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1 Introduction

Many real-world problems coming from different fields (e.g., Engineering, Eco-
nomics, Biology) can be modeled using black box functions. Those functions
represent the experimentally obtained behavior of a system and in practice
are given by means of specific simulation tools, hence no internal or analytical
knowledge for the functions is provided. Furthermore, evaluating the func-
tion at a given point is usually an expensive task in terms of computational
resources, and only a limited budget of evaluations is available for the op-
timization. We also need to keep in mind that noise and discontinuities are
pretty common in this context and make the problems very hard to solve. On
top of that, real systems are often described by means of non-relaxable inte-
ger variables (e.g., number of nurses in a ward, number of coils in a magnet,
and so on) that need to be properly handled. Indeed, when dealing with this
kind of problems, there is no easy way to get lower bounds for evaluating the
quality of the generated solutions. Thus, it is neither possible to cut away part
of the feasible set nor to get an optimality gap for the solutions (like exact
algorithmic frameworks in integer programming usually do).
In general, when exact methods cannot be applied, heuristic ones are con-
sidered. Explorative search methods (like, e.g., variable neighborhood search,
iterated local search), which look for a new solution in some neighborhood
of a given point and perturb point and/or neighborhood when specific con-
ditions are met, and population based methods (like, e.g., genetic algorithms),
which use a set (i.e., a population) of points at each iteration to generate
new solutions, represent classic heuristic approaches for problems with inte-
ger variables (see, e.g., [6] for further details). However, those two classes of
approaches may not be suitable for optimization problems with computation-
ally expensive objective and constraint functions because a large number of
evaluations is commonly needed to find good solutions.

So, the goal here is basically coming up with a method that explores the integer
lattice in the best possible way with the information gathered around (i.e., a
method that reduces as much as possible the objective function value without
wasting the budget of function evaluations).

In the paper we then consider the following optimization problem:

min f(x)

s.t. x ∈ C ∩ Z
n,

(1)

where f : Rn → R is a black box function (i.e., the mathematical representa-
tion of f(x) is not available) and C ⊂ R

n, C 6= ∅ is a non-empty compact set
(whose description usually includes black box constraints). We further assume
that black box functions are computationally expensive in this framework.
Methods for dealing with this kind of problems can be essentially divided into
two classes:
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1. Direct search methods: at each iteration, the objective function is sam-
pled over a specific set of points and the best point (in terms of objective
function value) is chosen as the new iterate;

2. Model based methods: at each iteration, a model of the objective func-
tion is built and a new point that minimizes the model is eventually picked;

the interested reader can refer to [7] for further details. Methods of the direct
search type can be further divided into different groups depending on the way
the function is sampled over the integer lattice. Hence we can either consider
methods that use a stencil (i.e., a predetermined set of search directions with
a common fixed stepsize, see, e.g., [3–5,14]) or methods that use a skewed sten-
cil (i.e., a predetermined set of search directions with dynamically changing
stepsizes, see, e.g., [12,13]) whose shape is modified depending on a line search
procedure. Recently, a more sophisticated way to handle the integer variables,
which combines fixed stencils with tree-based searches, was proposed in [19].
Methods belonging to the second class can be further classified depending on
the model used. We thus have algorithms that embed surrogate (see, e.g., [16,
17]) or quadratic models (see, e.g., [18]).

If we focus on direct search methods, we can easily notice that the search of
points that monotonically reduce the objective function, together with the use
of a predetermined set of directions for exploring the integer lattice can cause
the algorithm to get stuck in a local minimum pretty soon in the optimization
process. Even the use of a line search that dynamically changes the skewed
stencil might not be enough in order to escape those points. It is actually easy
to build examples where both strategies cannot move away from the starting
point.

In this paper we then define a new algorithmic framework of the direct search
type that tries to overcome these issues. The three main features that charac-
terize our strategy are the following:

– stencil enrichment by means of a suitable set of search directions (the so
called primitive directions) as soon as the algorithm gets stuck;

– a nonmonotone version of the line search defined in [12,13] for getting more
freedom when changing the shape of the stencil;

– a simple penalty approach, similar to the one described in [13], for handling
the case when set C is described by means of black box functions.

The use of a nonmonotone acceptance rule is very important in this context
since it improves robustness and efficiency of our framework. Indeed, trying to
get a new point that strictly reduces the objective function, like we do when
using a monotone line search, might either get small movements along the
search direction (especially when dealing with an objective function that is
noisy or with steep sided valleys) or require the generation of many primitive
directions in order to escape a point (this usually happens when the objective
function is locally “flat ”).

Nonmonotone acceptance rules have already been used in derivative-free con-
tinuous optimization (see, e.g., [8–10]). Anyway, to the best of our knowledge,
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this is the first time that a nonmonotone discrete line search is embedded into
an algorithmic framework that handles black-box IP problems.

About the theoretical results reported in the paper, we prove finite convergence
of the algorithmic framework to a suitably defined local minimum of Problem
(1) when C is:

– a structured set (i.e., simple bounds);
– a more general set described by black box functions (in this case we need

to assume that some sort of constraint qualification condition holds for the
problem).

An extensive numerical analysis on a large testbed of both bound constrained
and generally constrained problems is also reported. More specifically, we first
investigate the effects of using enriched stencils and a nonmonotone acceptance
rule in our algorithmic framework. Then, we show the effectiveness of our
integer lattice exploration strategy when compared to the strategies embedded
into two state-of-the-art direct search methods, namely NOMAD (v.3.8.1) [1]
and BFO [19]. In order to understand if our simple direct search method is
competitive with algorithms that use models, we further include in the analysis
the comparison with the model based version of NOMAD.

