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Abstract: We review a number of preconditioners for the advection-diffusion operator and for
the Schur complement matrix, which, in turn, constitute the building blocks for Constraint and
Triangular Preconditioners to accelerate the iterative solution of the discretized and linearized
Navier-Stokes equations. An intensive numerical testing is performed onto the driven cavity problem
with low values of the viscosity coefficient. We devise an efficient multigrid preconditioner for
the advection-diffusion matrix, which, combined with the commuted BFBt Schur complement
approximation, and inserted in a 2× 2 block preconditioner, provides convergence of the Generalized
Minimal Residual (GMRES) method in a number of iteration independent of the meshsize for the
lowest values of the viscosity parameter. The low-rank acceleration of such preconditioner is also
investigated, showing its great potential.

Keywords: scalable preconditioners; Navier-Stokes equations; GMRES method; low-rank
updates; multigrid

1. Introduction

The task of numerically solving the Navier–Stokes equations is of fundamental importance in
many scientific and industrial applications; the strong nonlinearity of the equations and the lack
of any theoretical result about existence and regularity of the solutions leaves the scene only to
numerical approximations. These have been developed since the beginning of the computing era, but,
despite the enormous efforts put into the development of new algorithms, the problem of finding a
good solver for most of the practical situations involving the Navier–Stokes equations has always
been elusive, particularly when the Reynolds number becomes large. One of the approaches to the
numerical solution of the Navier–Stokes equations is given by the Finite Element Method, which,
after a linearization of the nonlinear terms, gives rise to a saddle point linear system: this particular
system has a structure that appears in many other problems, but in this context it is possible to
exploit the underlying continuous formulation to develop efficient preconditioners in the framework
of iterative solvers.

In this work, we focus in finding a scalable preconditioner for these saddle point linear systems:
many preconditioners have already been developed and tested successfully, for instance in [1–5];
we choose to use the Constraint Preconditioner, already analyzed in all its forms in [6–8], and the more
popular, in the Fluid Dynamics community, Block Triangular Preconditioner, employed e.g., in [9,10].
We also mention the comprehensive review [11] of preconditioners for saddle point linear systems,
and the references therein.

We use the GMRES method and look for a scalable preconditioner, i.e., a preconditioner that
allows GMRES to converge in a number of iterations that does not deteriorate as the mesh is refined,
in order to obtain an efficient solver. The success of this task lays on finding scalable preconditioners
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for the (1, 1) block and the Schur complement of the saddle point system. It is well known that a
Multigrid technique can be used as a scalable preconditioner for the Poisson problem; the (1, 1) block
of our system corresponds to a discrete convection-diffusion operator, which is a variation of a Poisson
problem that also involves convective processes. The generalization of Multigrid preconditioners to
these kind of situations requires a robust smoother, which can be built using a stationary method
involving a pattern that follows the convective flow. This approach has already been tested in [2,12,13].

With regard to the preconditioner for the Schur complement, we will mainly use the preconditioner
developed in [9] and improved in [14]. These techniques are based on the assumption that a particular
commutator is sufficiently small to neglect it, while they do not exploit the particular underlying
structure of the problem, as it happens in the Stokes case.

The problem that we use as test is the well-known 2-dimensional lid-driven cavity,
discretized using P2 − P1 elements and with values of the viscosity as low as 10−3. The main goals that
we want to achieve are:

• Develop a smoother that is able to follow the convective flow in the case of the recirculating
problem considered; this in turn would allow us to build a scalable Multigrid preconditioner for
the (1, 1) block.

• Review and compare a number of Schur complement preconditioners available in the literature.
• Use information on the spectrum of the preconditioned (1, 1) and Schur complement blocks

to improve the overall preconditioner and possibly improve scalability in the case of
dominating advection.

The rest of the paper is structured as follows: In Section 2, we describe the continuous problem
and its weak formulation, while Section 3 is devoted to the development of a stable Mixed Finite
Element formulation, the Picard linearization process, and the properties of the saddle point linear
systems to be solved at each nonlinear iteration. In Section 4, we describe two block preconditioners
for saddle point systems; Section 5 analyzes a number of Multigrid preconditioners for the (1, 1)
block and some approximations to the Schur complement matrix. In Section 6, we describe how a
low-rank matrix can be used to accelerate the previously described preconditioners. Section 7 provides
a thorough numerical testing of the block preconditioners described in the previous sections onto
a the challenging lid driven cavity problem, showing the almost perfect scalability of the two most
sophisticated variants for the lowest value of the viscosity parameter. Section 8 concludes the paper.

Notation. Throughout the paper, we will write vectors (and vector functions) in boldface. We will
use the symbol M to denote a preconditioner which approximates a given coefficient matrix A(M ≈ A),
while the symbol P will refer to the preconditioner in its inverse form (P ≈ A−1).

2. Problem Setting and Discretization

The motion of incompressible newtonian fluids is governed by the well known Navier–Stokes
equations, a system of partial differential equations that arises from the conservation of mass and
momentum. In the general non-stationary case, they take the formρ

∂u
∂t
− µ∆u + ρ(u · ∇)u +∇p = f, x ∈ Ω, t > 0

∇ · u = 0, x ∈ Ω, t > 0

where Ω ⊂ R3 is the domain in which the motion evolves; u = u(x, t) is the velocity field; p = p(x, t)
is the pressure field; ρ and µ are the fluid density and dynamic viscosity; f is a forcing term.
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The first equation is usually used in a different form: using a unit density, we obtain the following
version of the Navier-Stokes equations

∂u
∂t
− ν∆u + (u · ∇)u +∇p = f, x ∈ Ω, t > 0

∇ · u = 0, x ∈ Ω, t > 0
(1)

where now ν = µ/ρ is the kinematic viscosity, p is the density-scaled pressure field and f is a forcing
term per unit mass.

