agi = kIY ani(0)

{(
V ag
i + V

ag∗
i

2

)
+ j

(
V ag∗
i − V ag

i

2

)}
(17)

S∗ngi = kIY ani(0)

{(
V ng
i + V

ng∗
i

2

)
+ j

(
V ng∗
i − V ng

i

2

)}
(18)

Since (17)-(18) contain linear complex-voltage variables that
are absent in Wii, additional variables are needed to model
this term, which leads to the following three propositions.
Please note that the terms involving the subtraction of the
phase/neutral voltage in the imaginary part are dropped from
the subsequent derivation. This is carried out due to the fact
that the computational software does not produce a hard zero
and that by introducing extremely small coefficients in the
optimization problem (OP), infeasible or suboptimal solu-
tions are obtained, as comprehensively demonstrated in [28].

1) PROPOSITION 1 (P1)
In this proposition, an additional matrix variable 5ii (19) is
introduced at each node i containing constant current loads.

5ii =

[
1
Vi

] [
1 VH

i

]
=

[
1 VH

i
Vi Wii

]
(19)
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Based on (19), the injection related to (17)-(18) can be
expressed as:

Sϕ,IP1%i =

{
Tr

(
L̂ϕ,Ii,l + L̂Tϕ,Ii,l

2

)
5ii

}∗
∀ϕ ∈ φi, i ∈ NIL

(20)

where L̂ϕ,Ii,l is calculated as follows:

L̂ϕ,Ii,l = (cai ∗ c
ϕT
i ) ∗ (eϕi ∗ e

ϕT
i ) ∗3ID

Y/1i
(21)

where eϕi /c
ϕ
i is a standard canonical basis vector of R|φ|×1

corresponding to phase ϕ and 3ID
Y/1i

is a diagonal matrix
formed by the diagonal elements of 3I

Y/1i
. NIL represents

the set of nodes containing constant current loads, and Tr
represents the trace of a matrix. It should be kept in mind
that after obtaining the variable L̂ϕ,Ii,l , it has to be appended
with an additional row and column of zeros to have the same
dimensions as5ii.
Since 5ii is not used in any equality/inequality constraint

of M2, it has to be coupled with the other OVs of this OPF
model. Consequently, to enforce the coupling between 5ii
andWii, the following additional constraints are introduced.

5ii(1,1) = 1 ∀i ∈ NIL (22a)

5ii(2:|φi|,2:|φi|)
= Wii ∀i ∈ NIL (22b)

5ii � 0 ∀i ∈ NIL (22c)

However, constraints (22a)-(22c) do not enforce any cou-
pling between the first-row, first-column variables (FR-FC-
Vs) of 5ii and Wii, which is extremely important due to
the involvement of these variables in representing the power
injection (20). Consequently, additional bounds (23)-(24) are
enforced on the terms of 5ii in this regard, which restrict
the real and imaginary part of each phase voltage within
the specified limits. These bounds, in turn, are based on the
chosen value of the voltage-angle deviation δ defined for each
phase-ground voltage vector. The bound calculation approach
is comprehensively explained in the next section.

VRi ≤
(0i + 0∗i )

2
≤ VRi (23)

VIMi
≤
−j(0i − 0∗i )

2
≤ VIMi (24)

where 0i represents the sub-vector 5ii(2:|η|,1) and VR/IMi is
a 3 × 1 vector containing maximum and minimum bounds
on real and imaginary components of the phase voltages.
Based on (22a)-(24), the diagonal and FR-FC-Vs of 5ii are
bounded.

Please note that in [26], a similar approach to P1 is
proposed to model the constant current component in the
framework of a single-phase equivalent representation of a
power system. However, the OVs introduced in [26] consist
of voltage-magnitude terms, and it was successfully demon-
strated in [27] that this scheme cannot be generalized for a
multi-wire DN configuration. Furthermore, the incorporation
of additional constraints (23)-(24) is a novelty of this work

FIGURE 2. Proposed complex-voltage variable bounds and associated
feasible region.

since it has been observed that the P1-based OPF model
provides a completely meaningless result in the absence of
these bounds. Moreover, in [33], a γ -order complex moment
relaxation is presented (25), which defines the voltage vector
variable associated with an n-bus system as follows:

zγ = [1 V1 · · · Vn V 2
1 V1V2 · · ·

· · · V 2
n V 3

1 V 2
1 V2 · · · V γn ]

T (25)

For the first- and second-order complex moment of relax-
ation, the voltage vector for a 2-bus system can be defined as:

zγ = [V1 V2]T (26)

zγ = [1 V1 V2 V 2
1 V1V2 V 2

2 ]
T (27)

Eqs. (26)-(27) indicate that the voltage vector introduced in
the P1-based model is completely different from the voltage
vector introduced in the complex moment relaxation; there-
fore, it is not justifiable to compare both methodologies.

2) BOUNDS ON LINEAR COMPLEX VOLTAGE VARIABLES
In practice, bounds on the magnitude of a phase voltage are
readily available and are specified by the technical standards.
However, as can be seen in (23)-(24), the real and imaginary
bounds are required for a complex-voltage variable but are not
usually available. Resultantly, a methodology is presented in
[34] that derives the bounds on a complex-voltage variable Vi
and, subsequently, limits its real and imaginary components
between −|V i| and |V i|. However, as shown in Fig. 2, this
approach encloses a large feasible region (FR) (green region)
for Vi and allows the solver to calculate the value of Vi
anywhere between 0◦ and 360◦. However, this is not the case
in real DNs, where each phase-voltage vector remains within
a small region around the phase-voltage vector position in
a balanced network scenario (taken as a reference position
in this study), i.e., (0◦, -120◦, 120◦). This region, in turn,
can be defined by a voltage-angle deviation δ, which rep-
resents the maximum deviation of the phase-voltage vector

99696 VOLUME 8, 2020



M. Usman et al.: Cheap Conic OPF Models for LV Active DNs

from its reference position. Since phase voltages are defined
with respect to the ground, it is expected that the maximum
value of δ at each phase of a node will remain in a small
symmetrical range, i.e., ±10◦, and as a result, the bounds
presented in [34] can be tightened by making use of the δ
parameter. It is extremely important to emphasize that inWii
and 5ii, phase-ground voltage variables are involved, and
these variables must not be confused with the phase-neutral
voltage variables. In an unbalanced DN, the phase-neutral
voltage angle can assume any value depending upon the
degree of unbalance in a network. However, in the presented
OP, phase-ground voltage variables are involved; therefore,
the assumed range of δ can be used with a higher level of
confidence.