The paper is organized as follows. In Section 2, we describe the algorithmic
framework for black box problems with bound constraints. Then, in Section
3, we explain how to handle problems with black box general constraints. We
hence report a numerical experience both for problems with bound constraints
and black box constraints, respectively in Section 4 and 5. Finally, we draw
some conclusions in Section 6.

1.1 Definitions

We report some definitions that will be useful in the next sections.

Definition 1 (Stencil) Given a point x ∈ R
n, a stepsize α ∈ R+ and p

directions di ∈ R
n, i = 1, . . . , p, a stencil is the following set of points:

S(x, α, d1, . . . , dp) = {x± αdi, i = 1, . . . , p}.

A particular stencil is, for instance, the coordinate stencil, that is

S(x, α, e1, . . . , en) = {x± αei, i = 1, . . . , n},

where ei ∈ R
n is the i-th coordinate vector. Next, we introduce the definition

of skewed stencil which is obtained from Def. 1 by allowing different stepsizes
for each direction.

Definition 2 (Divisor) For integers a and b, we say that a divides b, or that
a is a divisor (or factor) of b, or that b is a multiple of a, if there exists an
integer c such that b = ca, and we denote this by a|b.
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Definition 3 (Skewed stencil) Given a point x ∈ R
n, p stepsizes αi ∈ R+

and p directions di ∈ R
n, i = 1, . . . , p, a skewed stencil is the following set of

points:

S(x, α1, . . . , αp, d1, . . . , dp) = {x± αi di, i = 1, . . . , p}.

Let v ∈ Z
n. We call d ∈ Z a common divisor of v1, . . . , vn if d|vi, with

i = 1, . . . , n. Then, the greatest common divisor of v1, . . . , vn, denoted as
GCD(v1, . . . , vn), is a non-negative common divisor such that all other com-
mon divisors of v1, . . . , vn divide d.
Now, we give a few definitions that will be useful when describing in depth
our algorithm. We start by introducing the concept of primitive vector:

Definition 4 (Primitive vector) A vector v ∈ Z
n is called primitive if

GCD(v1, . . . , vn) = 1.

Remark 1 Given any two points x, y ∈ Z
n, we have x − y = αd, with d ∈ Z

n

a primitive vector and α ∈ N. Hence, starting from a point x ∈ Z
n any other

point y ∈ Z
n can be reached by choosing a suitable stepsize α ∈ N along a

specific primitive direction d ∈ Z
n.

Then, we formally define the concept of feasible primitive direction, which
represents an important feature in our framework:

Definition 5 (Feasible primitive direction) Given a point x̄ ∈ C ∩ Z
n, a

primitive direction d is feasible at x̄ for C when β ∈ N exists such that

x̄+ αd ∈ C ∩ Z
n, for all α ≤ β, α ∈ N.

We further denote with D(x̄) the set of all feasible primitive directions at a
given point x̄. By taking into account Remark 1, it is easy to understand that
starting from x̄, by suitably picking a direction in the set D(x̄) and by properly
moving along the chosen direction, we can reach any other feasible point of
problem (1).

Definition 6 (Discrete neighborhood) Given a point x̄ ∈ C ∩ Z
n and a

parameter β ∈ N, the discrete neighborhood of x̄ is

N (x̄, β) = {x ∈ C ∩ Z
n : x = x̄+ αd, with α ≤ β, α ∈ N and d ∈ D(x̄)}.

Remark 2 Note that, the discrete neighborhood N (x̄, β) can coincide with
the whole feasible set of Problem (1), provided that the parameter β is chosen
sufficiently large.

An example of discrete neighborhood is given in Figure 1. Obviously, the
concept of discrete neighborhood is only ideal. Indeed, building up a such a
neighborhood is an expensive task that cannot be efficiently done in practice.
This is the reason why we need to replace D(x̄) in the definition above with a
suitably chosen subset of directions, thus getting the following definition.
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Fig. 1 Discrete neighborhood: example with β = 1, X = {x ∈ R2 : 0 ≤ x1 ≤ 5, 0 ≤ x2 ≤
5}

Definition 7 (Weak discrete neighborhood) Given a point x̄ ∈ C ∩ Z
n,

a parameter β ∈ N and a subset D ⊂ D(x̄), the weak discrete neighborhood
of x̄ is

Nw(x̄, β,D) = {x ∈ X ∩ Z
n : x = x̄+ αd, with α ≤ β, α ∈ N and d ∈ D}.

Now, we can formally give the definition of a local minimum for Problem (1).

Definition 8 (Local minimum point) A point x∗ ∈ C ∩ Z
n is a local

minimum of Problem (1), if β ∈ N exists such that

f(x∗) ≤ f(x), ∀x ∈ N (x∗, β). (2)

Following the same path as before, we get another definition that makes more
sense from a practical point of view.

Definition 9 (Weak local minimum point) A point x∗ ∈ C∩Z
n is a weak

local minimum of Problem (1), if a parameter β ∈ N and a subset D ⊂ D(x∗)
exist such that

f(x∗) ≤ f(x), ∀x ∈ Nw(x
∗, β,D). (3)

2 A nonmonotone algorithm for black box optimization problems
with bound constraints

In the first part of the paper, we focus on bound-constrained integer program-
ming problems of the following form:

min f(x)

s.t. li ≤ xi ≤ ui, i = 1, . . . , n

x ∈ Z
n

(4)
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namely, Problem (1) where C = {x ∈ R
n : li ≤ xi ≤ ui, i = 1, . . . , n} with

li, ui ∈ Z and −∞ < li < ui < ∞, for all i = 1, . . . , n. Note that, in this case,
C is obviously a compact subset of Rn. From now on, let us denote the set of
bound constraints as follows

X = {x ∈ R
n : li ≤ xi ≤ ui, i = 1, . . . , n}.