The first of the two equations imposes the conservation of momentum; the term ν∆u takes into
account the diffusive processes, while (u · ∇)u describes the convective processes. The equation
∇ · u = 0 imposes the incompressibility of the fluid, i.e., the density ρ is a constant, both in space
and time.

For the problem to be well posed, Equations (1) need some initial condition

u(x, 0) = u0(x) ∀x ∈ Ω

and boundary conditions, e.g., ∀t > 0u(x, t) = φ(x, t), ∀x ∈ ΓD(
ν

∂u
∂n
− pn

)
(x, t) = ψ(x, t), ∀x ∈ ΓN

where u0, φ and ψ are given functions, ΓD and ΓN form a partition of the boundary of Ω and n is the
outward-facing unit normal to ∂Ω.

The first kind of boundary condition is said of Dirichlet type, and ΓD will be addressed as the
Dirichlet portion of the boundary, while the second kind is said of Neumann type, and ΓN will be
called the Neumann portion of the boundary.

The Navier–Stokes Equations (1) are nonlinear, due to the term (u · ∇)u; moreover, there are
no general results about existence, regularity and uniqueness of the solution, in particular in three
dimensions. In fact, this is one of the most important open problems in mathematics and one of the
Millennium problems.

In the following, we will always consider the stationary Navier–Stokes equations, i.e., Equation (1)
without the time derivative of u.

2.1. Stokes Equations

Define the Reynolds number as the ratio between inertial and viscous forces, namely Re = UL
ν ,

where L is a characteristic length of the domain Ω and U is a representative velocity scale of the fluid.
It turns out that, if the Reynolds number is sufficiently small (i.e., if the flow is particularly slow or if
the viscosity is high enough), then the Navier–Stokes equations can be simplified: in fact, the term
(u · ∇)u is negligible with respect to the viscous term and the nonlinear Equation (1) become a linear
system of equations, known as the stationary Stokes equations:{

−ν∆u +∇p = f, x ∈ Ω, t > 0

∇ · u = 0, x ∈ Ω, t > 0
(2)

to which the same previously cited initial and boundary conditions must be applied. In these equations
there is no more the presence of convection, but only diffusive processes survive.

The Stokes Equation (2) have the great advantage of being linear, which makes them easier to
work with, both analytically and numerically.
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2.2. Weak Formulation

The general formulation of Equations (1) and (2), which require as solution a function u twice
differentiable and a function p continuously differentiable, can be relaxed, allowing for solutions that
satisfy weaker requirements. Sometimes, in fact, there does not exist any solution that satisfies the
strong form of the equations, while it is possible to find weak solutions.

Before deriving the weak form of the Navier–Stokes equations, let us define the space of
square-integrable functions

L2(Ω) =
{

f : Ω 7→ R |
∫

Ω
| f (x)|2 dΩ < +∞

}
and the Sobolev Space

Hk(Ω) =
{

f ∈ L2(Ω) | Dα f ∈ L2(Ω) ∀α : |α| ≤ k
}

,

i.e., the space of square integrable functions whose derivatives up to order k are still square integrable.
Here, Dα f represents a weak derivative.

Now, starting from the stationary Navier–Stokes equations, it is possible to obtain the weak
formulation multiplying by a test function v ∈ V, where the space V will be definesd later,
and integrating over Ω.

−
∫

Ω
ν∆u · v dΩ +

∫
Ω
[(u · ∇)u] · v dΩ +

∫
Ω
∇p · v dΩ =

∫
Ω

f · v dΩ ∀v ∈ V.

In this form, there is still the necessity for the function u to be twice differentiable, which is the
condition that we want to relax. In order to do so, we exploit Green’s formulas (i.e., integration by
parts in multiple dimensions) and rewrite the integral involving ∆u as the sum of an integral involving
only ∇u and a boundary integral. The same can be done for the pressure term. The result is∫

Ω
ν∇u · ∇v dΩ +

∫
Ω
[(u · ∇)u] · v dΩ−

∫
Ω

p∇ · v dΩ =∫
Ω

f · v dΩ +

∫
∂Ω

(
ν

∂u
∂n
− pn

)
· v dS ∀v ∈ V. (3)

The same can be done for the second equation, when considering a test function q ∈ Q.
The result is ∫

Ω
q∇ · u dΩ = 0 ∀q ∈ Q. (4)

Accordingly, an alternative version of the Navier–Stokes equations is: find u ∈ V and p ∈ Q
such that (3) and (4), together with the proper initial and boundary conditions, hold for every possible
choice of v ∈ V and q ∈ Q. The couple (u, p) is then called a weak solution of the Navier–Stokes
equations. For this formulation to make sense, all the integrals involved must be well defined: this is
achieved by choosing properly the spaces V and Q. The correct choice is to set V equal to the space of
functions in H1(Ω) such that they satisfy the Dirichlet boundary condition on the Dirichlet portion
of the boundary; Q should simply be the space L2(Ω). It can be checked that, in this way, all of the
integrals are well defined (see [15]).

