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In summer 2018, Europe experienced a record drought, but it remains
unknown how the drought affected ecosystem carbon dynamics. Using obser-
vations from 34 eddy covariance sites in different biomes across Europe, we
studied the sensitivity of gross primary productivity (GPP) to environmental
drivers during the summer drought of 2018 versus the reference summer of
2016. We found a greater drought-induced decline of summer GPP in grass-
lands (−38%) than in forests (−10%), which coincided with reduced
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evapotranspiration and soil water content (SWC). As com-
pared to the ‘normal year’ of 2016, GPP in different
ecosystems exhibited more negative sensitivity to
summer air temperature (Ta) but stronger positive sensi-
tivity to SWC during summer drought in 2018, that is, a
stronger reduction of GPP with soil moisture deficit. We
found larger negative effects of Ta and vapour pressure
deficit (VPD) but a lower positive effect of photosynthetic
photon flux density on GPP in 2018 compared to 2016,
which contributed to reduced summer GPP in 2018.
Our results demonstrate that high temperature-induced
increases in VPD and decreases in SWC aggravated
drought impacts on GPP.

This article is part of the theme issue ‘Impacts of the
2018 severe drought and heatwave in Europe: from site
to continental scale’.
R.Soc.B
375:20190747
1. Introduction
The summer of 2018 was among the most severe summer
droughts recorded in Europe in the past two decades follow-
ing the 2003, 2010 and 2015 droughts [1,2] and primarily
affected Central and Northern Europe which usually receive
adequate moisture during summer [3]. It is imperative to
understand and quantify how ecosystems respond to heat
and drought stress, given the increasing likelihood of such
events [4] and their detrimental impacts on ecosystems and
human livelihoods [5,6].

Summer drought and heatwave affect photosynthesis pri-
marily due to the physiological response to water deficit and
high temperature, including reductions in enzymatic activity,
mesophyll and stomatal conductance to prevent water loss
[7,8]. These effects have been often related to air temperature
(Ta), vapour pressure deficit (VPD) and soil water content
(SWC) [8]. Gross primary productivity (GPP) initially increases
with rising Ta but decreases above a certain optimum tempera-
ture [9] when maximum rates of carboxylation and electron
transport [10] become affected. Increases in VPD will increas-
ingly constrain stomatal conductance and thereby GPP, while
SWC deficit leads to reductions in enzymatic activity or meso-
phyll and stomatal conductance, and thus GPP [11,12]. In
addition, photosynthetic photon flux density (PPFD) is also a
major factor in driving GPP during the summer; however,
under drought conditions, it may be not as strong as it has
been in a normal or wet year [13] because vegetation becomes
water limited rather than energy limited for evapotranspiration
(ET) and thus GPP. GPP is strongly impacted by thesemultiple
climate drivers, but it remains unclear how drought impacts
the sensitivity of GPP to these climate drivers, given high
covariance of the above-mentioned drought drivers.

Drought and heatwave effects on GPP are complex because
of multiple causal relationships among different climate vari-
ables. For example, increased Ta could directly stimulate
enzyme activity and accelerate photosynthesis rate, or reduce
it through the reduction of enzyme activation and capacity
if temperature becomes too high [14]. But increased Ta
could also indirectly affect GPP through increasing VPD
(Ta→VPD→GPP), decreasing SWC via increasing ET (Ta→
ET→ SWC→GPP), or by involving both terms (e.g. Ta→
ET→VPD→ SWC→GPP) [8,15]. Increases in SWC under
water-limited conditions could have a positive direct effect
on GPP, but also a positive indirect effect on GPP through
decreasing VPD due to atmospheric feedbacks (SWC→
VPD→GPP) [12,16]. However, it remains elusive how drought
and heatwave impact these causal relationships among differ-
ent climate variables and what their relative influences are on
GPP. Exploring the relationships between these variables will
help us to elucidate some of the causality issues involved in
environmental controls over GPP across different ecosystems.