In this section, we describe a new algorithm for black box optimization prob-
lems with bound constraints. It basically combines the use of primitive feasible
directions with a suitable nonmonotone line search that only explores points
in the integer lattice. The detailed scheme of the algorithm is reported below
(see Algorithm 1). As we can easily see, there are three different phases at each
iteration. In the first phase, we generate points around the iterate xk. More
specifically, we pick a direction from a specific set D ⊆ D(xk) and explore this
direction by means of a nonmonotone line search in order to find a new point
that both guarantees a sufficiently large movement along the search direction
and a reduction with respect to a specific reference value f ref (see Step 12
in Algorithm 1). Phase 1 will then end once we either find such a point or
D becomes an empty set (i.e., all directions in D have been explored, but no
reduction is obtained with respect to the reference value). We notice that the

iterate xk, the directions d ∈ Dk and starting stepsizes α̃
(d)
k might be seen as

a dynamically changing skewed stencil suitably modified at each iteration of
the algorithm depending on the outcomes of the line search. In case we get
a point that guarantees a reduction with respect to the reference value, the
algorithm updates

– the starting stepsize related to the last direction explored (i.e., it enlarges
the stencil with respect to the direction);

– the reference value;
– the queue needed to build up the reference values in the next iterations.

Once Phase 1 is done, we switch to Phase 2 where the sets of search directions
D (set of search directions to be used in Phase 1) and Dk (set of search
directions generated so far) are eventually updated. More specifically, if in
Phase 1 the algorithm succeded in finding a new point, Dk stays the same
and D is set equal to Dk. Otherwise, the algorithm checks if Nonmonotone
search failed along all the directions in Dk and the starting stepsize is 1 for all
of those directions (i.e., the dynamically changing skewed stencil defined by

directions d ∈ Dk and stepsizes α̃
(d)
k shrank to its minimum size in Phase 1). If

this is not the case, Dk stays the same and D includes only the directions that
failed with stepsize greater than one. Otherwise, the algorithm tryes to enrich
Dk. If Dk equals the set D(xk) of primitive feasible directions in xk, then the
algorithm checks whether xk is the point with the best objective function. If
so, it stops, otherwise it moves to the best point found so far (see Step 19 in
Algorithm 1), thus D and Dk are set equal to D(xk). If the set of generated
search directions is still smaller than D(xk), it is enriched (Dk+1 ⊃ Dk) and
the set D includes only the new directions generated to enrich Dk. Finally, in
Phase 3 the iterates are updated.
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Algorithm 1 NonMonotone Black Box Optimization Algorithm (NM-BBOA)

1: Data. x0 ∈ X ∩ Z
n, D = D0 ⊂ D(x0) a set of initial directions, α̃

(d)
0 = 1, for each d ∈ D0.

W = {f(x0)}, f
ref = f̄0 = f(x0), xmin = x0, M ≥ 1, M ∈ N.

2: For k = 0, 1, . . .

PHASE 1 - Explore points around xk

3: Set y = xk

4: While D 6= ∅ and y = xk do

Pick and explore direction

5: Choose d ∈ D set D = D \ {d}

6: Compute α by the Nonmonotone Search(α̃
(d)
k

, xk, d, f
ref ;α)

Update starting stepsize, reference value and queue

7: If α = 0 then set α̃
(d)
k+1 = max{1, ⌊α̃

(d)
k

/2⌋}

8: else

9: Set y = xk + αd, α
(d)
k

= α and α̃
(d)
k+1 = α

10: If f(y) < f(xmin) then xmin = y
11: If |W | = M then pop(W )

12: push(f(y),W ), fref = maxf∈W {f}
13: End If

14: End While

PHASE 2 - Update set of search directions

15: If y = xk then

16: If Nonmonotone Search failed with α̃
(d)
k

= 1 for all d ∈ Dk then

17: If Dk = D(xk) then

18: If f(xk) = f(xmin) then STOP
19: else Set y = xmin and D = Dk+1 = D(xk)
20: else

21: Generate Dk+1 ⊃ Dk, set α̃
(d)
k+1 = 1, for all d ∈ Dk+1 and D = Dk+1 \ Dk

22: End If

23: else

24: Set Dk+1 = Dk and D = {d ∈ Dk : Nonmonotone Search failed with α̃
(d)
k

> 1}
25: End If

26: else

27: Set Dk+1 = Dk and D = Dk

28: End If

PHASE 3 - Update iterates

29: Set xk+1 = y, f̄k+1 = fref

30: End For

The detailed scheme of the Nonmonotone Search is reported in Algorithm 2.
It first calculates the starting stepsize for the search. This is chosen as the

minimum between α̃
(d)
k (defining the dynamically changing skewed stencil)

and the largest stepsize ᾱ that can be taken along the search direction d (See
Initialization). If the starting stepsize is greater than zero and the function
reduces along the search direction with respect to the reference vaule f ref ,
the search starts expanding the stepsize and keeps doing it until either the
maximum stepsize is reached or a reduction with respect to the reference
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value cannot be guaranteed anymore (See Step 3). We would like to notice
that the line search moves along the direction by guaranteeing feasibility (the
points chosen are on the integer lattice).

Algorithm 2 Nonmonotone Search

Input. α̃
(d)
k

, xk, d, f
ref

Initialization. Compute the largest ᾱ such that xk + ᾱd ∈ X ∩ Z
n. Set α = min{ᾱ, α̃

(d)
k

}.