3. Finite Element Method

The previously stated weak formulation can be expressed in a more compact form: suppose to
solve a Navier–Stokes problem with homogeneous Dirichlet boundary condition on all the boundary.
Subsequently, the weak formulation is equivalent to:
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Find u ∈ V, p ∈ Q such that{
c(u, u, v) + a(u, v) + b(v, p) = (f, v) ∀v ∈ V

b(u, q) = 0 ∀q ∈ Q
(5)

where a : V × V 7→ R and b : V × Q 7→ R are bilinear forms, while c : V × V × V 7→ R is a trilinear
form, defined as

a(u, v) =

∫
Ω

ν∇u · ∇v dΩ,

b(u, q) = −
∫

Ω
q∇ · u dΩ

c(u, u, v) =

∫
Ω
[(u · ∇)u] · v dΩ.

and
(f, v) =

∫
Ω

f · v dΩ.

3.1. Galerkin Approximation

Equations (5) are defined on the spaces V and Q, which are subspaces of H1 and L2 of infinite
dimension. To develop a numerical scheme that is able to approximate the solution, we need to find an
approximate problem defined on spaces of finite dimension. Consider, Vh ⊂ V and Qh ⊂ Q, both of
finite dimension, then the problem becomes:{

a(uh, vh) + c(uh, uh, vh) + b(vh, ph) = (f, vh) ∀vh ∈ Vh

b(uh, qh) = 0 ∀qh ∈ Qh
. (6)

The problem with this formulation is that, following the same steps as before, the algebraic system that
arises is no more linear, but, due to the trilinear form c(·, ·, ·), it becomes nonlinear. This complicates
enormously the method, since solving a nonlinear system of equations involves methods that are
far more complicated and computationally costly (e.g., Newton method). The simplest way to solve
this problem is to use a fixed-point scheme (known also as Picard iteration) and try to linearize the
nonlinear term c(uh, uh, vh). This will require an iterative scheme: suppose to start from a given
velocity field u0

h; to find the next iterate u1
h one could solve Equation (6) where, instead of the nonlinear

term, there is the linear term c(u0
h, u1

h, vh). In this way, the trilinear form that was giving problems
becomes simply a bilinear form and can be treated like the other ones. Accordingly, the method can be
formalized, as follows{

a(u(k+1)
h , vh) + c(u(k)

h , u(k+1)
h , vh) + b(vh, p(k+1)

h ) = (f, vh) ∀vh ∈ Vh

b(u(k+1)
h , qh) = 0 ∀qh ∈ Qh

(7)

for k = 0, 1, . . . until convergence. The initial field u(0)
h must be taken divergence free, in order to be

consistent with the problem. This can be achieved solving a Stokes problem at the beginning (which
assures a divergence-free velocity field) and then using the solution as initial datum for the iteration.
This is consistent with setting u(−1)

h = 0. This formulation of the Navier–Stokes problem is known as
Oseen problem and it is the method that will be used in this work. We refer e.g., to the book [16] for
more details.
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3.2. Stabilization of the Convection-Diffusion Term

The first terms in the Oseen problem (7) represent a convection-diffusion operator of the form
−ν∆uh +w · ∇uh, where the wind w is given by the solution of the previous iteration. In the numerical
solution of this kind of problems, one important quantity to estimate the stability of the method is the
Péclet number, defined as the ratio between convective and diffusive forces, i.e., Pe = Lw

ν , where L
is a characteristic length and w is the local wind velocity. When discretizing a convection-diffusion
problem, this number is used when considering as characteristic length the dimension of the elements.
In this way, this parameter is able to tell whether the solution will be stable or not: small values of Pe
assure a good solution, while a large Pe leads to instability.

This can be solved using a finer discretization, but when the viscosity is very low, the elements
would need to be so small that the computational cost would become enormous. Another option
is to use a stabilization technique: instead of solving the unstable problem, one can solve a slight
modification of the problem that is stable. This is achieved by adding some artificial diffusion to the
problem, which assures that the Péclet number decreases. Of course, the solution will be slightly
different from the real one, but it will be at least stable. If the stabilization is done correctly, then the
solution will not be affected too much.

There exist various methods of stabilization; in this work, the simplest one will be used, called
streamline diffusion (SD), which adds diffusion only in the direction of the wind. Other approaches
include the Streamline upwind Petrov–Galerkin (SUPG), the Algebraic subgrid scale (ASGS) stabilized
Finite Elements, and the Galerking Least-Square (GLS) methods, but their theory and implementation
are far more complicated, and they are beyond the scope of this paper (see [15] for more details).
The SD method introduces another bilinear form in the formulation of the Navier–Stokes equations,
s(·, ·) : Vh × Vh 7→ R defined as

s(uh, vh) =

∫
Ω

τSD(w · uh)(w · vh) dΩ,

where τSD is defined as follows: call Peh = hw
2ν the mesh Péclet number, with h the local dimension of

the element. Subsequently, if Peh < 1, τSD is set to zero, i.e., no stabilization is performed on those
elements where Peh is sufficiently small. Instead, where Peh ≥ 1

τSD =
h

2w

(
1− 1

Peh

)
.

This choice of the stabilization parameter is taken from [2].
This stabilization technique will be useful when solving the Navier–Stokes equation with low

values of viscosity.

3.3. Choice of the Finite Element Spaces

The choice of Finite Element spaces Vh and Qh must satisfy the well-known inf-sup (or LBB)
condition [2]. The lowest order pair uses P1 functions for the space Qh and P2 functions for Vh. This type
of choice is sometimes referred to as Taylor-Hood approximation and it will be the one used in this
work. Figure 1 shows the two kind of elements used for the spaces Qh and Vh.
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Figure 1. Linear and quadratic triangular elements, used in the Taylor-Hood approximation.

3.4. Algebraic Formulation

Let us now denote with φi, i = 1, . . . , Nu a basis of Vh, and with ψi, i = 1, . . . , Np a basis for Qh.