Based on δ, the following lower and upper bounds on the
real and imaginary voltage components are derived for each
phase-voltage variable of 5ii.
• Phase A:

|Vi| · cos(δi) ≤ <(V a
i ) ≤ |Vi| (28)

−|Vi| · sin(δi) ≤ =(V a
i ) ≤ |Vi| · sin(δi) (29)

• Phase B:

|Vi| · cos(240◦ − δi) ≤ <(V b
i ) ≤ |Vi| · cos(240

◦
+ δi)

(30)

|Vi| · sin(240◦ + δi) ≤ =(V b
i ) ≤ |Vi| · sin(240

◦
− δi)

(31)

• Phase C:

|Vi| · cos(120◦ + δi) ≤ <(V c
i ) ≤ |Vi| · cos(120

◦
− δi)

(32)

|Vi| · sin(120◦ + δi) ≤ =(V c
i ) ≤ |Vi| · sin(120

◦
− δi)

(33)

Based on (28)-(33), it can be noted that the FR for each phase
voltage is tightened, which leads to a more accurate solution
than the solution obtained by setting the bounds described
in [34].

The last point to be discussed in this section is the deter-
mination of bounds that can be put on the terms involving
neutral-voltage variables in5ii. The technical standards usu-
ally provide the maximum limit on voltage unbalance but
do not provide any guidelines on the maximum amount of
voltage appearing on a neutral conductor. However, the infor-
mation on this voltage termmay be of significant importance,
for example, in the assessment and allocation of losses [35],
[36]. Consequently, in this work, the following procedure
is adopted to set the minimum and maximum bounds on
the real and imaginary components of a neutral voltage.
To determine the bounds, a CCI-based load flow model
is initially solved, and the real and imaginary components
of the neutral voltage are obtained at each node. Based
on these components, the parameter σR/IM is set to the
max(|max(VntR/IM )|, |min(VntR/IM )|) value, which leads to the

bounding of each component of the neutral voltage within
the limit (−σR/IM , σR/IM ). This is equivalent to imposing
the condition that the neutral voltage after solving the OPF
problem is not higher than the initial condition.

3) PROPOSITION 2 (P2)
Since P1 involves an additional matrix 5ii variable at
each node containing a constant current load, setting addi-
tional McCormick constraints on the bilinear product of
off-diagonal terms (5(2,1)

ii ×5
(1,3)
ii ) of5ii leads to a quadratic

matrix inequality. This inequality cannot yet be solved due to
the lack of a solver for handling this type of constraint. Conse-
quently, to enforce the coupling between the voltage variables
corresponding to the different phases of the same node, scalar
complex-voltage variables V ϕi {∀ϕ ∈ φi, i ∈ NIL} are
introduced in P2 since the bilinear product of two scalar
variables can, subsequently, be replaced by the McCormick
envelopes [37], which ultimately leads to the formation of a
convex region. With the introduction of new scalar variables,
the following constraints are enforced in P2 to link V ϕi with
the terms ofWii, as shown below:

V ϕ
′

i V
ϕ′∗
i ≤Wϕ′ϕ′

ii ∀ϕ′ ∈ φi, i ∈ NIL (34)

〈V ϕ
′

iR V
ϕ′′

iR 〉
M
+ 〈V ϕ

′

iIMV
ϕ′′

iIM 〉
M
= <{Wii(ϕ′, ϕ′′)}

〈V ϕ
′

iIMV
ϕ′′

iR 〉
M
− 〈V ϕ

′

iR V
ϕ′′

iIM 〉
M
= ={Wii(ϕ′, ϕ′′)} (35)

∀{ϕ′, ϕ′′} ∈ φi, i ∈ NIL & ϕ′ 6= ϕ′′

where M stands for the McCormick envelope. Eq. (34) sets
the limit on the voltage magnitude of each complex variable
V ϕi by linking it to the diagonal terms of Wii. Please note
that the equality constraint cannot be set in (34) since it leads
to a quadratic constraint that is non-convex. Eq. (35) links
the off-diagonal terms of Wii with the bilinear product of
scalar variables. Interestingly, it has been observed that if
the OP is solved by taking into consideration only (34), then
the real value for each complex-voltage variable is obtained.
However, the collective application of (34)-(35) leads to the
correct complex value of the phase and neutral voltages.
It is also important to emphasize that the bilinear product
of phase and neutral voltages is also replaced by the convex
region imposed by the McCormick envelopes, where the
upper and lower bounds on the neutral voltage are obtained
as defined in III-B2. Based on this proposition, the power
injection corresponding to the absolute term in (17) can be
written as:

Sϕ,IP2%i =

[
1
2

{
(L̂ϕ,Ii,l ∗ Vi)+ (L̂Tϕ,Ii,l ∗ V

∗
i )
}∗]~

(36)

where~ represents only the first element of the vector on the
right-hand side of (36) and the variable L̂ϕ,Ii,l is calculated as
shown in (21).

4) PROPOSITION 3 (P3)
In propositions P1 and P2, additional variables and con-
straints are introduced, which increase the complexity of the
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P1- and P2-based OPF models. Consequently, to keep the
proposed OPF model as simple as possible, a further approx-
imation is introduced in (16), which models the constant
current component using only Wii without introducing any
new OV.

In the following discussion, the derivation is shown only
for phase a; however, it is equally applicable to the injections
corresponding to other phase and neutral conductors. For
phase a, (16) can be re-written as:

S∗agi = kIY ani(0) ∗
√
(V ag

iR + V
ag
iIM )

2 (37)

= kIY ani(0) ∗
√
V 2ag
iR + V

2ag
iIM + 2V ag

iR V
ag
iIM (38)

S∗agi ≈ kIY ani(0) ∗
√
V 2ag
iR + V

2ag
iIM (39)

= kIY ani(0) ∗
√
V ag
i V ∗agi (40)

S∗agi ≈ kIY ani(0) ∗ (µi + µi ∗ V
ag
i V ∗agi ) (41)

Note that an approximation is introduced in (39) under the
assumption that for lightly or moderately unbalanced DNs,
the imaginary part of the phase a voltage will be small com-
pared to its real part, i.e., V 2ag

iIM ≤ |2ViRViIM | ≤ V 2ag
iR , and

therefore, these terms V 2ag
iIM and 2V ag

iR V
ag
iIM can be dropped.