Step 1. If α > 0 and f(xk + αd) < fref then go to Step 2
else Set α = 0 and go to Step 5

Step 2. Let β = min{ᾱ, 2α}

Step 3. If α = ᾱ or f(xk + βd) ≥ fref then set α̃
(d)
k+1 = α and go to Step 5

Step 4. Set α = β and go to Step 2
Step 5. Return α

In the following Theorem, we prove convergence of the method to a local
minimum. We would like to notice that the minimum obtained is related to a
discrete neighborhood with β = 1.

Theorem 1 Let {xk} and {f̄k} be the sequences of solutions and of reference
values, respectively, generated by NM-BBOA. Then, the algorithm cannot cycle
and produces a local minimum point.

Proof. First, we observe that the sequence {f̄k} is bounded from below, since
the number of solutions in the feasible set is finite. Then, let us define

K = {k : xk+1 6= xk},

and
H(k, k̄) = {h ∈ K : k < h ≤ k̄}, for k̄ ≥ k.

Then, let k̄(M) be the index such that

|H(k, k̄(M))| = M.

For each k ∈ K, we have that

f(xk+1) < f̄k. (5)

Moreover, from the updating rules of f ref and the definition of f̄k, we have
that

f̄k+1 ≤ f̄k. (6)

Then, remembering that |X ∩ Z
n| < ∞, we can define

0 < δ = min
x,y∈X∩Zn

{

|f(x)− f(y)| : f(x) 6= f(y)
}

.

so that we have
f̄k̄(M) < f̄k − δ. (7)
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We prove now that NM-BBOA does not cycle. By contradiction, we have that
{xk} is an infinite sequence. If this is the case, it is easy to see that the set K
is also infinite. Since the procedure does not terminate, a solution x̃ (which is
not a local minimum) is generated an infinite number of times. By (6) and (7),
there exists an iteration k̃ such that

f̄k̃ ≤ f(x̃).

Furthermore, as x̃ is generated an infinite number of times, there exists an
iteration k̂ ≥ k̃ such that

f(x̃) < f̄k̂.

Hence, we have
f(x̃) < f̄k̂ ≤ f̄k̃ ≤ f(x̃),

which shows that the local search procedure cannot cycle.
Finally, we prove that the point produced x∗ is a local minimum of the prob-
lem. When NM-BBOA stops, let k̄ be the last iteration index, so that x∗ = xk̄

and is such that xk̄ = xmin. Furthermore, Dk̄ = D(x∗) is the set of all the
feasible and relatively prime directions at x∗. We thus have

f(x∗) ≤ f̄k̄ (8)

and, by the instructions of the algorithm,

f̄k̄ ≤ f(x∗ + d) ∀ d ∈ D(x∗). (9)

Then, combining inequalities (8) and (9), we get that x∗ is a local minimum.
✷

Obviously, it is possible to develop a procedure that explores a larger discrete
neighborhood (i.e., a neighborhood with β > 1). In order to do that, we just
need to suitably modify the way we set the starting stepsize when generating

a new direction (α̃
(d)
k+1 = β at Step 21) and we need to set to β the stepsizes

that are equal to one when we get a successful iteration (if α̃
(d)
k = 1 then set

α̃
(d)
k+1 = β at Step 27). Taking into account Remark 2, those points we obtain

in the end might actually be global minima when β is sufficiently large. This
parameter should anyway be wisely chosen in order to keep the exploration
computationally cheap. It is easy to understand that such a choice becomes
even more critical when getting a small budget of evaluations.

3 Handling of black box general constraints

We now consider problem

min f(x)

s.t. g(x) ≤ 0

x ∈ X ∩ Z
n,

(10)
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where g : Rn → R
m are m ≥ 1 black box constraint functions. The above

problem is Problem (1) where C = {x ∈ R
n : g(x) ≤ 0, l ≤ x ≤ u} = X ∩ F

where F = {x ∈ R
n : g(x) ≤ 0}. In order to handle the nonlinear constraints,

we use a simple penalty approach (see, e.g., [13]). Specifically, given Problem
(10) and a penalty parameter ǫ ∈ R+, we introduce the following penalty
function:

P (x; ǫ) = f(x) +
1

ǫ
s(x),

where s(x) =

m
∑

i=1

max{0, gi(x)} and ǫ > 0. Then, we consider the following

bound-constrained problem

min P (x; ǫ)

s.t. x ∈ X ∩ Z
n

(11)

Now, we prove equivalence between the original problem (10) and the penalized
problem (11). In particular, we will prove that there exists a threshold value
ǭ for the penalty parameter such that, for any ǫ ∈ (0, ǭ), any minimum of the
penalized problem is also a minimum of the original problem and viceversa.
To ease the notation, we again indicate the set of box constraints with X .

Theorem 2 Given problem (10) and considering problem (11), a threshold
value ǭ > 0 exists such that for every ǫ ∈ (0, ǭ), any global minimum point x̄
of (11) is also a global minimum of (10) and viceversa.

Proof. We first prove that any minimum point x̄ of (11) is also a minimum
of (10). Let us define the following penalty parameter

ǭ =
a

b
, (12)

with

a = min{s(x), x ∈ X, g(x) > 0} (13)

and

b = max{f(y)− f(x), x, y ∈ X, g(x) > 0, g(y) ≤ 0}.