The unknown functions u(k+1)
h and p(k+1)

h in (7) can be written as a linear combination of these basis
functions, as

u(k+1)
h =

Nu∑
i=1

φiui, p(k+1)
h =

Np∑
i=1

ψi pi.

At each iteration k + 1 of the Picard method, a linear system has to be solved, which takes the
following form ñ

νA + N BT

B 0

ô ñ
u
p

ô
=

ñ
f
0

ô
. (8)

where u and p contain the unknowns uj and pj, i.e., the values of velocity and pressure of the
approximated solution on the nodes of the grid. Linear systems with this particular block structure are
usually called saddle point systems.

In the following, (x : y) represents the element-wise product of two vectors x and y, while (x · y)
represents the Euclidian scalar product. The matrix A is the discrete vector Laplacian

A = (aij), aij =

∫
Ω
∇φi : ∇φj, i, j = 1, . . . , Nu,

the matrix B is called the divergence matrix and is defined as

B = (bkj), bkj = −
∫

Ω
ψk∇ ·φj, j = 1, . . . , Nu, k = 1, . . . , Np.

The matrix N is the discrete vector convection matrix, which depends on the current estimate of the
velocity u(k)

h and has the following definition

N = (nij), nij =

∫
Ω

(
u(k)

h · ∇φj

)
·φi, i, j = 1, . . . , Nu.

The (1, 1) block of (8) will be referred to as matrix F = νA + N.
Notation. In the sequel, we will denote as n ≡ Nu the size of the (1, 1) block in (8), while m ≡ Np

will indicate the number of rows of B.
We will now define some other matrices that will be useful later: the velocity-mass matrix

Q̂ ∈ Rn×n and the (pressure-)mass matrix Q ∈ Rm×m as

Q̂ = (q̂ij), q̂ij =

∫
Ω

φi ·φj dΩ (9)

Q = (qij), qij =

∫
Ω

ψiψj dΩ. (10)

They are both square, symmetric, and positive definite. From the point of view of operators, the mass
matrix corresponds to a discrete identity operator.
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3.5. Properties of Saddle Point Matrices

Theorem 1. Consider a problem where ∂Ω = ΓD (no Neumann boundary conditions), discretized using a
stable approximation on a shape-regular quasi-uniform subdivision of R2. Subsequently, the Schur complement
BA−1BT is spectrally equivalent to the pressure mass matrix Q:

β2 ≤ (BA−1BTq, q)
(Qq, q)

≤ 1, ∀q 6= 0, q 6= 1

where β is the inf-sup constant.

Proof. See [2].

This theorem has an important consequence: regardless of how much we refine the mesh,
the matrix Q−1BA−1BT will always have its eigenvalues on a very narrow interval. Moreover, it will
always be positive semi-definite (as q = 1 is in the kernel of the Schur complement, so it is not positive
definite, being singular) and, because Q is positive definite, also the Schur complement will always
be positive semi-definite. Let us define h as the maximum diameter (diam) of all elements K in the
discretization, whereas diam(K) = max{|x− y|, x, y ∈ K}. Then, matrix Q−1BA−1BT has a condition
number that can be bounded independently of the size h of the discretization. This property does not
hold for matrix A, whose condition number that grows indefinitely as h goes to 0. This fact plays a
crucial role in the numerical solution of the Stokes and Navier–Stokes equations.

A similar result also holds if the Neumann boundary ΓN is non-empty; in this case, the upper
bound is 2. Again, for all further details, see [2].

4. Block Preconditioners for the Navier-Stokes Discretized Systems

The following results are in the line of those e.g., of [17–19], in which symmetric saddle point
matrices are considered.

4.1. Block Triangular Preconditioner

We will now analyze the Block Triangular Preconditioner (BTP) applied to the discretized
Navier–Stokes equations. Let us define H the n + m× n + m Navier–Stokes coefficient matrix and M
the preconditioner:

H =

ñ
F BT

B 0

ô
, and M =

ñ
MF BT

0 −MS

ô
,

with MF and MS scalable preconditioners for F and for the negative Schur complement S = BF−1BT ,
respectively. From now on, scalability will denote the property of a given preconditioner to produce
roughly the same number of iterations as the mesh is refined. In other words, the eigenvalues of the
preconditioned matrices will be uniformly bounded in h.

To analyze the eigenvalues of the preconditioned matrix HM−1w = λw, we assume that there
exist LU factorizations of MF = LFUF and MS = LSUS and define

ΠL = diag(LF, LS), and ΠU = diag(UF, US).

Subsequently, the eigenvalue problem is equivalent to

Π−1
L HΠ−1

U z = λΠ−1
L MΠ−1

U z, z = ΠUw.

Defining N = L−1
F BTU−1

S , R = L−1
S BU−1

F and exploiting the blocks, we obtainñ
FP N
R 0

ô ñ
z1

z2

ô
= λ

ñ
In N
0 −Im

ô ñ
z1

z2

ô
(11)
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where FP = L−1
F FU−1

F is similar to the preconditioned (1, 1) block M−1
F F.