Nevertheless, the former term is kept in (39) to obtain the
product of variables V ag

i V ∗agi , which in turn is readily avail-
able in Wii. Furthermore, it can also be noted that a further
approximation is introduced in (41) by applying the first-
order Taylor series to (40), evaluated at Va0 , which leads
to a linear equation that can be easily realized through Wii.
In (41), µ is a constant that depends on the point at which the
Taylor series is evaluated. In this work, its value is chosen to
be 0.5. Based on (41), the approximate injection related to the
absolute term in (17) can be written as:

Sϕ,IP3%i = µi ∗ diag{3
ID
Y/1i
+ (3ID

Y/1i
∗Wii)}∗ (42)

Notably, to express (20), (36) and (42) for other phases b and
c, their voltage vectors must be rotated towards the reference
position of phase a to have the equivalent power injection in
these phases correspond to the same load attached to them
as connected to phase a. It can also be noted that no addi-
tional constraints and variables are needed in this proposition.
However, the introduction of two approximations, i.e., (39)
and (41), can lead to a suboptimal solution in the case of
highly unbalanced DNs serving a large constant current load
since the imaginary component of a phase voltage cannot be
ignored under these circumstances.

The complete injection related to a constant current com-

ponent can now be expressed as a summation of (14) and Sϕ,Î%i :

SI%%i = SI
sq

%i
+ Sϕ,Î%i (43)

where Sϕ,Î%i is a C|φi|×1 vector representing the injection
obtained from the P1- (20), P2- (36) or P3-based (42)
approaches.

C. MODELLING OF THE GROUNDING IMPEDANCE
The grounding impedance can be incorporated in the M2 by
formulating a ground matrix 3gnd ii = Ygnd ∗ YH

gnd , having
dimensions equal to γ×γ , at each node i, which contains only
a neutral-ground admittance value at the diagonal position
corresponding to a neutral conductor. Based on this matrix,
the power injections related to the impedance connected
between a neutral conductor and ground can be defined as:

Sgndi = diag{Wii3
H
gndii}

∗ (44)

D. CONVEXIFIED CHEAP OPF MODEL FOR
NEUTRAL-EQUIPPED DISTRIBUTION NETWORKS
The cheap SDP-based OPF model for multi-phase active
DNNs containing both wye- and delta-connected loads can
now be developed since explicit (decoupled) power injections
for each phase and neutral conductor have been derived in the
previous sections for a full ZIP load, which ultimately lead to
the modelM3.

M3: Cheap SDP-Based OPFModels Involving Constant Cur-
rent Component Propositions
Proposition 1:

Var : Sgi ∈ C|φi|, {Wii,5ii} ∈ H|φi|×|φi| (∀i ∈ N )

Sij ∈ C|φij|×|φij|,λij ∈ H|φij|×|φij| (∀i ∼ j ∈ E)

subject to : (22a)-(22c), (23)-(24), (11a)-(11h)

Proposition 2:

Var : Sgi ∈ C|φi|,Wii ∈ H|φi|×|φi| (∀i ∈ N )

V ϕi ∈ C1×1 (∀ϕ ∈ φ, i ∈ N )

Sij ∈ C|φij|×|φij|,λij ∈ H|φij|×|φij| (∀i ∼ j ∈ E)

subject to : (11a)-(11h), (34)-(35)

Proposition 3:

Var : Sgi ∈ C|φi|,Wii ∈ H|φi|×|φi| (∀i ∈ N )

Sij ∈ C|φij|×|φij|,λij ∈ H|φij|×|φij| (∀i ∼ j ∈ E)

subject to : (11a)-(11h)

E. OBJECTIVE FUNCTIONS
For the evaluation of the proposed OPFmodels, minimization
of the slack-bus power injection and power system losses by
objective functions (OFs) is carried out in this work. In terms
of the OVs ofM3, these OFs can be expressed as follows:

fOF1 (Sg1 ) =
γ∑
ϕ=1

{
<(Sϕg1 )+ =(S

ϕ
g1 )
}

fOF2 (λ) = <
{∑
j:i∼j

Tr(Zijλij)
}
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TABLE 1. Types of loads models.

IV. NUMERICAL TESTS
The quality assessment of the proposed OPF model M3 in
terms of the recovered solution, voltage-angle deviation limit
and CT is reported in this section for several combinations
of load parameters [38], which are shown in Table 1. The
proposed approach M3 is applied to the LV CIGRE [39]
and Italian-37 (IT-37) [35] active DNs, with their degrees of
unbalance reported in Table 3. For all simulation scenarios,
V and V are set to 0.90 and 1.05 pu, respectively. The
simulations are carried out using the MATLAB-based tool
box YALMIP [40] along with the MOSEK solver on a DELL
64-bit OS, core i7 with a processor speed of 2.80 GHz and
16 GB of RAM.

A. CRITERIA FOR THE NUMERICAL EXACTNESS
Two metrics, namely, the optimality gap (OG) and the power
mismatch at load (PQ) buses& voltage violation at all nodes,
are used to check the optimality and feasibility of the recov-
ered solution, respectively.

1) OPTIMALITY CHECK
The %OG criterion is defined as:

%OG =
objNL(M1) − objBFM−SDP(M3)

objNL(M1)
× 100 (46)

The %OG parameter (46) measures the difference between
the objective values of the proposed OPF model M3 and its
non-convex model M1, which is solved by the non-linear
solver IPOPT [41] in this work. The solution from modelM3

with an %OG less than 1%, as selected in [5], is considered
an optimal solution in this study.

2) FEASIBILITY CHECK
To check the feasibility of the obtained solution, the power
mismatch criterion checks the power balance constraint at
each load bus once the resultant approach is solved. In the
case of a feasible recovered solution, the active and reactive
power mismatch at each load bus must be zero. Similarly,
the voltage violation criterion checks the recovered voltages
at all nodes to ensure that they are within the specified
bounds; consequently, the phase voltage at any node outside
the specified bounds is considered an infeasible solution.
In this work, the threshold value for the power mismatch
criterion is chosen to be 10−2 [W/VAr], which is lower than
the usually specified tolerance value of 10−1 [W/VAr] in
power flow solution packages such as PSS/E.

3) QUALITY OF THE RECOVERED SOLUTION
The quality of the recovered solution from model M3 is
cross-checked through the root-mean-square error (RMSE)
(47), which compares its value with the results obtained from
modelM1. The value of this parameter is calculated for phase
voltages and branch currents in SI units, and the threshold for
characterizing the solution as an accurate one is set as 1 V
and 1 A for these state variables, respectively.

RMSE =

√
(xM1 − xM3)2

P
(47)

where x = {|V|, Ibr }, M1 and M3 represent mod-
els 1 and 3, and P is the length of the vector containing
all node voltages/branch currents. It must be noted that the
solution-recovery algorithm presented in [20] for three-phase
BFM-SDP relaxation is adopted in this work for the 4-wire
network OPF modelM3.
Finally, please note that the multiple-point grounded con-

figuration is considered for the test DNs by settingRgnd = 1�
at each node.