With the advantage of quasi-continuous measurements of
carbon andwater vapour fluxes, there has been a large increase
in the prevalence of eddy covariance (EC) flux towers in
Europe during the last decade (http://www.europe-fluxdata.
eu), progressively merging into the standardized research
infrastructure ICOS (Integrated Carbon Observation System).
With its representative sampling of the terrestrial biosphere’s
climate and ecological spaces, this regional network provides
background information anddirectmeasurements on howeco-
system metabolism responds to environmental and biological
forcing [17,18], giving us a unique opportunity to study the
impacts of the 2018 summer drought on ecosystem carbon
cycling. In this study, we focused on the effects of the recent
summer drought in 2018 and addressed the following ques-
tions: (1) How much did the GPP change during the 2018
summer drought? (2) Did the drought impact the sensitivity
of GPP to climate drivers? And (3), what are the direct and
indirect influences of Ta, VPD, SWC and PPFD and their
interactions on GPP before and during drought?
2. Material and methods
(a) Datasets
This analysis used carbon fluxes from EC observations and
meteorological data gathered through the European FluxDatabase
and processed in the framework of the ICOS 2018 Drought initiat-
ive from the ICOS dataset [19]. Half-hourly EC data were
processed, quality controlled, u*-filtered and gap-filled following
standardized protocols [20]. At each site, net ecosystem exchange
(NEE) was measured and partitioned into GPP and ecosystem res-
piration (TER) following the night-time and daytime partitioning
methods [21,22]. Based on measured high-quality NEE data,
GPP from the daytime partitioning method were used for sensi-
tivity calculation and path analysis. Sites that met the following
criteria were included in our analyses: (i) no disturbance within
10 years before the onset of EC measurements and non-cropland
ecosystems; (ii) sites with observations during the typical
summer of 2016 and the 2018 summer drought. Croplands were
excluded because rotations occur at different sites, with different
cultivars often planted between 2016 and 2018. This led to a final
list of 34 sites across 7 vegetation types, including 15 evergreen nee-
dleleaf forests, 5 deciduous broadleaf forests, 4 mixed forests, 5
grasslands, 3 savannahs, 1 shrubland and 1 wetland (table 1 and
figure 1). The choice of 2016 as a reference period is justified by
the availability of high-quality data from numerous sites, and
because 2016 was a normal year with precipitation near the aver-
age across most of Europe. The average summer precipitation in
Europe during 1979–2018 was 697 mm while it was 688 mm in
2018. Meanwhile, some areas of continental Europe experienced
drought in 2015 (especially in eastern Europe) and/or 2017
(especially in southern Europe) [23–25].

(b) Definitions and classifications
To quantify the climate and carbon flux changes in the summer
drought of 2018 versus that of 2016, both the absolute (ΔX ) and
relative changes (δX ) in each variable (X ) were computed from

http://www.europe-fluxdata.eu
http://www.europe-fluxdata.eu
http://www.europe-fluxdata.eu
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the data:

DX ¼ X2018 � X2016 ð2:1Þ
and

dX ¼ X2018 � X2016

X2016
� 100%, ð2:2Þ

where X2018 and X2016 represent the variable X during summer
(June−July−August) in 2018 and 2016 for each site, respectively.

We used the summer soil water content (SWC) changes
as a relative drought index for each site. In the grassland and
wetland sites, a shallow root zone was considered and SWC
measurements from the top 5 cm were used in the analysis,
while in the shrublands and savannahs soil water measurements
of up to 80–100 cm (available depth for these sites) were used.
For the forests, SWC was measured at several depths at
five forest sites (electronic supplementary material, figure S1),
while most other forest sites only include the shallow soil
water measurements (0–5 or 10 cm). We calculated a depth-
weighted average soil water content using soil water content at
each layer and depth of the layer in shrublands, savannahs
and forests:
na
l/rstb
Phil.Trans
SWC ¼ 2SWC1L1 þ (SWC1 þ SWC2)L2 þ (SWC2 þ SWC3)L3 þ (SWC3 þ SWC4)L4 þ (SWC4 þ SWC5)L5
2�P5

i¼1 Li
, ð2:3Þ
.R.Soc.B
375:20190747
where SWC refers to the profile weighted mean soil water content
(%); SWCi refers to soil water content at the ith layer (%) and Li (i =
1, 2,…, 5) refers to the depth of the ith soil layer (cm). The sum of Li
(i = 1, 2,… , 5) is 80 cm. We fitted the model to deeper SWC
(0–80 cm) and surface SWC (0–5 cm) across these five forest sites
during the summer of 2018 and 2016 using an exponential function
[26] (electronic supplementary material, figure S1). SWC at the
forest sites missing deep SWC measurements were estimated
using the surface SWC measurement and fitted model (electronic
supplementary material, figure S1).