Matrices R and N satisfies:

RN = L−1
S BU−1

F L−1
F BTU−1

S = L−1
S BF−1

P BTU−1
S = L−1

S ŜU−1
S ≡ SP,

where Ŝ = BT M−1
F B is the exact (minus) Schur complement related to the matrixñ

MF BT

B 0

ô
,

and hence SP represents this Schur complement, preconditioned by the spectrally equivalent matrix
MS. Observing that the matrix on the right in (11) is involutory we rewrite (11) asñ

FP N
R 0

ô ñ
In N
0 −Im

ô ñ
u1

u2

ô
= λ

ñ
u1

u2

ô
,

ñ
u1

u2

ô
=

ñ
In N
0 −Im

ô ñ
z1

z2

ô
, (12)

which finally reads

HBTPu = λu or

ñ
FP (FP − In)N
R RN

ô ñ
u1

u2

ô
= λ

ñ
u1

u2

ô
. (13)

Writing now EF = FP − In and ES = SP − Im, (13) rewrites asÇñ
In 0
R Im

ô
+

ñ
EF 0
0 ES

ô ñ
In N
0 Im

ôåñ
u1

u2

ô
= λ

ñ
u1

u2

ô
. (14)

We have shown that the BTP-preconditioned matrix is similar to a matrix that can be written as one
with all eigenvalues at one plus another one whose norm is bounded by the norms of EF and ES.

4.2. Inexact Constraint Preconditioner

Using the previous definition, we can define the Inexact Constraint Preconditioner ICP as

MICP =

ñ
MF BT

B BM−1
F BT −MS

ô
,

The adjective inexact arises when the exact Schur complement Ŝ = BM−1
F BT is replaced by an

approximation, MS, as it is in this case. This implies that the (2, 2) block of MICP is no longer zero,
as it is in the Constraint Preconditioner. As before, pre- and post- multiplying by ΠL and ΠU yields an
eigenvalue problem equivalent to Hw = λMICPw:ñ

FP N
R 0

ô ñ
z1

z2

ô
= λ

ñ
In N
R SP − Im

ô ñ
z1

z2

ô
(15)

Matrix on the right in (15) is easily decomposed, recalling that SP = RN, asñ
In N
R RN − Im

ô
=

ñ
In 0
R Im

ô ñ
In N
0 −Im

ô
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It turns out that M−1
ICP H is similar to the matrixñ

In 0
R Im

ô−1

HBTP︷ ︸︸ ︷ñ
FP N
R 0

ô ñ
In N
0 −Im

ô
=

ñ
In 0
R Im

ô−1Çñ
In 0
R Im

ô
+

ñ
EF EF N
0 ES

ôå
(16)

=

ñ
In 0
0 Im

ô
+

ñ
In 0
−R Im

ô ñ
EF 0
0 ES

ô ñ
In N
0 Im

ô
, (17)

in view of (14). We have shown that the ICP-preconditioned matrix is similar to a matrix that can be
written as the identity matrix of order n + m plus a matrix whose norm is bounded by the norms of EF
and ES.

The results developed for ICP and BTP preconditioned matrices show that unit eigenvalues
are perturbed by the presence of error matrices EF and ES whose norms, in the case of scalable
preconditioners for the blocks, swill be small and independent of the mesh discretization parameter h.
This is a pleasant property, which, in many cases, is responsible of fast convergence of the GMRES
method. However, it is well known [20] that a clustering of the eigenvalues around the unit value is
not sufficient to guarantee fast convergence of the GMRES method due to the possible ill-conditioning
of the matrix of the eigenvectors. Analyses based on the field of values of the preconditioned matrix
have been carried out for simplified preconditioners in order to overcome this theoretical problem.
See, e.g., [21,22].

4.3. Relaxation

In case the spectral regions of the preconditioned (1, 1) block and the preconditioned Schur
complement are not perfectly overlapped, the influence of a relaxation parameter ω has been
investigated in [7], where, however, the two block matrices are both SPD. In short, the relaxation
parameter acts on the (2, 2) block of the Inexact Constraint Preconditioner, as

MICP(ω) =

ñ
MF BT

B BM−1
F BT −ωMS

ô
,

with ω to be chosen so that the smallest of the two previously mentioned spectral regions is included
in the other one.

5. Preconditioners for the Blocks

Any block preconditioner for a saddle-point linear system, like the one that we considered,
can only yield scalable results if the preconditioners used to approximate the (1, 1) block and the Schur
complement are scalable. Therefore, the main task is to find such suitable preconditioners for the two
blocks involved.

5.1. (1, 1)−Block Preconditioner

It is well known that Multigrid methods allow for obtaining scalable results for
convection-diffusion problems. Our (1, 1)−block indeed represents a discretized convection-diffusion
operator and, therefore, we expect to obtain scalable results while using a suitable Multigrid scheme.
An accurate analysis of the scalability provided by Multigrid can be found, for instance, in [23,24].

The application of a Multigrid preconditioner is particularly easy in the case of
diffusion-dominated problems, since even the very simple damped Jacobi smoother is able to produce
optimal results. However, in the case of convection-dominated problems, the choice of the smoother
is fundamental for obtaining satisfactory results. In these situations, it is necessary to use a more
sophisticated smoother, like the Gauss–Seidel method, coupled with an adequate choice of the pattern
used to apply it; this pattern should try to follow the convective flow as much as possible. In the case
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of complicated recirculating flows, it is not possible to generate a pattern that is able to do this and
so different strategies must be employed. In [2], the suggestion is to use multiple iterations of the
Gauss-Seidel smoother, each one performed following a simple pattern. In particular, if the flow is
recirculating and therefore has components both negative and positive in directions x and y, then there
should be four patterns and they should sweep through the domain in both directions, going back and
forth. Hence, one pattern will evolve in the x direction, from the left to the right, another one from
right to left. The same holds for the y direction, yielding a total of four different smoothing patterns.
An alternative using only one pattern in every direction is possible: this approach will be cheaper,
but a single iteration will be less accurate. This option has been used, for instance, in [13] when dealing
with convection-diffusion problems.