B. QUALITY OF THE PROPOSED OPF MODELS
Table 3 shows the %OG of each proposition (P1-P3)-based
OPF model M3 with respect to the NL model M1. To facili-
tate the reading process and better clarify the results, Table 2
lists the font styles used in Table 3, as well as their interpreta-
tion. Furthermore, please be aware that the results reported
in Table 3 are based on a voltage-angle deviation δ of 5◦.
The following observations can be made from the mentioned
results.

TABLE 2. Font styles and their interpretation.
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TABLE 3. Comparison of primal SDP and cheap BFM-SDP based relaxation for multi-phase active DNNs for Rgnd = 1�.
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1) OPTIMALITY ANALYSIS
1) For all load models (LMs) that are independent of

the constant current component, i.e., LMs 1, 3 and 8,
the proposed relaxation provides an exact solution,
i.e., the %OG is less than 1% (in most cases close to
0%) when tested for both OFs. Since in the absence of
a constant current load, the relaxationM3 becomes the
same for all propositions, the same %OG, as expected,
is obtained in all these cases, as can be seen in the
presented results.

2) For LMs that contain large active and reactive power
contributions from the constant current load, such as
LMs 4 and 6, both the NL3 M1 and relaxedM3models
become inexact (as indicated by the italic-underline
font style) in the case of 1 and Y −1 connected end-
users; as a result, a meaningless value of the OF is
obtained. On the other hand, a handful of cases are also
observed for LM 14 in which the NL model provides
an optimal solution; however, all three propositions
show a %OG value larger than 1%, as indicated by
the bold font style. These results further confirm the
assertion, as mentioned in section III-B, that under a
large contribution from the constant current compo-
nent, the proposed OPF models can provide a subop-
timal or a completely meaningless result.

3) The dominance of the proposed P1-, P2- and P3-based
OPF approaches over each other strongly depends on
the sign of the kI coefficient, i.e., whether the con-
stant current load injects (−kI ) or absorbs (+kI ) power
into/from the system. With respect to the −kI coeffi-
cient, the P3-based model provides an optimal solu-
tion in all these LMs and becomes inexact only when
the NL model fails to provide a meaningful solution.
Furthermore, it dominates the P1- and P2-based OPF
models, as can be noted in the bold-underline cases
(OF2), where these OPF models exhibit a large %OG,
whereas the P3-based OPF model provides a more
accurate (tighter) solution than that of the P1- and
P2-based OPF models. However, few cases, as identi-
fied by the italic style, are observed where the P2-based
model provides amore accurate solution than that of the
P3-based model. The slight increase in the %OG for
the P3-based model compared to that for the P2-based
model is due to the fact that two more approximations
are introduced in the formermodel and, therefore, a less
accurate solution is obtained. Nevertheless, the exact-
ness of the P3-based model even in these cases makes
it a stronger model among all propositions due to the
fact that the P1- and P2-based models can fail for some
LMs having −kI coefficients.

4) With respect to the same coefficient, i.e., −kI , the
P1- and P2-based OPF models provide almost the

3Due to the complex analytical characterization of power flow in a
multi-wire network, IPOPT can provide an infeasible solution for an NL
model.

same solution in the majority of test cases. How-
ever, few cases, as indicated by the underline style,
show the superiority of the P1-based model over the
P2-based model, especially in the case of OF2, where
the P2-based OPF model, although providing an exact
solution, shows a larger %OG than that of the P1-based
OPF model. This is an unexpected observation since
the P2-based OPF approach is expected to be tighter
(more accurate) than the P1-based model due to the
introduction of additional McCormick envelope terms.
The reason for this unanticipated behaviour lies in the
chosen value of δ, which appears to be too tight for
the scalar complex-voltage variable of proposition 2.
However, it has been observed that by slightly relaxing
the angle limit from 5◦ to 7◦, the solutions, although not
shown here, obtained from both models become equal
again.

5) With respect to the +kI coefficient, the P1-based OPF
model fails for all these LMs, as indicated by the
extremely large %OG. The P2-based OPF approach
reduces the %OG and provides an optimal solution in
the majority of cases, as indicated by the bold-italic
style, and therefore exhibits a superior performance to
that of the P1-based model.

6) With respect to the +kI coefficient, the P3-based
approach further tightens model M3 and provides a
more accurate solution than that of the P2-basedmodel.
Furthermore, it remains exact and provides a meaning-
ful solution even in the case of large-power-absorbing
constant current LMs (such as LM 14) for which a
large %OG is observed in the case of the P2-based
OPF model, as indicated by the bold-underline style.
Nevertheless, few cases are also observed for this LM,
where P3 fails, as well in the case of OF1. However,
even in these cases, it still provides a more accurate
solution than those of the other two propositions.

7) To conclude the discussion with respect to the propo-
sitions for constant current component modelling,
it is justified to claim that the P3-based OPF model
appears to be the strongest among all the presented
OPF models. It tends to remain exact under all LMs,
having power absorbing as well as power injecting
constant current loads. However, its general domi-
nance cannot be established due to the presence of
a few cases where the P2-based model dominates it.
On the other hand, the P2-based OPF model dominates
the P1-based OPF approach in the case of positive-
coefficient-based constant current loads, whereas for
the negative-coefficient-based loads, the P1 approach
can be adopted due to its easy and simple implementa-
tion in comparison to the P2-based model.

2) FEASIBILITY AND QUALITY ANALYSIS
In this section, the feasibility and quality of the recovered
solution from the P3-based OPF model are discussed since
this proposition provides the most optimal solution among
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FIGURE 3. Feasibility analysis of the IT-37 network for all LMs and load
types in the case of OF1.

FIGURE 4. Feasibility analysis of the CIGRE network for all LMs and load
types in the case of OF1.

all propositions. The following observations can be made
from the obtained results shown in Figs. 3-6 and the RMSE-
P3 columns of Table 3.

1) With respect to OF1, Fig. 3 shows that the power
mismatch for all LMs and load types remains well
below the specified threshold level in the case of the

FIGURE 5. Feasibility analysis of the IT-37 network for all LMs and load
types in the case of OF2.

FIGURE 6. Feasibility analysis of the CIGRE network for all LMs and load
types in the case of OF2.