According to their relative changes of SWC, all sites were
classified into three groups (table 1 and figure 1). Group 1 con-
sisted of the 23 (68%) sites that experienced 2018 summer
drought conditions with SWC at least 10% less than 2016
(δSWC≤ −10%), while there were 7 sites in Group 2 where
little change in SWC occurred (−10% < δSWC< 10%). Group 3
was defined as wet and included sites that experienced an
SWC increase of at least 10% (δSWC≥ 10%, 4 sites) (table 1).

(c) Data analyses
We used the 2018 drought as a natural experiment, where 2016
was considered as the control, while 2018 was the treatment.
We assumed that the sensitivities of GPP to environmental fac-
tors are different under dry and normal condition. Daily time
series of GPP and environmental variables (Ta, VPD, SWC and
PPFD) during summer (June−July−August) for each site were
first normalized to calculate the standardized sensitivities of
GPP to Ta, VPD, SWC and PPFD in 2018 and 2016. For each vari-
able, the mean value across the summer of 2018 and 2016 was
subtracted for each day at each site and then normalized by its
standard deviation. After normalization, we used a linear
mixed model with sites as the random factor to calculate the sen-
sitivity of GPP to Ta, VPD, SWC and PPFD during the summer
in 2018 and 2016, respectively, for each group in table 1:

GPP ¼ b1 Taþ b2 VPDþ b3 SWCþ b4 PPFDþ bþ 1, ð2:4Þ
where β is the standardized sensitivity to each independent vari-
able; b represents the random effect of the site; and ε is random
error. The variance inflation factor (VIF) was used to quantify the
degree of multicollinearity for the model [27] and a VIF < 6 for
each variable was found, indicating that the degree of multicolli-
nearity for the model was not strong. The surface conductance
(Gs) in the summer of 2018 and 2016 was calculated using half-
hourly data (11.00–14.00 averages, removing rainy hours) by
inverting the Penman–Monteith equation [28] as shown in
equation (2.5) for each site and then averaged for each group in
table 1.

Gs ¼ rag
ðDðRn � GÞ þ rcpraðesðTaÞ � eaÞÞ=lE� ðDþ lÞ , ð2:5Þ
where Gs and ra are canopy stomatal conductance and aero-
dynamic resistance, γ is the psychometric constant, Δ is the
slope of the water vapour deficit, Rn and G are net radiation
and soil heat flux, ρ is air density, Cp is specific heat capacity of
dry air, es and ea are saturated and actual vapour pressure,
respectively, and λE is evapotranspiration. ra is calculated follow-
ing Novick et al. [12] (equation (2.6)), using the von Karman
constant (k = 0.4), available wind speed data (ws), measurement
height (zm), as well as the momentum roughness length (z0 =
0.1 h) and zero plane displacement (zd= 0.67 h) both based on
calculated canopy height (h) from near neutral conditions [29]
(equation (2.7)).

ra ¼ ln ðzm�zdÞ=z0ð Þ2
wsk2

ð2:6Þ

and

h ¼ zm
0:6þ 0:1� expðkws=u�Þ : ð2:7Þ

Path analysis was used to evaluate the causal relationships
and relative influences among different variables [30,31] and to
determine the direct and indirect factors influencing GPP. By
stepwise removal of non-significant paths in the initial model,
we selected a final model that best fits the observations. The ade-
quacy of the model was determined by χ2-test and root mean
squared error of approximation (RMSEA) index. The χ2-test
was used to assess whether the model reasonably explained
the patterns of the data. Favourable model fits were selected by
non-significant difference in the χ2-test ( p > 0.05) and low
RMSEA (less than 0.08) following Liu et al. [32]. The path analysis
was performed using the R package ‘lavaan’ [31]. Other calcu-
lations and analyses were conducted using MATLAB R2016b
(The Mathworks Inc., Natick, MA, USA). A statistical probability
of p < 0.05 was used to determine significance for all tests.
3. Results
(a) Changes in climate and ecosystem carbon fluxes