One thing to remember is that, when multiple patterns are used for every smoothing iteration,
they should be applied in opposite order in the pre- and post-smoothing phases. If in the pre-smoothing
step, we apply first pattern A and then pattern B, then in the post smoothing phase we should apply
first pattern B and then A.

The drawback of using multiple patterns is that some parts of the flow, which only have
component of the velocity in one direction, do not need smoothing in the other direction. Thus, a lot
of time is lost smoothing in directions that are not necessary. This is not a problem for convergence,
since this excessive smoothing does not worsen the solution, but it is a problem for the computational
time. Moreover, this approach does not exploit the separability of the (1, 1)−block: indeed,
the convection-diffusion operator consists of a block-diagonal matrix, with two identical blocks,
one for direction x and one for y. This structure of the matrix can be exploited to obtain a more efficient
implementation: indeed, when applying the preconditioner to a vector r, we can split this vector
into rx and ry and apply to each of these components just the preconditioner for one of the diagonal
blocks of matrix F. In this way, the dimensions of the matrices used are halved and, more importantly,
we can choose to perform the smoothing only in the direction that we are considering. This means that
when we apply the preconditioner to rx, we use Gauss–Seidel with a pattern that only evolves in the x
direction. We do not expect more accurate solutions with this method, since applying extra smoothing
does not create such a problem, but we expect to reduce the computational time required.

Two approaches are possible when applying one of the patterns in the smoothing phase. We can
divide the pattern in groups and apply the smoother to all the nodes of every group simultaneously;
for instance, if the pattern to be applied evolves in the x direction, then each group would be one
of the vertical lines of nodes. In this way, the smoother updates all of the values for these nodes at
once, which is the best approach possible. However, in this way, the linear system to be solved inside
Gauss–Seidel is block triangular and not triangular. Alternatively, we can apply the smoother to every
node individually; in this way, the system to be solved is triangular, but along every line, some nodes
are updated before and some others later. We used the second approach, as the results were very
similar, but the computational time was lower.

In the numerical experiments, we tested four different approaches, which are summarized in
the following:

• Jacobi, which identifies the Multigrid scheme using the simple damped Jacobi smoother.
• simple-GS, which indicates the use of Gauss-Seidel with lexicographic ordering.
• 2dir-GS, which identifies the Gauss-Seidel smoother applied with two patterns, one for

every direction.
• split-GS, which indicates the new approach that exploits the structure of the (1, 1)−block.

The patterns that are used in the last two approaches are shown in Figure 2 for a small grid.
Besides the smoother, there are other aspects of the Multigrid preconditioner that must be treated

with care when dealing with convection-dominated problems. Stabilization needs to be taken into
account: when passing from one grid to the next, the matrix to be used in the following grid must be
the exact matrix, with the accurate stabilization; the Galerkin coarse grid operator should be avoided,
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because the coarser grids need stabilization, while the fine ones may not need it. In our experiments,
we used streamline diffusion stabilization.

Figure 2. Ordering of the nodes for the smoothing.

The restriction and prolongation operators can be taken to be the natural ones, i.e., the ones
obtained exploiting the values of the basis functions over the nodes of the discretizations. Finally,
we need to choose the cycle to be used: a V-cycle would be cheaper, but it may need more iterations to
obtain the same accuracy. We chose to use a W-cycle instead, which requires more computational effort,
but more closely clusters the eigenvalues around one. However, as we shall see in the next section,
the Multigrid method is also used by the Schur complement preconditioner. In that case, we made a
different choice of cycle.

5.2. Schur Complement Preconditioner

Let us now focus on finding a scalable preconditioner MS for the Schur complement. In the
case of diffusion-dominated problems, then the mass matrix or even a diagonal approximation of it
can produce scalable results. Indeed, for the Stokes problem, which represents the limit case where
convection is not present, the pressure mass matrix is spectrally equivalent to the Schur complement.

The difficult challenge is to find a scalable preconditioner in the case of convection-dominated
problems. The first approaches used the mass matrix that was scaled by the viscosity. This choice,
although very simple, does not yield scalable results in general. Therefore, more complicated
preconditioners are necessary. We now summarize some of these alternatives.

5.2.1. PCD Preconditioner

The Pressure convection-diffusion (PCD) approach can be intuitively justified when considering
the operator that the Schur complement represents: matrix S = BF−1BT is the discrete counterpart
of the continuous operator div(−ν∆ + w · ∇)−1∇, where w represents the local wind (given by the
solution of the previous iteration in the case of the Oseen problem). We can think of a preconditioner
for the Schur complement as an approximation of the discrete version of the inverse of this operator:
then, calling Fp the convection-diffusion operator built in the pressure space and Lp the corresponding
Laplacian, we can assume that matrix FpL−1

p is an approximation for S−1. However, in the case
of diffusion-dominated problems, Fp and Lp tend to coincide, yielding the identity matrix as
preconditioner. Premultiplying by Qp, the pressure mass matrix, we can assure that in this extreme
case the preconditioner goes back to the known optimal alternative.

This preconditioner was proposed and derived formally in [4] and studied thoroughly
in [25]. It provides a significant improvement with respect to the scaled mass matrix, keeping the
computational cost low: matrices Fp and Lp are indeed smaller than F and L, making this preconditioner
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particularly efficient. However, the rate of convergence seems to suffer when ν gets close to zero,
even for simple problems. Moreover, matrix Fp is not used in the original problem and, thus, needs to
be built at every Picard iteration; the proper boundary conditions to apply to it are not straightforward
to choose and they do not necessarily coincide with the conditions applied to the original problem.
An analysis of this issue can be found in [14].