IT-37 network. Similarly, the phase voltage values at
all nodes remain within the specified bounds, and
no phase-voltage violation is observed in any case.
Furthermore, the RMSE values indicate that a highly
accurate solution is obtained in this case since the
error remains below the 1 V/1 A criterion. Although in
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the case of a wye-connected load the P3-based model
shows a large %OG of 2.96% (above the specified
threshold value) for LM 14, the feasibility analysis
shows that the obtained solution is still feasible. Never-
theless, as expected, it is less accurate, as evident from
the higher RMSE values for phase voltages and branch
currents. In this case, the obtained values can be used
as the initial values of a multi-wire load flow solver to
obtain a more accurate solution.

2) With respect to the same OF for the CIGRE network,
the power mismatch criterion is satisfied for all LMs
and load types. However, the phase voltage values
violate the lower bound for all load types, as shown
in Fig. 4. In the case of the Y and Y − 1 load types,
voltage violation is observed for LM 4, whereas in
the case of the 1 load type, LMs 4 and 6 provide an
infeasible solution. In Table 3, for these LMs, either
the problem is infeasible or shows a large %OG; con-
sequently, the feasibility analysis results further con-
firm the recovery of an infeasible solution. Moreover,
the RMSE values for both phase voltages and branch
currents exceed the specified threshold level in the
above-mentioned cases. A similar observation, as men-
tioned in the previous point, can be made again for
LM 14, which shows a %OG of 1.32% in the case
of the Y − 1 load type. However, both the power
mismatch and voltage violation criteria are satisfied,
indicating that the recovered solution is a feasible one.
Yet, as expected, the node voltages and branch cur-
rents show a large deviation from the solution obtained
through the NL model, as indicated by the large RMSE
values.

3) With respect to OF2, no power mismatch and voltage
violation is observed for the Y and Y − 1 load types
for all LMs, whereas in the case of the 1 load type,
the phase voltages violate the lower voltage bound in
both networks for LMs 4 and 6, as can be seen in Figs. 5
and 6. In both cases, both the NL and P3-based OPF
models provide an infeasible solution. Apart from these
LMs, a highly accurate solution is obtained for all other
LMs and load types in both networks, as made evident
by the satisfaction of the RMSE criterion.

4) The RMSE parameter value clearly shows that the
P3-based OPF model can provide a feasible and accu-
rate solution for the original NLOPF problem provided
that it remains exact. However, under large power injec-
tion/absorption from the constant current loads, a poor
solution, either feasible or infeasible, can be expected,
as shown in the case of LM 14. Therefore, it can be
concluded that as long as the injection into/absorption
from this component remains low or moderate, the
P3-based model has a tendency to provide a feasible
and accurate solution.

5) Finally, the recovered branch currents for each phase
are shown in Figs. 7 and 8 for LM 05 and LM 14,
respectively, in the case of the CIGRE OF1 Y −1 load

FIGURE 7. Recovered branch current for LM:05 (Y-1) from the NL and
P3-based OPF models.

type. Since LM 05 gives an optimal solution, it can be
observed in Fig. 7 that the branch currents recovered
from both the NL and P3-based models are almost
equal to each other. However, this is not the case for
LM 14, which has a large %OG; consequently, a sig-
nificant difference can be observed in Fig. 8 between
the recovered current values.

C. IMPACT OF THE VOLTAGE-ANGLE-DEVIATION LIMIT ON
THE EXACTNESS OF THE P1- AND P2-BASED OPF MODELS
The voltage-angle-deviation limit δ plays a significant role
in the exactness, and lack thereof, of the P1- and P2-based
models when applied to LMs that consist of a positive +kI
value, as can be seen from the results reported in Table 4.
It can be noted that for these LMs, tightening the angle limit
from 15◦ to 5◦ reduces the %OG for both propositions; in
particular, the P2-based OPF technique becomes exact for a
δ value of 5◦, as indicated by the results reported in the bold
font style. In the case of the P1-based OPF model, the small
angle limit does reduce the %OG. However, the obtained
solution is still far from the solution obtained from the NL
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FIGURE 8. Recovered branch current for LM:14 (Y-1) from the NL and
P3-based OPF models.

OPF model, and consequently, it cannot be considered as an
optimal solution.

On the other hand, it has also been noted that in the case
of LMs comprising constant current components injecting
active power into the DNs (−kI values), the impact of the
angle limit on the exactness of the P1- and P2-based OPF
models is minimal. For these LMs, the difference between
the %OG values obtained for all angle limit values is almost
negligible; therefore, amoderate value of the δ variable can be
selected if an OP involves only these LMs. However, it must
be kept in mind that setting an extremely tight angle limit
can make the P2-based model less accurate than the P1-based
model, as observed in a few cases reported using the underline
style format in Table 3.

D. INEXACTNESS OF P1-BASED OPF MODEL UNDER
POWER ABSORBING CONSTANT CURRENT LOAD
The sub-optimality of the P1-based OPF approach in the case
of +kI components largely depends on the choice of OF.
To understand this, it is very important to clarify firstwhat the

TABLE 4. Exactness of P1- and P2-based OPF relaxations under the
influence of varying angle limit.

sign of the load coefficient means. Normally, loads are consid-
ered passive and absorb power from a network. For all these
loads, the active and reactive power coefficients have positive
values, which make the power injection equations (7)-(9)
positive; per the standards, these injections are considered
as a withdrawal of power from the system. However, it was
reported in [38] that the majority of constant current house-
hold appliances have a negative coefficient; therefore, these
loads inject power into a network. Furthermore, the power
injection/absorption of a constant current load is voltage
dependent and is therefore highly influenced by the node
voltage to which it is connected.

Now, under OF2 (power loss minimization) for +kI loads,
the solver tends to go towards the lower voltage limits placed
on the additional variables (5ii) of the P1-based model for
constant current load modelling to reduce the power absorp-
tion of these components. The reduction in the power drawn
by these loads subsequently reduces the power flow in the
lines/branches of a network, and as a result, the total system
losses are reduced, which is the objective of the OP. Similarly,
in the case of OF1, which addresses the minimization of slack
bus power injection, lowering the voltage on the load buses
leads to a reduced power absorption by the constant current
loads, which ultimately reduces the power injection into the
system from the slack bus.

To better understand this point, consider the results pre-
sented in Table 5, which reports the OF2 values obtained
in the case of power absorption and injection from a purely
constant current load, i.e., LM 2, along with the voltages
recovered from5ii and the V ϕi variables used in the P1- and
P2-based OPF models, respectively. Furthermore, the min-
imum and maximum values of real and imaginary bounds
corresponding to δ = 5◦ are also presented in Table 6,
which serve as reference values to cross-check the recovered
voltages. Please note that the voltages are presented only for
node 8 of the CIGRE network due to the fact that the same
trend is observed for other node voltages.