By contradiction, we assume that there exists a minimum point x̄ of Problem
(11) that is not feasible for Problem (10). For any feasible point y of Problem
(10), we have:

f(y)− f(x̄) ≤ b =
1

ǭ
a <

1

ǫ
s(x̄),

with ǫ ∈ (0, ǭ). Hence, we can write

f(y) < f(x̄) +
1

ǫ
s(x̄),

thus contradicting the fact that x̄ is minimum for Problem (11).
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We now prove that any minimum point x̄ of (10) is a minimum of (11). For
any point x ∈ X not feasible for Problem (10) we have

f(x̄)− f(x) ≤ b =
1

ǭ
a <

1

ǫ
s(x),

with ǫ ∈ (0, ǭ). Hence, we can write

f(x̄) < f(x) +
1

ǫ
s(x),

and x̄ is also minimum for Problem (11). ✷

In order to prove that every local minimum of the penalized problem is also a
local minimum of the original problem, we introduce the following assumption.

Assumption 1 For every x ∈ X ∩ Z
n not feasible for the original Problem

(10), there exists a direction d̄ ∈ D(x) such that

s(x+ d̄) =

m
∑

i=1

max{0, gi(x+ d̄)} <

m
∑

i=1

max{0, gi(x)} = s(x).

The assumption, which will also be considered when studying the convergence
of the method, is basically a kind of Mangasarian-Fromowitz constraint qual-
ification condition for integer problems. The condition simply says that, when
we get a point that is not feasible for the original problem, we can always find
a primitive direction that guarantees a reduction of the violation. This sounds
pretty reasonable when dealing with the class of problems considered in here.
Now, we can prove that there exists a threshold value ǭ for the penalty param-
eter such that, for any ǫ ∈ (0, ǭ), any local minimum of the penalized problem
is also a local minimum of the original problem.

Theorem 3 Let Assumption 1 hold. Given problem (10) and considering prob-
lem (11), a threshold value ǭ > 0 exists such that for every ǫ ∈ (0, ǭ), any local
minimum point x̄ of (11) is also a local minimum of (10).

Proof. Let us define the following penalty parameter

ǭ =
a

b
, (14)

with

a = min{s(x)− s(x+ d), x ∈ X, d ∈ D(x), s(x) − s(x+ d) > 0}

and

b = max{f(x+ d)− f(x), x ∈ X, d ∈ D(x), f(x + d)− f(x) > 0}.

By contradiction, we assume that there exists a local minimum point x̄ of
Problem (11) that is not feasible for Problem (10). Taking into account As-
sumption 1, we can find a direction d̄ ∈ D(x̄), such that:

f(x̄+ d̄)− f(x̄) ≤ b =
1

ǭ
a <

1

ǫ

[

s(x̄)− s(x̄+ d̄)
]

,



An algorithmic framework for black box problems with integer variables 13

with ǫ ∈ (0, ǭ). Hence, we can write

f(x̄+ d̄) +
1

ǫ
s(x̄+ d̄) < f(x̄) +

1

ǫ
s(x̄),

thus contradicting the fact that x̄ is local minimum for Problem (11). ✷

The algorithm we use in the constrained case, called NM-BBOA CP, has the
same structure as the NM-BBOA algorithm for bound-constrained integer
programs. The detailed scheme is reported in Algorithm 3. It is easy to see
that the main differences between the two are:

1. the function f is replaced by the penalty function P ;
2. a specific rule is used for the update of the penalty parameter ǫ.

As we can easily notice, the algorithm checks, in Phase 2, if the update is
timely. More specifically, if Nonmonotone search failed along all the directions
in Dk and the starting stepsize is 1 for all of those directions (i.e., the dynam-

ically changing skewed stencil defined by directions d ∈ Dk and stepsizes α̃
(d)
k

shrank to its minimum size in Phase 1), the algorithm checks if either violation
of the constraints is larger than a reference value µk (which goes to zero as k
goes to infinity) or all of the directions in D(xk) have been generated. If this
is the case, the penalty parameter decreases, otherwise it stays the same.
We finally prove finite convergence of the method to a local minimum. Again
it is appropriate to notice that the local minimum obtained is related to a
discrete neighborhood with β = 1. We further point out that, in order to
prove the result, Assumption 1 is used.

Theorem 4 Let Assumption 1 hold. Let {xk} and {P̄k} be the sequences of
solutions and of reference values, respectively, generated by NM-BBOA CP.

Then, the algorithm terminates after a finite number of iterations k̄ and the
produced point xk̄ is a local minimum of the original Problem (10).

Proof. We assume, by contradiction, that the sequence {xk} is infinite. We
have two different cases:

Case 1. ǫk = ǫ̃ when k sufficiently large. In this case, taking into account
(13), we have that µk < a for k sufficiently large. Thus points generated
are all feasible. Hence, the proof is a verbatim repetition of proof given for
Theorem 1.

Case 2. ǫk → 0. We first define

K = {k : ǫk+1 6= ǫk}.

Taking into account the fact that X is compact, we can now consider a
further subsequence K1 ⊂ K such that xk = x̃ for all k ∈ K1. When k is
sufficiently large, we have Dk = D(x̃), and, from the instructions of the
algorithm, we can write

P (x̃+ d; ǫk) ≥ P̄k ≥ P (x̃; ǫk), ∀ d ∈ D(x̃). (15)
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Algorithm 3 NonMonotone Black Box Optimization Algorithm for Con-
strained Problems (NM-BBOA CP)

1: Data. x0 ∈ X ∩ Z
n, D = D0 ⊂ D(x0) a set of initial directions, α̃

(d)
0 = 1, for each d ∈ D0.