5.2.2. BFBt Preconditioner

A different preconditioner can be derived in a more algebraic way: in [9], it is proved that,
under the assumption that range(BT) ⊂ range(F−1BT), the exact inverse of the Schur complement is
given by matrix

MS = (BBT)−1BFBT(BBT)−1.

Hence, we can take MS as a preconditioner for the Schur complement, even if the assumption does not
hold in general. Further analysis showed that an improvement can be obtained when considering the
scaled version

MS = (BQ−1
v BT)−1BQ−1

v FQ−1
v BT(BQ−1

v BT)−1,

which, in the case of continuous pressure elements, simplifies to

MS = L−1
p BQ−1

v FQ−1
v BT L−1

p , (18)

where Qv is the velocity mass matrix, or an approximation of it. This preconditioner is clearly more
expensive than the PCD, since it involves two applications of L−1

p and a product with matrix F instead
of Fp. However, most of the matrices used are already available and the additional boundary conditions
to apply to Lp represent a less critical problem. Dependence on the mesh size and on the viscosity is
observed, especially for complicated flows.

5.2.3. Commuted BFBt Preconditioner

An improvement to the BFBt preconditioner was proposed in [14], where they analyzed the
continuous counterpart of matrix (18) and suggested to commute some of the operators involved,
yielding the preconditioner

MS = Q−1
p BL−1FL−1BTQ−1

p (19)

where L is the diffusive part of matrix F. This alternative is even more expensive than the previous
one, since matrix L is larger than Lp. On the positive side, all of the matrices are already available and
there are no new boundary conditions to apply. Moreover, the inversion of matrix L can be performed
with the same Multigrid technique used to precondition matrix F.

This last alternative is the one that has showed the best results in term of scalability, even if some
dependence on the mesh size can still be observed for very low viscosities and complicated flows.
It is also worth pointing out that, in the case of diffusion-dominated problems, this approach behaves
decisively worse than PCD.

5.2.4. Augmented Lagrangian Approach

We briefly sketch a completely different approach from the ones previously presented: suppose
modifying the (1, 1)−block of the original saddle-point linear system, so that the matrix becomesñ

F + γBTW−1B BT

B 0

ô
,

where γ > 0 is a parameter and W is positive definite. The solution is not changed, but it is now
possible to simplify the Schur complement and find a very efficient preconditioner. As shown in [1],
if W is taken to be the pressure mass matrix, an optimal choice for MS is simply (ν + γ)Q−1

p . However,
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this great efficiency in the Schur complement preconditioner is balanced by the need for a much more
complicated Multigrid scheme for the new (1, 1)−block. In [3], this approach was generalized to the
three dimensional case and it was also pointed out that the highly specialized Multigrid scheme used
depends on the choice of the discretization and it may not be possible to use this method with every
such choice.

In our numerical experiments, we chose to use preconditioner (19), since it is the one with the
best chance of providing scalable results for a recirculating flow and since it does not involve matrices
to be computed separately. Moreover, it exploits the same Multigrid that we used for the (1, 1) block,
which means that any improvement that we make there also has an impact on the Schur complement.

Some comments must be made regarding the Multigrid used to invert matrix L. We used the same
strategy used for matrix F, with the following differences: since no convection is present, we found
out that using the V cycle is sufficient to provide good results; we performed a larger number of
cycles, since, in this case, we would like to obtain the exact inverse of L and not just a preconditioner.
We maintained the approach of splitting matrix L, since this allows for saving computational time.

6. Low-Rank Update of the Block Preconditioner

6.1. Left Preconditioning

Consider the generic linear system Ax = b. Following [26], given an initial preconditioner
P(0) ≈ A−1 and a tall, full-rank, n× p matrix V, the Broyden-tuning preconditioner is defined as

P = P(0) − (P(0)AV −V)
Ä

VT P(0)AV
ä−1

VT P(0) (20)

with the property that
PAV = V. (21)

Hence, the preconditioned matrix has the eigenvalue 1 with multiplicity (at least) p. The best
choice of the columns of V is represented by the eigenvectors of P(0)A corresponding to the outlier
eigenvalues. Let us assume then that the columns of V are approximate eigenvectors of the initially
preconditioned matrix:

P(0)AV = VΛ + E,

with Λ = diag(λ1, . . . , λp) and ‖E‖ is small enough. The eigenvalues are decreasingly ordered with
respect to the function f (λ) = |λ− 1|.

Neglecting matrix E we can simplify the low-rank preconditioner as

P = P(0) − (P(0)AV −V)
Ä

VT P(0)AV
ä−1

VT P(0)

= P(0) − (VΛ−V)
Ä

VTVΛ
ä−1

VT P(0)

= P(0) −V(Λ− Ip)Λ−1(VTV)−1VT P(0)

= P(0) −V(Ip −Λ−1)(VTV)−1VT P(0)

= P(0) −VHVT P(0), (22)

with small matrix H = (Ip − Λ−1)(VTV)−1 to be built once and for all before starting of the
iteration process.
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6.2. Right Preconditioning

The Broyden preconditioner inherits the tuning condition (21) as a reformulation of the secant
equation, which only holds for left preconditioning. However, it can be easily reformulated to handle
the case of right preconditioning, as follows

PR = P(0) − (P(0)V − A−1V)
Ä

VT P(0)V
ä−1

VT P(0)

satisfying now
APRV = V.