In the case of the +kI coefficient, the real and imagi-
nary components of complex voltages appearing in the first
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TABLE 5. Recovered voltages from P1- and P2-based OPF relaxations for LM 2.

TABLE 6. Bounds on real and imaginary components of phase-ground
node voltages.

TABLE 7. Recovered voltages from NL OPF model for LM 2.

column of 5ii are almost identical to the maximum and
minimum bounds presented in Table 6, whereas the voltages
recovered fromWii of the P1-based model are quite far away
from the voltages of5ii and do not lie at the extreme bounds
of the FR. In terms of polar coordinates, both recovered
voltages share the same angle position, but their magnitudes
are quite different. The voltage magnitudes in the case of
5ii are almost equal to the minimum bound value, whereas
in the case of Wii of the P1-based model, they are almost
identical to the values recovered from the NL OPF model,
as shown in Table 7. Since the constant current loads are mod-
elled through the 5ii variable, the voltage values calculated
by the solver lead to a reduced power absorption by these
loads, which in turn reduces the power system losses to an
unrealistic value. On the other hand, the voltages obtained
from V ϕi and Wii in the case of the P2-based OPF model are
almost identical to each other as well as to the values obtained
from the NL OPF model. These results show that the solver
calculates realistic values of V ϕi , i.e., they are not close to the
extreme bounds of the FR. Consequently, the value of the OF
is very close to the value obtained in the case of the NL OPF

model. This is due to the fact that the convex region of the
complex-voltage variables in the P1-based model is further
tightened by the introduction of McCormick envelopes in the
P2-based model, which leads to additional coupling between
the off-diagonal elements of Wii and V

ϕ
i . Since the voltages

recovered from V ϕi are very close to the values of Wii of the
P2-based OPF model, the power absorbed by the constant
current loads in this model is almost identical to the optimal
solution obtained from the NL OPF model.

In the case of the −kI coefficient, a constant current load
injects power into a system and therefore can be considered as
a local power source. In this case, the solver tends to increase
the power injections from these loads to reduce the power
drawn from the slack bus to bring down the overall system
losses. As a result, the optimal voltage values calculated for
5ii andV

ϕ
i in the P1- and P2-basedOPFmodels, respectively,

are almost identical to each other and equal to the voltage
values obtained from the Wii matrices of these models and
the NL OPF model variables. These results clearly show
why, in the case of negative coefficients, the P1-based OPF
approach works well and gives the same optimal solution as
obtained by the other OPF models.

E. COMPUTATIONAL PERFORMANCE OF THE
PROPOSED OPF APPROACH
The real strength of the cheap SDP-based OPF model in
comparison to the primal SDP-basedmodel lies in its superior
computational performance, as can be clearly noticed from
the CT reported in Table 8 and Fig. 9. For a medium DN (IT-
37 bus), the multi-phase primal SDP-based OPF model takes
an exceptionally large CT; consequently, the real-time imple-
mentation of this OPF model in the context of a distribution
management system (DMS) seems difficult to realize. On the
other hand, a remarkable reduction in the CT can be observed
when the cheap SDP-based OPF model is solved for this DN.
It can also be noted that the CT is invariably independent of
the load types and LMs, and therefore, no additional tech-
niques such as sparsity exploitation [15], [33] or distributed
algorithms [19] are required for the real-time implementation
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TABLE 8. Comparison between the computational time of primal
multi-phase SDP and P3-based OPF relaxations.

FIGURE 9. Comparison of computational times between the primal
multi-phase SDP-based and cheap BFM-SDP-based OPF models.

of thismodel. Furthermore, for large real DNs [42], the primal
SDP-based OPF model is still difficult to solve due to the
immature SDP solving technology, as the large dimensions
of the OV involved in this OPF model cause the solver to
hit its memory limit, as discussed in [28]. Consequently,
in these cases, the cheap SDP-based OPF model provides an
alternative for the real-time control of these networks.

V. CONCLUSIONS
The cheap SDP-based OPF models for DNNs hosting both
wye- and delta-connected ZIP loads provide an alternative
solution to the primal SDP-based OPF methodology for real-
izing the real-time optimal control and management of these
networks. The coupled power injections, which are consid-
ered the main issue in the development of an OPF model
for DNNs, are decoupled between the conductors through
the network admittance matrix-based approach. Furthermore,
the incorporation of the constant current component of a
ZIP load in the OPF model is facilitated by the three novel
propositions.

The proposed OPF technique provides an exact solution
for all LMs that do not include a constant current component.
For LMs consisting of a constant current component, the
P3-based OPFmodel shows promising results compared with
the P1- and P2-based OPF models for both +kI and −kI .
However, its general dominance cannot be established due to

the fact that the P2-based model dominates it, as observed
in a few cases with −kI components. On the other hand,
the P2-based approach dominates the P1-based model in the
case of +kI components since the latter approach fails to
completely provide a meaningful solution. For these LMs,
the P2-based approach significantly reduces the optimality
gap; however, it is even surpassed by the P3-based approach
in terms of its ability to provide an optimal solution.

The voltage-angle-deviation limit strongly affects the qual-
ity of the P1- and P2-based models since setting a large value
for the angle deviation parameter leads to a weaker conic
model and, subsequently, to suboptimal results.

With respect to the CT, the developed OPF approach pro-
vides an optimal solution in only a fraction of a second even
for medium-sized DNs (the primal multi-phase SDP-based
technique can take up to three orders of magnitude more time
for these networks). Although the primal multi-phase SDP-
based relaxation dominates the cheap SDP-based OPF model
due to the involvement of a more stringent PSD constraint,
the provision of an exact solution in a significantly reduced
amount of time by the cheap SDP-based OPF technique
allows its practical realization for active DNs to ensure their
optimal management.

REFERENCES

[1] X. Bai, H.Wei, K. Fujisawa, and Y.Wang, ‘‘Semidefinite programming for
optimal power flow problems,’’ Int. J. Electr. Power Energy Syst., vol. 30,
nos. 6–7, pp. 383–392, Jul. 2008.

[2] J. Lavaei and S. H. Low, ‘‘Zero duality gap in optimal power
flow problem,’’ IEEE Trans. Power Syst., vol. 27, no. 1, pp. 92–107,
Feb. 2012.

[3] R. A. Jabr, ‘‘Modeling network losses using quadratic cones,’’ IEEE Trans.
Power Syst., vol. 20, no. 1, pp. 505–506, Feb. 2005.