between 2016 and 2018
Most sites experienced summer drought conditions in 2018
(Group 1, δSWC≤−10%, 68% of sites). In comparison with
year 2016, the mean daily summer PPFD, Ta and VPD were
higher by 39 ± 5 µmol m−2 s−1 (± standard error; a relative
change of 10%), 1.5 ± 0.1°C (9%) and 2.4 ± 0.2 hPa (45%) at
these sites, respectively, while total precipitation and SWC
decreased by 111 ± 25 mm (36%) and 9.1 ± 1.0% (a relative
change of 31%), respectively (table 1 and figure 1d). Summer
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GPP and ecosystem respiration (TER) in 2018 decreased at most
sites in Group 1 and increased in ecosystems that werewetter in
2018 in Group 3 (table 1). The decrease in GPP from Group 1
sites (−125 ± 40 g C m−2 season−1, −14%) coincides with
reduced ET (−15 ± 8 mm season−1, −7%) and SWC deficits
(table 1 and figure 1d). However, for the wetter sites in Group
3 (δSWC≥ 10%), the relative change of SWC and Ta increased
by 33% and 2% on average, respectively, leading to increases
of GPP and ET by 19% and 5%, respectively.

The drought in 2018 had a stronger impact on summer
GPP, TER and ET of grasslands compared to forest sites.
For the grassland sites in Group 1 (δSWC≤−10%), GPP
and TER decreased by 379 ± 153 (38%) and 331 ± 185 (33%)
g C m−2 season−1, respectively (table 1). Mean GPP and
TER in forests decreased by 98 ± 32 (10%) and 84 ± 27 (14%)
g C m−2 season−1, respectively. Also, summer ET decreased
by 41 ± 32 (15%) mm season−1 in grasslands compared to a
reduction by 15 ± 7.2 (9%) mm season−1 in forests for
Group 1 (table 1 and figure 1d ). The reduction of mean
summer TER (−105 ± 37 g C m−2 season−1) is on average
lower than that of GPP (−125 ± 40 g C m−2 season−1), causing
a reduction of net carbon uptake in Group 1 (table 1).

(b) Sensitivity of GPP to climate drivers in 2018
and 2016

The summer drought in 2018 impacted the sensitivity of GPP
to climate drivers as compared to 2016 (figure 2). In Group 1,
the sensitivity of GPP to Ta was significantly positive in the
summer of 2016 (0.15 ± 0.03) but it was close to zero in
2018 (−0.03 ± 0.03, figure 2a). GPP was four times more sen-
sitive to SWC in the summer of 2018 (0.24 ± 0.03) compared
to 2016 (0.06 ± 0.03, figure 2a). The sensitivities to VPD in
2018 and 2016 were close to −0.30 and constrained the GPP
consistently during both summers. On the other hand, the
mean surface conductance in 2018 (0.53 ± 0.06 cm s−1) was
significantly lower than that of 2016 (0.85 ± 0.05 cm s−1),
suggesting a stronger stomatal closure in 2018 in response
to elevated VPD. Meanwhile, the positive sensitivity of GPP
to PPFD in 2018 (0.62 ± 0.02) was smaller than that of 2016
(0.68 ± 0.03) in Group 1 (figure 2a).

GPP was negatively related to Ta in Group 2 in 2018
(−0.16 ± 0.07, figure 2b) due in part to the three savanna
sites in this group (against no savannas in Group 1; table 1
and figure 1b). Although the SWC deficits were less than
10% in those savannah sites (δSWC=−6%, figure 1d ), their
summer maximum Ta were higher than 34°C, so that Ta
had a strong negative effect on GPP. When we removed the
savannah sites in Group 2, there was no significant difference
between 2018 and 2016 for the sensitivity of GPP to climate in
this group (electronic supplementary material, figure S2).
In contrast to Group 1, Group 3 was less sensitive to SWC
in 2018 (0.14 ± 0.05) than in 2016 (0.51 ± 0.06) because
of higher SWC in 2018 at these sites (figure 2c). The sensi-
tivity of GPP to Ta in the summer of 2018 (0.16 ± 0.05) was
significantly positive in Group 3 (figure 2c).