ǫ0 > 0, θ ∈ (0, 1) and a sequence {µk} ↓ 0. W = {P (x0; ǫ0)}, P ref = P̄0 = P (x0; ǫ0),
xmin = x0, M ≥ 1, M ∈ N.

2: For k = 0, 1, . . .

PHASE 1 - Explore points around xk

3: Set y = xk

4: While D 6= ∅ and y = xk do

Pick and explore direction

5: Choose d ∈ D set D = D \ {d}

6: Compute α by the Nonmonotone Search(α̃
(d)
k

, xk, d, P
ref ;α)

Update starting stepsize, reference value and queue

7: If α = 0 then set α̃
(d)
k+1 = max{1, ⌊α̃

(d)
k

/2⌋}

8: else

9: Set y = xk + αd, α
(d)
k

= α and α̃
(d)
k+1

= α

10: If P (y; ǫk) < P (xmin; ǫk) then xmin = y
11: If |W | = M then pop(W )

12: push(P (y; ǫk),W ), P ref = maxP∈W {P}
13: End If

14: End While

PHASE 2 - Update set of search directions and penalty parameter

15: If y = xk then

16: If Nonmonotone Search failed with α̃
(d)
k

= 1 for all d ∈ Dk then

17: Set upd=FALSE

18: If Dk = D(xk) then

19: If (‖g+(xk)‖ = 0) then

20: If f(xk) = f(xmin) then STOP
21: else Set y = xmin and D = Dk+1 = D(xk)
22: else

23: Set upd=TRUE and D = Dk+1 = D(xk)
24: End If

25: else

26: Generate Dk+1 ⊃ Dk, set α̃
(d)
k+1 = 1, for all d ∈ Dk+1 and D = Dk+1 \ Dk

27: End If

28: If (‖g+(xk)‖ > µk) or (upd) then Set ǫk+1 = θǫk
29: else Set ǫk+1 = ǫk

30: else

31: Set ǫk+1 = ǫk

32: Set Dk+1 = Dk and D = {d ∈ Dk : Nonmonotone Search failed with α̃
(d)
k

> 1}
33: End If

34: else

35: Set ǫk+1 = ǫk
36: Set Dk+1 = Dk and D = Dk

37: End If

PHASE 3 - Update iterates

38: Set xk+1 = y, P̄k+1 = P ref

39: End For
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Hence, dividing by ǫk and considering the limit for k → ∞, we have

m
∑

i=1

max {0, gi(x̃+ d)} ≥
m
∑

i=1

max {0, gi(x̃)} , ∀ d ∈ D(x̃).

Thus we get, by recalling Assumption 1, that x̃ is feasible and, thanks to
inequality (15), it is a local minimum for Problem (10). This contradicts
the fact that the algorithm does not terminate.

Then, the theorem is proved. ✷

4 Numerical experience on bound constrained problems

In this section we report the results of the numerical experience and compar-
ison of our nonmonotone algorithm (NM-BBOA) with other solvers from the
literature, on problems with only bound constraints on the variables. We also
report comparison between algorithms obtained from NM-BBOA by disabling
phase 2 (thus obtaining an algorithm using dynamically changing skewed sten-
cils) or disabling both the nonmonotone search procedure and phase 2 (thus
coming up with an algorithm using fixed stencil). Furthermore, we also inves-
tigate to what extent the nonmonotonicity is useful in this context.

In order to evaluate the relative performances of the algorithms on bound
constrained problems, we use the set of 48 unconstrained nonsmooth problems
from [20]. More precisely, we use the problems from sections 2 and 3 of [20],
i.e. unconstrained minimax problems and general nonsmooth unconstrained
problems. Then, since the selected problems are indeed unconstrained, we add
bound constraints on the variables as

ℓi = (x̃0)i − 10 ≤ x̃i ≤ (x̃0)i + 10 = ui, i = 1, . . . , n,

where x̃0 is the provided starting point for the problem. Furthermore, given
the continuous bound constrained optimization problem

min f̃(x̃)
s.t. ℓi ≤ x̃i ≤ ui, i = 1, . . . , n

x̃ ∈ R
n,

we consider the discretized problem

min f(x)
s.t. 0 ≤ xi ≤ 100, i = 1, . . . , n

x ∈ Z
n

(16)

where f(x) = f̃(y) with

yi = ℓi + xi(ui − ℓi)/100, i = 1, . . . , n.
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As concerns the starting point x0 for Problem (16), we set

(x0)i = 50, i = 1, . . . , n,

and note that x0 is nothing but the point

(x0)i = ⌊100((x̃0)i − ℓ)/(u− ℓ)⌉, i = 1, . . . , n,

where ⌊·⌉ denotes the nearest integer operator.

4.1 The algorithms

In this section we briefly describe the algorithms that we used in the compar-
ison. Apart from our proposed solver NM-BBOA (with D0 = {e1, . . . , en} and
M = 4), we consider:

- M-BBOA, the monotone version of NM-BBOA, i.e. the one obtained by
setting M = 1 in algorithm NM-BBOA;

- NM-DCS (M-DCS), nonmonotone (respectively, monotone) dynamically
changing (skewed) stencil algorithm, i.e. the nonmonotone (monotone) ver-
sion of the algorithm obtained from NM-BBOA (M-BBOA) where phase 2
is disabled so that Dk+1 = Dk = D for all k;

- NM-FS (M-FS), nonmonotone (respectively, monotone) fixed stencil al-
gorithm, i.e. the algorithm obtained from NM-DCS (M-DCS) where we
inhibit the step expansion within the nonmonotone search procedure;

- NOMAD (v.3.8.1) [1];
- BFO [19].