[4] M. Farivar and S. H. Low, ‘‘Branch flow model: Relaxations and
convexification—Part I,’’ IEEE Trans. Power Syst., vol. 28, no. 3,
pp. 2554–2564, Aug. 2013.

[5] C. Coffrin, H. L. Hijazi, P. V. Hentenryck, and C. E. Feb, ‘‘The
QC relaxation: Theoretical and computational results on optimal power
flow,’’ IEEE Trans. Power Syst., vol. 31, no. 4, pp. 3008–3018,
Sep. 2016.

[6] C. Josz and D. K. Molzahn, ‘‘Moment/sum-of-squares hierarchy for com-
plex polynomial optimization,’’ 2015, arXiv:1508.02068. [Online]. Avail-
able: http://arxiv.org/abs/1508.02068

[7] W. Wei, J. Wang, N. Li, and S. Mei, ‘‘Optimal power flow of radial
networks and its variations: A sequential convex optimization approach,’’
IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 2974–2987, Nov. 2017.

[8] H. Nagarajan, M. Lu, E. Yamangil, and R. Bent, ‘‘Tightening McCormick
relaxations for nonlinear programs via dynamic multivariate partitioning,’’
in Proc. Int. Conf. Princ. Pract. Constraint Program. Cham, Switzerland:
Springer, 2016, pp. 369–387.

[9] J. Lavaei, D. Tse, and B. Zhang, ‘‘Geometry of power flows and optimiza-
tion in distribution networks,’’ IEEE Trans. Power Syst., vol. 29, no. 2,
pp. 572–583, Mar. 2013.

[10] B. Zhang and D. Tse, ‘‘Geometry of injection regions of power networks,’’
IEEE Trans. Power Syst., vol. 28, no. 2, pp. 788–797, May 2012.

[11] S. Sojoudi and J. Lavaei, ‘‘Physics of power networks makes hard opti-
mization problems easy to solve,’’ in Proc. IEEE Power Energy Soc. Gen.
Meeting, Jul. 2012, pp. 1–8.

[12] S. H. Low, ‘‘Convex relaxation of optimal power flow—Part II: Exact-
ness,’’ IEEE Trans. Control Netw. Syst., vol. 1, no. 2, pp. 177–189,
Jun. 2014.

[13] L. Gan, N. Li, U. Topcu, and S. H. Low, ‘‘Exact convex relaxation of
optimal power flow in radial networks,’’ IEEE Trans. Autom. Control,
vol. 60, no. 1, pp. 72–87, Jan. 2014.

99706 VOLUME 8, 2020



M. Usman et al.: Cheap Conic OPF Models for LV Active DNs

[14] D. K. Molzahn and I. A. Hiskens, ‘‘A survey of relaxations and approxima-
tions of the power flow equations,’’ Found. Trends Electric Energy Syst.,
vol. 4, nos. 1–2, pp. 1–221, 2019.

[15] R. A. Jabr, ‘‘Exploiting sparsity in SDP relaxations of the OPF
problem,’’ IEEE Trans. Power Syst., vol. 27, no. 2, pp. 1138–1139,
May 2012.

[16] D. K. Molzahn, J. T. Holzer, B. C. Lesieutre, and C. L. DeMarco, ‘‘Imple-
mentation of a large-scale optimal power flow solver based on semidefinite
programming,’’ IEEE Trans. Power Syst., vol. 28, no. 4, pp. 3987–3998,
Nov. 2013.

[17] M. S. Andersen, A. Hansson, and L. Vandenberghe, ‘‘Reduced-complexity
semidefinite relaxations of optimal power flow problems,’’ IEEE Trans.
Power Syst., vol. 29, no. 4, pp. 1855–1863, Jul. 2014.

[18] C. Bingane, M. F. Anjos, and S. Le Digabel, ‘‘Tight-and-cheap conic
relaxation for the AC optimal power flow problem,’’ IEEE Trans. Power
Syst., vol. 33, no. 6, pp. 7181–7188, Nov. 2018.

[19] E. Dall’Anese, H. Zhu, and G. B. Giannakis, ‘‘Distributed optimal power
flow for smart microgrids,’’ IEEE Trans. Smart Grid, vol. 4, no. 3,
pp. 1464–1475, Sep. 2013.

[20] L. Gan and S. H. Low, ‘‘Convex relaxations and linear approximation for
optimal power flow in multiphase radial networks,’’ in Proc. Power Syst.
Comput. Conf., Aug. 2014, pp. 1–9.

[21] C. Zhao, E. Dall’Anese, and S. Low, ‘‘Convex relaxation of OPF in
multiphase radial networks with delta connection,’’ in Proc. 10th Bulk
Power Syst. Dyn. Control Symp., 2017.

[22] S. Bose, S. H. Low, T. Teeraratkul, and B. Hassibi, ‘‘Equivalent relaxations
of optimal power flow,’’ IEEE Trans. Autom. Control, vol. 60, no. 3,
pp. 729–742, Mar. 2015.

[23] S. H. Low, ‘‘Convex relaxation of optimal power flow—Part I: Formu-
lations and equivalence,’’ IEEE Trans. Control Netw. Syst., vol. 1, no. 1,
pp. 15–27, Mar. 2014.

[24] Y. Liu, J. Li, L. Wu, and T. Ortmeyer, ‘‘Chordal relaxation based
ACOPF for unbalanced distribution systems with DERs and voltage reg-
ulation devices,’’ IEEE Trans. Power Syst., vol. 33, no. 1, pp. 970–984,
Jan. 2018.

[25] W.Wang and N. Yu, ‘‘Chordal conversion based convex iteration algorithm
for three-phase optimal power flow problems,’’ IEEE Trans. Power Syst.,
vol. 33, no. 2, pp. 1603–1613, Mar. 2018.

[26] D. K. Molzahn, B. C. Lesieutre, and C. L. DeMarco, ‘‘Approximate
representation of ZIP loads in a semidefinite relaxation of the OPF
problem,’’ IEEE Trans. Power Syst., vol. 29, no. 4, pp. 1864–1865,
Jul. 2014.

[27] M. Usman, A. Cervi, M. Coppo, F. Bignucolo, and R. Turri, ‘‘Cen-
tralized OPF in unbalanced multi-phase neutral equipped distribution
networks hosting ZIP loads,’’ IEEE Access, vol. 7, pp. 177890–177908,
2019.

[28] M. Usman, A. Cervi, M. Coppo, F. Bignucolo, and R. Turri, ‘‘Bus
injection relaxation based OPF in multi-phase neutral equipped dis-
tribution networks embedding wye- and delta-connected loads and
generators,’’ Int. J. Electr. Power Energy Syst., vol. 114, Jan. 2020,
Art. no. 105394.