We further classified Group 1 into different vegetation types
and found weaker and even negative Ta sensitivities in 2018
compared to 2016 across all vegetation types, including ever-
green needleleaf forests, deciduous broadleaf forests, mixed
forests, grasslands, shrubland and wetland (figure 3). Results
also showed that the positive sensitivity of GPP to SWC in
2018 was stronger than that of 2016 in all vegetation types



(d)

(a) (b) (c)

–80

–60

–40

–20

0

20

40

60

80

100

120

re
la

tiv
e 

ch
an

ge
s 

(%
)

dSWC £ –10%

Group 1: dSWC £ –10% Group 2: –10% < dSWC < 10% Group 2: dSWC ≥ 10%

GPP
TER
ET
TA
VPD
SWC
PPFD

–80

–60

–40

–20

0

20

40

60

80

100

120
–10% < dSWC < 10%

–80

–60

–40

–20

0

20

40

60

80

100

120
dSWC ≥ 10%

DE-G
ri

DE-O
be

DE-H
ai

CH-C
ha

CZ-R
AJ

BE-B
ra

SE-H
tm

NL-L
oo

SE-N
or

CZ-L
nz

SE-R
os

SE-D
eg

CH-F
ru

DE-H
oH

SE-S
vb

FR-B
il

CZ-S
tn

BE-V
ie

FI-H
yy

CH-D
av

FR-H
es

IT
-L

sn

CZ-B
K1

DE-T
ha

DK-S
or

CH-L
ae

IT
-T

or

ES-A
br

ES-L
M

1

ES-L
M

2

IT
-S

R2

CH-A
ws

RU-F
yo

RU-F
y2

70

65

60

55

50

45

40

–10

70

65

60

55

50

45

40

70

65

60

55

50

45

40

403020100 –10 403020100 –10 40
–2.0

2.0

1.5

1.0

0.5

0

SW
C

 a
no

m
al

y

–0.5

–1.0

–1.5

302010

forestsforests
GRAGRA

SAV

forests
GRA
SAV
WET

0

Figure 1. Distribution map of EC sites in Group 1 (a), Group 2 (b), Group 3 (c) and the relative changes (d ) of climate and ecosystem carbon fluxes in the summer of
2018 when referred to the typical summer of 2016 at the three groups of EC sites. Ecosystems are sorted by relative change in GPP from the most negative to the
most positive values. The background map is the spatial distribution of summer soil water content (SWC, 0–289 cm) anomaly in 2018 (z-score) when referred to
1979–2018, and it was calculated using the atmospheric reanalysis from the European Center for Medium-range Weather Forecast (ECMWF), the ERA5 Reanalysis,
which provides climate fields at 0.25° spatial and hourly temporal resolution from 1979 until the present. GPP, gross primary productivity; TER, ecosystem respiration;
ET, summer evapotranspiration; Ta, air temperature; VPD, vapour pressure deficit; PPFD, summer photosynthetic photon flux density. (Online version in colour.)

dSWC £ –10% (n = 23)

Ta VPD SWC PPFD

–0.4

–0.2

0

0.2

0.4

0.6

0.8

st
an

da
rd

iz
ed

 s
en

si
tiv

ity

2018
2016

–10% < dSWC < 10% (n = 7)

Ta VPD SWC PPFD

–0.4

–0.2

0

0.2

0.4

0.6

0.8
dSWC ≥ 10% (n = 4)

Ta VPD SWC PPFD

–0.4

–0.2

0

0.2

0.4

0.6

0.8

Gs:
0.53 ± 0.06 (cm s–1)
0.85 ± 0.05 (cm s–1)

Gs:

0.55 ± 0.30 (cm s–1)

Gs:
1.09 ± 0.12 (cm s–1)
0.96 ± 0.16 (cm s–1)

0.45 ± 0.27 (cm s–1)

(a) (b) (c)

Figure 2. Standardized sensitivity of GPP to air temperature (Ta), vapour pressure deficit (VPD), soil water content (SWC) and photosynthetic photon flux density
(PPFD) during the summers of 2018 and 2016 under different SWC changes. Error bars represent ±1 standard error. Insert numbers are mean surface conductance
(Gs, ± standard error) in the summer of 2018 (orange) and 2016 (blue). (Online version in colour.)