All the algorithms have been run specifying a maximum of 5000 function eval-
uations. As concerns step 21 of algorithms NM-BBOA and M-BBOA, namely
the procedures that given set Dk returns Dk+1 ⊃ Dk, it is implemented ac-
cording to [2]. Specifically, procedure described in Algorithm 4 below is used.
NOMAD has been run by using the default parameter settings except for

initial mesh size = 5; direction type = ortho 2n.

In order to better understand the effectiveness of our exploration strategy
when compared with the pure MADS strategy used by NOMAD for integer
problems, we further run NOMAD with the option

disable = models,

and report in the comparisons both versions of NOMAD.

4.2 Results

First, we investigated the efficiency and robustness of our codes NM-BBOA,
M-BBOA, NM-DCS, M-DCS, NM-FS, and M-FS. Such a comparison, in terms
of data and performance profiles [15], is reported in Figure 2 for values of the
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Algorithm 4 Procedure to generate new set of search directions

1: Input. t > 0, η > 0, Dk

2: If η < 50
√
n/2

3: For h = 1, . . . , 1000
4: Set t← t+ 1
5: Let ut be the t-th vector in the n dimensional Halton sequence [11]
6: Compute

qt(η) =

⌊

η
2ut − e

‖2ut − e‖

⌉

∈ Z
n ∩

[

−η − 1

2
, η +

1

2

]n

.

7: If qt(η) is a prime vector and qt(η) 6∈ Dk

8: Set Dk+1 = Dk ∪ {qt(η)}
9: return (success, t, η, Dk+1)
10: Endif

11: End For

12: Endif

13: return (failure, t, η, Dk)
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Fig. 2 Comparison between BBOA, DCS and FS, both monotone and nonmonotone, on
the 48 bound constrained problems

gate parameter τ in {10−1, 10−3, 10−5, 10−7}. It can be noted that both NM-
BBOA and M-BBOA are quite efficient and robust over the other methods. In
Figure 3, we hence compare NM-BBOA and M-BBOA against NOMAD (with
and without models) and BFO. From Figures 2 and 3, we can conclude that
M-BBOA is slightly better than NM-BBOA in terms of efficiency. This can
be explained by considering that the nonmonotone algorithm can take uphill
steps especially at the beginning of the optimization process. This could in turn
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Fig. 3 Comparison between NM-BBOA, M-BBOA, NOMAD (3.8.1) with/without models,
and BFO on the 48 bound constrained problems

justify a less steeper descent of the nonmonotone algorithm with respect to
the monotone one. However, the nonmonotone algorithm should have a greater
ability to escape from local minima, thus converging to better minimum points.
Unfortunately, this does not seem to emerge from the figures, that are instead
telling us that NM-BBOA and M-BBOA are almost equivalent in terms of
robustness. We suspect that the considered problems are too easy for the
advantages of the nonmonotonicity to clearly emerge. We better investigate
this aspect in the next subsection where noise is considered the problems more
difficult.

4.3 Deterministic additive noise

In order to better investigate the usefulness of the nonmonotonicity in our
codes, we decided to run some tests on noisy problems. To this aim, given
Problem (16) and according to [15], we define a noisy function

fN (x) = (1 + ǫφ(x))f(x),

with the relative noise level ǫ = 10−3 and the noise function φ defined as

φ(x) = φ0(x)(4φ0(x)
2 − 3)

where
φ0(x) = 0.9 sin(100‖x‖1) cos(100‖x‖∞) + 0.1 cos(‖x‖2).
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Fig. 4 Comparison between BBOA, DCS and FS, both monotone and nonmonotone, on
the 48 bound constrained noisy problems

Comparisons of our codes (NM-BBOA, M-BBOA, NM-DCS, M-DCS, NM-FS,
and M-FS) on the 48 bound constrained noisy problems is reported in Figure
4. Figure 5 reports the comparison between NM-BBOA, M-BBOA, NOMAD
and BFO on the noisy problems. These confirm the conclusions drawn when
noise is not present. On top of this, now it clearly emerges the superiority of
the nonmonotone algorithm NM-BBOA over the monotone version M-BBOA
in terms of robustness, which is precisely what we would expect.

4.4 Results on a class of hard global optimization problems

In this section we study the impact of a parameter β ≥ 1 on the ability of the
proposed algorithm to find the global minimum of Problem (4). To this aim,
we define a class of hard bound constrained problems. More specifically, we
consider problem

min ϕ(x)
s.t. 0 ≤ xi ≤ 100, i = 1, 2

x ∈ Z
2

(17)

where

ϕ(x) = min
j=1,...,20

ln (‖cj − x‖ + σj)

with cj , j ∈ {1, . . . , 20}, random feasible points for problem (17), σj = 10−2,
j ∈ {1, . . . , 20} \ J̄ , and σj = 10−6, j ∈ J̄ , where J̄ is a random subset of
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Fig. 5 Comparison between NM-BBOA, M-BBOA, NOMAD (3.8.1) with/without models,
and BFO on the 48 bound constrained noisy problems

{1, . . . , 20} with |J̄ | = 3. Note that, by definition of ϕ(x), it results

ϕ(cj) =

{

ln(10−6) j ∈ J̄ ,
ln(10−2) j 6∈ J̄ .