[29] R. Benato, A. Paolucci, and R. Turri, ‘‘Power flow solution by a complex
admittance matrix method,’’ Eur. Trans. Electr. Power, vol. 11, no. 3,
pp. 181–188, May 2001.

[30] K. Sunderland, M. Coppo, M. Conlon, and R. Turri, ‘‘A correction cur-
rent injection method for power flow analysis of unbalanced multiple-
grounded 4-wire distribution networks,’’ Electr. Power Syst. Res., vol. 132,
pp. 30–38, Mar. 2016.

[31] M. E. Baran and F. F. Wu, ‘‘Optimal capacitor placement on radial dis-
tribution systems,’’ IEEE Trans. Power Del., vol. 4, no. 1, pp. 725–734,
Jan. 1989.

[32] R. A. Jabr, ‘‘Radial distribution load flow using conic program-
ming,’’ IEEE Trans. Power Syst., vol. 21, no. 3, pp. 1458–1459,
Aug. 2006.

[33] D. K. Molzahn and I. A. Hiskens, ‘‘Sparsity-exploiting moment-based
relaxations of the optimal power flow problem,’’ IEEE Trans. Power Syst.,
vol. 30, no. 6, pp. 3168–3180, Nov. 2015.

[34] C. Coffrin, H. L. Hijazi, and P. Van Hentenryck, ‘‘Strengthening the
SDP relaxation of AC power flows with convex envelopes, bound tight-
ening, and valid inequalities,’’ IEEE Trans. Power Syst., vol. 32, no. 5,
pp. 3549–3558, Sep. 2017.

[35] M. Usman, M. Coppo, F. Bignucolo, R. Turri, and A. Cerretti, ‘‘A novel
methodology for the management of distribution network based on neutral
losses allocation factors,’’ Int. J. Electr. Power Energy Syst., vol. 110,
pp. 613–622, Sep. 2019.

[36] M. Usman, M. Coppo, F. Bignucolo, R. Turri, and A. Cerretti, ‘‘Multi-
phase losses allocation method for active distribution networks based on
branch current decomposition,’’ IEEE Trans. Power Syst., vol. 34, no. 5,
pp. 3605–3615, Sep. 2019.

[37] G. P. McCormick, ‘‘Computability of global solutions to factorable non-
convex programs: Part I—Convex underestimating problems,’’Math. Pro-
gram., vol. 10, no. 1, pp. 147–175, 1976.

[38] K. Yamashita, S. Djokic, J. Matevosyan, F. O. Resende, L. M. Korunovic,
Z. Y. Dong, and J. V. Milanovic, ‘‘Modelling and aggregation of
loads in flexible power networks—Scope and status of the work of
CIGRE WG C4.605,’’ IFAC Proc. Volumes, vol. 45, no. 21, pp. 405–410,
2012.

[39] K. Strunz, E. Abbasi, C. Abbey, C. Andrieu, F. Gao, T. Gaunt, A. Gole,
N. Hatziargyriou, and R. Iravani, ‘‘Benchmark systems for network inte-
gration of renewable and distributed energy resources,’’ Cigre Task Force,
vol. 6, nos. 2–4, p. 78, 2009.

[40] J. Lofberg, ‘‘YALMIP : A toolbox for modeling and optimization
in MATLAB,’’ in Proc. IEEE Int. Conf. Robot. Autom., Sep. 2004,
pp. 284–289.

[41] A. Wächter and L. T. Biegler, ‘‘On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming,’’Math.
Program., vol. 106, no. 1, pp. 25–57, Mar. 2006.

[42] F. Bignucolo, R. Caldon, M. Coppo, and R. Turri, ‘‘Effects of dis-
tributed generation on power losses in unbalanced low voltage net-
works,’’ in Proc. IEEE Power Energy Soc. Gen. Meeting, Aug. 2018,
pp. 1–5.

MUHAMMAD USMAN (Member, IEEE)
received the B.Sc. degree (Hons.) in electrical
engineering from the University of Engineering
and Technology (UET), Lahore, Pakistan, in 2011,
and the M.Sc. degree in power engineering from
the Technical University of Munich, Germany,
in 2016, with a main focus on the application of
power electronics in electrical drives. He is cur-
rently pursuing the Ph.D. degree in electric energy
engineering with the University of Padova, Italy.

His main research interests include the modeling, control, and optimization
of power systems as well as the analysis of the role of distributed energy
resources in the management of medium- and low-voltage distribution
networks.

ANDREA CERVI (Member, IEEE) was born in
Montebelluna, Italy. He received the B.Sc. and
M.Sc. degrees in electrical energy engineering
from the University of Padova, Italy, in 2015 and
2018, respectively. He is currently a Research
Fellow with the Interdepartmental Centre Giorgio
Levi Cases for Energy Economics and Technology.
His main research interests include distribution
network stability, microgrid protection, and renew-
able energy source integration.

VOLUME 8, 2020 99707



M. Usman et al.: Cheap Conic OPF Models for LV Active DNs

MASSIMILANO COPPO (Member, IEEE)
received the Ph.D. degree in electrical energy
engineering from the University of Padova, Italy,
in 2016. He is currently a Research Associate
with the University of Padova. His main research
interests include the modeling and simulation of
power systems for smart grid management and
energy market participation, network stability, and
power quality analysis related to the integration of
distributed resources in electrical networks.

FABIO BIGNUCOLO (Member, IEEE) is a
Research Fellow with the Department of Indus-
trial Engineering, University of Padova. He has
authored or coauthored more than 50 articles
presented at national and international conferences
or published in esteemed international journals.
His research interests especially concern com-
puter applications in electrical power engineer-
ing, the regulation of distribution networks hosting
dispersed generators, innovative control architec-

tures, and the modeling of components and plants. Recently, he has also
worked on network applications for electrochemical storage units, aiming
at providing ancillary services to transmission and distribution grids.

ROBERTO TURRI (Senior Member, IEEE) was
born in Padova, Italy, in 1958. He received the
Dr.Ing. degree in electrical engineering from the
University of Padova, Italy, in 1984, and the Ph.D.
degree from the University of Wales, in 1987.
He was with the Physics Department, Univer-
sity College of Swansea, Wales, U.K. In 1990,
he joined the Electrical Engineering Department,
University of Padova, where he is currently work-
ing as an Associate Professor in power systems.

His main research interests include power system analysis and simula-
tion, smart grids, and the assessment and mitigation of human exposure to
low-frequency electromagnetic fields.

99708 VOLUME 8, 2020