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190747

6

except for the wetland; GPP was not sensitive to SWC in wet-
land in both 2018 and 2016 (figure 3). Meanwhile, we found
the change patterns in sensitivities of ET to climate drivers
were similar to that of GPP for different vegetation types in
Group 1 (electronic supplementary material, figure S3). ET
had weaker sensitivity to Ta and PPFD but stronger sensitivity
to SWC in 2018 than that of 2016 in forests, grasslands and
shrubland (electronic supplementary material, figure S3).
(c) Relative influences of climate drivers on gross
primary productivity

The path analysis showed that the direct, indirect and total
effects of each climate factor on GPP during the summer
were different between 2018 (figure 4a,c) and 2016
(figure 4b,d) across all of the sites in Group 1 (δSWC≤−10%)
except for wetland. The direct effect of Ta on GPP was
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positive (0.07 ± 0.02) in 2016 (figure 4b) but not significant in
2018 (figure 4a). The direct positive effect of SWC in 2018
(0.15 ± 0.03) was higher than in 2016 (0.08 ± 0.03) while
VPD had a direct negative effect on GPP both in the
summer of 2018 (−0.36, figure 4a) and 2016 (−0.34, figure 4b).
PPFD had a smaller direct positive effect on GPP in 2018
(0.77 ± 0.03) than that of 2016 (0.82 ± 0.03).

As for indirect effects, Ta had an indirect negative effect on
GPP through VPD and SWC during both summers in 2018
(−0.19and−0.05, figure4c) and2016 (−0.16and−0.02, figure4d).
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Ta had a strong indirect negative effect onGPP (−0.29, figure 4c)
due to its impact onVPDand SWC in 2018 but nodirect positive
effect on GPP, thus resulting in a strong total negative effect
(−0.29). In 2016, the direct positive effect of Ta on GPP was
0.07 and partly offset the indirect negative effect through VPD
and SWC (figure 4d), so its total effect was only−0.15. Increased
VPD in 2018 reducedSWCandhadan indirect negative effect on
GPP (−0.05), which further enhanced the negative direct effect
of VPD on GPP, leading to a large negative total effect (−0.41).
The indirect positive effects of SWC on GPP were 0.11 and 0.06
through its role in decreasing VPD and Ta, respectively, in
2018 (figure 4c). PPFD had an indirect negative or positive
effect on GPP through increasing VPD and Ta, respectively,
both in 2018 and 2016. Overall, the total effects from Ta, VPD,
SWC and PPFD on GPP in 2018 (figure 4c) were −0.29, −0.41,
0.32 and 0.48, respectively, while they were −0.15, −0.36, 0.20
and 0.58, respectively, in 2016 (figure 4d). Thus, larger negative
effects from Ta and VPD but lower positive effect from PPFD
in the summer of 2018 than that of 2016 led to a summer GPP
reduction in 2018.
75:20190747
4. Discussion
(a) Drought and ecosystem carbon fluxes in 2018
Our results show that most sites in Group 1 experienced a GPP
reduction in the summerof 2018 despite inter-site differences in
drought duration, soil characteristics, vegetation state and
species-specific responses to climate variation. The exception-
ally high temperature, which increased VPD, and the lack of
precipitation, which reduced soil water availability, resulted
in a decrease of summer GPP and ET. The response of carbon
fluxes to drought stress is tightly coupled with soil water avail-
ability and stomatal regulation [33]. During drought stress, soil
moisture deficit results in more negative soil water potentials,
that translate into more negative root, stem and leaf water
potentials. In case the evaporative demand is high and eva-
porative supply cannot be controlled by xylem conductance
and stomatal closure, stem water potentials drop below a
threshold representing a 50% loss of conductance, and cavita-
tion and embolism can happen, leading to a long-lasting
decline inGPPandmortality [34,35]. On the other hand, stoma-
tal control optimizes marginal water loss per carbon gain and
can reduce GPP in the short term [35].