We compare performance of NM-BBOA with a modified version of NM-BBOA
that tries to explore larger neighborhoods. Taking into account Remark 2 and
comments at the end of Section 2, we used β = 50 in the modified version
of the algorithm (note that NM-BBOA uses a value β = 1). Both algorithms
have been run on a set of 100 randomly generated problems of the form (17),
allowing a maximum of 5000 function evaluations. In Figure 6, we plot the
percentage of problems solved to global optimality (y axis) with the given
number of function evaluations (x axis). As we can easily see, the modified
version of NM-BBOA gets a larger percentage of global minima with respect
to the standard version, once the number of evaluations is large enough (i.e.,
larger than 1000). These results seem to indicate that better performances can
evenutally be obtained when exploring larger neighborhoods in NM-BBOA
(that is, when suitably setting the β parameter in the algorithm).

5 Numerical experience on general constrained problems

This section is devoted to the analysis of the results obtained by the proposed
algorithms on general constrained test problems. Furthermore, comparison
with NOMAD (version 3.8.1) [1] is reported.
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Fig. 6 Comparison between NM-BBOA and modified NM-BBOA on hard global optimiza-
tion problems

We defined a collection of constrained problems by adding to every bound
constrained problem (among the 48 problems from [20] previously defined)
the following families of nonlinear constraints.

g̃j(x̃) = (3− 2xj+1)xj+1 − xj − 2xj+2 + 1 ≤ 0, j = 1, . . . , n− 2 (n ≥ 3);
g̃j(x̃) = (3− 2xj+1)xj+1 − xj − 2xj+2 + 2.5 ≤ 0, j = 1, . . . , n− 2 (n ≥ 3);
g̃j(x̃) = x2

j + x2
j+1

+ xjxj+1 − 2xj − 2xj+1 + 1 ≤ 0, j = 1, . . . , n− 1 (n ≥ 2);

g̃j(x̃) = x2
j + x2

j+1
+ xjxj+1 − 1 ≤ 0, j = 1, . . . , n− 1, (n ≥ 2);

g̃j(x̃) = (3− 0.5xj+1)xj+1 − xj − 2xj+2 + 1 ≤ 0, j = 1, . . . , n− 2 (n ≥ 3);

g̃1(x̃) =
∑n−2

j=1
((3 − 0.5xj+1)xj+1 − xj − 2xj+2 + 1) ≤ 0, (n > 3).

In this way we obtain a set of 237 test problems with n ∈ [2, 50] andm ∈ [1, 49].
Note that, as already discussed, given the continuous constraint function g̃j(x̃),
j = 1, . . . ,m, we consider the discretized constraint function gj(x) such that
gj(x) = g̃j(y) with yi = ℓi + xi(ui − ℓi)/100, i = 1, . . . , n.

5.1 Results

In Figure 7, we report comparison between algorithm NM-BBOA CP and NO-
MAD (3.8.1) where we inhibit the use of models through the option disable =

models. As we can see, NOMAD is slightly more efficient than NM-BBOA CP
but considerably less robust. As a further experiment, we compare our algo-
rithm NM-BBOA CP against NOMAD where use of models is allowed. The
results are reported in Figure 8. As we expected, the use of models allows
NOMAD to improve its performances. Indeed, NOMAD becomes consider-
ably more efficient but it is still less robust (or at least less accurate) than
NM-BBOA CP. To better investigate the situation, we repeat the same com-
parisons but on a restricted test set obtained by selecting problems with n ≥ 10
among the 237 constrained problems, thus obtaining a subset of 96 problems.
Such comparisons are reported in Figures 9 and 10. As it can be noted, NM-
BBOA CP is now both more efficient and more robust than NOMAD not
using models. Again, when we allow the use of models within NOMAD, the
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Fig. 7 Comparison between NM-BBOA CP and NOMAD (3.8.1) without models on the
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Fig. 9 Comparison between NM-BBOA CP and NOMAD (3.8.1) without models on the
96 general constrained problems with n ≥ 10

gap in terms of efficiency is considerably reduced but NM-BBOA CP is still
more robust than NOMAD.

6 Conclusions

In this paper, we developed a tailored strategy for solving black box problems
with integer variables. The use of primitive directions combined with a suit-
ably developed nonmonotone line search gives a high level of freedom when
exploring the integer lattice and further guarantees a high level of robustness.
We first described and analyzed in depth a version of the algorithm that han-
dles bound constrained problems. Then, we tackled the generally constrained
case by embedding a penalty approach in the algorithmic framework.

We also included an extensive numerical analysis on a large testbed of both
bound constrained and generally constrained problems. As a first step, we
both studied the effects of of using enriched stencils and compared monotone
vs nonmonotone acceptance rules in our algorithmic framework. The results
showed that

– sampling the function by such a dynamically changing set of search direc-
tions can significantly improve the performance of the algorithm;

– the use of a nonmonotone line search can get better results in terms of
robustness especially when dealing with noisy problems.
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Fig. 10 Comparison between NM-BBOA CP and NOMAD (3.8.1) using models on the 96
general constrained problems with n ≥ 10

A comparison with NOMAD (with and without models) and BFO was carried
out on bound constrained problems. The results we reported allow us to con-
clude that our strategy gives better performance both in terms of efficiency
and robustness, and the gap significantly increases as we ask for higher preci-
sions or include noise. The results on nonlinearly constrained problems showed
that our strategy is again very competitive with the version of NOMAD that
does not embed models, while it can only guarantee better performances in
terms of robustness against the model based version of NOMAD. The results
change if we focus on instances with a number of variables larger than 10.
Indeed, models are not really effective in this case and our algorithm outper-
forms NOMAD both in terms of efficiency and robustness when precision is
sufficiently high (and the gap between the two increases as we ask for higher
precisions).
Some preliminary results on a class of hard global optimization problems (with
bound constraints) further highlighted potential of the algorithm in finding
global minima when larger neighborhoods are explored (i.e., when a β > 1 is
properly chosen in the algorithm).
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