We also found that TER decreased together with GPP at
most sites in Group 1 (table 1 and figure 1d). A reduction in
both plant respiration (due to diminished substrates) and
microbial soil respiration (due to diminished substrates from
plants andmicrobial response to drought) can explain such par-
allel TER and GPP responses [36,37]. Burton et al. [37] reported
that drought reduced root autotrophic respiration by affecting
carbon allocation. Since exudates and carbon substrate pro-
vided to soil decomposers from GPP (e.g. fine root turnover)
is reduced during drought, there is also a possible contribution
of GPP to the reduction of soil heterotrophic respiration. In
addition, lower SWCmay limit soil respiration and its response
to soil temperature changes [38,39]. Vegetationmodels typically
predict that warmer temperatures increase both microbial and
plant respiration, but generally differ in their parametrization
of water-limitation on microbial respiration [40,41]. To better
understand the response of autotrophic and heterotrophic
respiration to drought, microbial and root respiration should
be measured during the drought.
Relative changes in summer GPP and TER vary among
biomes due to different resistances to drought. Forest ecosys-
tems tend to have deeper roots and are more isohydric as
compared to grasslands [42,43]. Therefore, they tend to be
more resistant to early stages of drought if they can tap soil
water throughout their rooting zone [44]. Several sites in
Group 1 showed increased GPP and TER in spite of reduced
SWC (e.g. CZ-BK1) which might be caused by the legacy
effects of spring abnormally high leaf area and water-use effi-
ciency dynamics mediated by vegetation composition [45].
Meanwhile, warmer temperatures also might stimulate photo-
synthesis and microbial activity at cold and high-latitude sites
with highmean annual precipitation (greater than 1300 mm at
CZ-BK1). In addition, the net carbon uptake was enhanced at
some sites in Group 1, which results from the imbalance
between GPP and TER in response to drought. At sites
where TER is more sensitive to drought than GPP, drought
could increase the net carbon uptake. In a long-term field
experiment, Jentsch et al. [46] imposed an extreme drought in
a grassland and reported that drought decreased soil respir-
ation without reducing net primary production. Moreover,
we found that the correlation coefficient between δGPP and
δSWC was higher for deeper soil moisture, whereas δTER
was more correlated with surface moisture (electronic sup-
plementary material, table S1). This result suggests that GPP
responds to deeper SWC and TER responds to surface SWC
as most of the litter and soil organic carbon is in the topsoil,
and their different responses to SWC at different depths deter-
mines the change of net carbon uptake controlled by SWC.

It should be also noted that the results are sensitive to the
choice of the reference year because we only compared the
2018 data to the 2016 observed values and not to a long-
term average. Due to the different time coverage of obser-
vations with few long-term sites, and considering the
choice of 2016 versus 2015 or 2017 as a reference, we found
some areas of continental Europe experienced drought in
2015 and/or 2017 [23–25]. This justified our choice of 2016
as a reference year.

(b) Sensitivity of gross primary productivity to climate
drivers during the summer drought

Distinctive sensitivities of GPP to Ta, SWC and PPFD were
found during 2018 summer as compared with summer 2016
in Group 1 (δSWC≤−10%). Increasing temperature stimulates
enzyme activity and accelerates photosynthesis rate during the
growing season in the normal year [47]. But exceptionally high
temperature could reduce GPP through the reduction of
enzyme (Rubisco) activation and capacity, especially in dry
conditions when leaf temperatures are elevated in the absence
of transpiration cooling [14,48,49]. Our results across all
vegetation types in Group 1 showed weaker—and even nega-
tive—Ta sensitivities in 2018 than those of 2016, indicating that
the drought and heatwave changed the response strength of
GPP to Ta. Increase in Ta also translates into an increase in
VPD if atmospheric humidity remains constant, and VPD
serves as a strong control over GPP [50]. This study showed
that VPD stress can still take place without soil moisture limit-
ation because GPP had a similar magnitude of negative
sensitivity to VPD in 2018 as in 2016, which is supported by
the recent findings. For example, Novick et al. [12] reported
VPD limited carbon and water fluxes even in mesic forests.
However, our result also shows a stronger Gs closure in 2018
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in response to elevated VPD, and it may be because of being
partly compensated by an increase of the difference between
leaf and atmospheric partial pressure of CO2 so that the sensi-
tivity of GPP to VPD remained constant between the two years.
Additionally, we found that GPPwas four timesmore sensitive
to SWC in the summer of 2018 compared to 2016 in Group 1,
revealing a strong water limitation during the drought, and
possibly nonlinear response of GPP to SWC deficits [51]. This
higher sensitivity of GPP to SWC during dry periods may
explain why the vegetation of semi-arid ecosystems can
appreciably increase carbon uptake when a sudden precipi-
tation event occurs [52]. Plants living in semi-arid ecosystems
often opportunistically respond to rainfall events, which
thereby determines productivity because of the high sensitivity
of GPP to SWC under dry conditions [53]. In the normal year,
PPFD is usually the most important driver in controlling the
summer GPP, especially in forests [13,50], but drought lowered
the positive sensitivity of GPP to PPFD in the summer of 2018,
which demonstrated that drought decreased radiation use
efficiency and thus constrained vegetation productivity.

Not only did drought alter the sensitivities of GPP to differ-
ent climatic drivers, but there was also a similar change in
sensitivities of ET to climate drivers among different vegetation
types in Group 1 (electronic supplementary material, figure
S3). It is well documented that GPP and ET are tightly coupled
[8,9,12,16,17,54], but our results fromdifferent vegetation types
consistently suggest that the changes and responses in sensi-
tivity of GPP and ET to different climatic drivers during the
summer drought are also coupled. Those coupled changes
have profound implications for the predictions of the carbon
and water cycles in the future. Considering the GPP and ET
together would be needed to better understand the impact of
high temperature, VPD and the occurrence of intense droughts
on ecosystems.

(c) Relative influences of climate drivers on gross
primary productivity

Different climate drivers impacted the summer GPP through
different pathways and we attempted to quantify their direct
and indirect influences on GPP. We found that high Ta had
strong indirect negative effects on GPP in 2018 due to its
impacts on VPD (−0.19, Ta→VPD→GPP), while the indirect
effect from Ta through decreasing SWC was relatively small
(−0.05, Ta→ SWC→GPP), as shown in figure 4. The ratio
between these two indirect negative effects was as high as a
factor of 4. High Ta determines VPD more directly than
SWC because Ta positively forces ET and then affects SWC.
These results are supported by recent observational and mod-
elling studies, which emphasized that VPD has a greater
effect on vegetation productivity than that of SWC [12,55].
High VPD in 2018 also further decreased SWC and led to a
negative indirect effect on GPP (VPD→ SWC→GPP). In
turn, SWC lowered VPD and Ta by ET, and then had a
positive effect on GPP. In 2016, because there was sufficient
soil water availability and the Ta was not high (table 1 and
figure 1d ), SWC had less impact on GPP and Ta had a posi-
tive direct effect on GPP. In 2018, the indirect negative effect
of PPFD offsets about one half its direct positive effect on
GPP, leading to less total positive effect than that of 2016.
The evaluation of indirect/direct effects among different vari-
ables are helpful to explain the varying magnitudes and
directions of the observed carbon–climate feedback.
Climate factors only explained 39% and 42% variance in
GPP in the drought and normal summer, respectively, which
may result from the following two reasons. First, the spatial
variability among different sites across Europe cannot be
explained, although the path analysis only focused on Group
1 and excluded wetland. The inter-site differences in drought
intensity and duration, soil characteristics, vegetation state
and species-specific responses to climate variation are difficult
to explain [25]. Second, drought also affects plant photosyn-
thesis through changes in the vegetation canopy, such as leaf
withering and senescence [56]; in other words, the biotic
response to climate, rather than climate alone, is also important
to explain the variation of GPP [57].

The 2018 European drought offers us a unique opportunity
to studydrought impacts on the ecosystem carbon cycle, includ-
ing in regions that seldomexperience severe drought.Our study
demonstrates that high temperature-induced increases in VPD
and decreases in SWC aggravated drought effects on GPP.
These observed different sensitivities of GPP to climatic drivers
have important implications for improving the capacity of
model simulation of sensitivity of ecosystem carbon dynamics
to increasing warming and drying. It is largely unknown
whether land surface models can capture these changes in sen-
sitivity to climate under drought and whether they simulate
correctly the limitation ofGPPandTERbywater. Future studies
would need to compare the model performances with obser-
vations and explore approaches for improving the simulation
capability of models or their constraints.
5. Summary
This study examined how carbon fluxes responded to the
2018 drought using EC observations across Europe. We inves-
tigated the sensitivities and relative influences of different
climate drivers on GPP during the summer drought of 2018
versus the reference summer of 2016. The results showed
that summer TER decreased in parallel with GPP at most
sites during the drought and there was a greater drought-
induced decline of summer GPP in grasslands than in forests,
which coincided with reduced ET and SWC. Drought also
changed the sensitivity of GPP to different climate drivers.
Different ecosystems consistently showed that GPP had
more negative sensitivity to Ta in 2018 compared to 2016,
but higher positive sensitivity to SWC during 2018. We also
found larger negative effects from VPD but a lower positive
effect from PPFD in the summer of 2018 than that of 2016,
which contributed to reduced summer GPP in 2018. These
observed different influences and sensitivities enrich our
understanding of temperature–moisture interactions and
help to disentangle how they affect ecosystem carbon cycling
and its feedback to climate change.
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