The unpleasant presence of A−1 in this expression can be eliminated reasoning as before and assuming
that now AP(0)V = VΛ+ ER and, therefore, A−1V ≈ P(0)VΛ−1, so that we can define an approximate,
but more effective right preconditioner as

PR = P(0) − (P(0)V − P(0)VΛ−1)
Ä

VT P(0)V
ä−1

VT P(0)

= P(0) −WHVT P(0), with W = P(0)V, H = (Ip −Λ−1)(VTW)−1

Differently from the left preconditioning the preprocessing stage now requires p applications of the
preconditioner P(0) to form matrix W.

6.3. Avoiding Complex Eigenpairs

One possible obstacle to this approach is the fact that both V and Λ are likely to be complex.
This is solved by constructing a real invariant subspace of the same size, as described in Algorithm 1.

Algorithm 1 Constructing a real invariant subspace for the preconditioned matrix.
1: Γ = Λ
2: j = 1
3: while j < p do
4: if | Im(λj)| > 10−3 then
5: a = Re(λj); b = Im(λj)

6: Γ(j : j + 1, j : j + 1) =
ï

a −b
b a

ò
7: Z(:, j) = Re(V(:, j));
8: Z(:, j + 1) = Im(V(:, j));
9: j = j + 2;

10: else
11: Z(:, j) = V(:, j);
12: j = j + 1;
13: end if
14: end while
15: if j == p then
16: Z(:, j) = V(:, j);
17: end if

By construction matrices Z and Γ (which is no longer diagonal) approximately satisfy P(0)AZ =

ZΓ and the low-rank left preconditioner is defined consequently as

P = P(0) − Z(Ip − Γ−1)(ZTZ)−1ZT P(0) = P(0) − ZHZT P(0), H = (Ip − Γ−1)(ZTZ)−1.

Analogously the right preconditioner is modified with Z, Γ in place of V, Λ.



Algorithms 2020, 13, 199 16 of 27

6.4. Application of the Low-Rank Approach to the Blocks

Starting from our block preconditioners we can apply the low-rank correction either to the (1,1)
block only or also to the Schur complement preconditioner. We consider then two cases, both in the
framework of the left preconditioning:

1. Let P(0)
F be the (inverse of the) multigrid preconditioner for the (1, 1) block and consider the left

preconditioner (22). To compute the relevant eigenpairs we run the nonrestarted Arnoldi method
with m = 50 as the subspace size for the preconditioned matrix P(0)

F F. Then we selected all the p
eigenvalues satisfying f (λ) ≡ |λ− 1| > 1 and the corresponding eigenvectors as columns of VF
to form the updated preconditioner for the (1, 1) block as

PF = P(0)
F −VF HFVT

F P(0)
F .

2. In addition to the previous, define P(0)
S the (inverse of the) Schur complement preconditioner to

be used in (22) and run the nonrestarted Arnoldi method for the preconditioned matrix PSSLR,
where SLR is the Schur complement of the block preconditioner defined as

SLR = B
(

P(0)
F −VHVT P(0)

F

)
BT .

Again, we consider all of the eigenvalues satisfying f (λ) > 1 and form the updated Schur
complement preconditioner as

PS = P(0)
S −VSHSVT

S P(0)
S

7. Numerical Results

In this Section, we will show the results of the numerical experiments performed; the spectral
properties of the matrices will be used to predict the behavior of a certain technique and we will then
compare the predictions with the actual results. Some plots will be used to compare the spectra of
different preconditioners and show convergence profiles of GMRES.

7.1. Model Problem

The model problem that is used in this work is the well-known lid-driven cavity problem; a
thorough description of this problem can be found in [27]. The source term f is set to zero, the viscosity
ν is set to 1 for the Stokes equations, while it varies between 0.1 and 0.001 for the Navier–Stokes
equations. The domain Ω corresponds to the two-dimensional square [−1, 1]× [−1, 1]. The equations,
together with the boundary conditions, are

−ν∆u + (u · ∇)u +∇p = 0

∇ · u = 0

u = 0, x ∈ {−1, 1} × [−1, 1] ∪ [−1, 1]× {−1}
uy = 0, x ∈ [−1, 1]× {1}
ux = 1, x ∈ [−1, 1]× {1}

. (23)

The problem evolves inside a square domain; on the two lateral sides and on the bottom side,
there is a no-slip condition (i.e., the velocity is zero), while on the top side there is an horizontal
velocity imposed. There is no normal velocity on any portion of the boundary, thus the flow is enclosed
(no fluid can enter or exit the domain).

Figures 3 and 4 show the velocity magnitude and direction for the Stokes problem; it is clear the
formation of a vortex in the middle. This feature makes this model problem especially challenging to
treat and particularly interesting to evaluate the robustness of a numerical solver.
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Figure 3. Velocity magnitude for the Stokes problem.
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Figure 4. Velocity direction for the Stokes problem.

7.2. Problem Description

The matrices used for the numerical tests are generated using values of n from 10 to 320.
In particular, Table 1 illustrates all of the matrices used, showing their dimension and number of
nonzero entries, while Figure 5 shows the sparsity pattern the matrix M10.

Table 1. Properties of the matrices.

Matrix Dimension NNZ

M10 1003 14,280
M20 3803 62,008
M40 14,803 258,268
M80 58,403 1,054,076
M160 232,003 4,258,388
M320 924,803 17,118,310

The number of nonzero entries per row vary between 14 and 18 and the density increases as n
grows. The smaller matrices M10 and M20 will only be used in the layer of the Multigrid preconditioner,
while the other will be actually used as matrices for the saddle point system.
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Figure 5. Sparsity pattern of matrix M10.

Concerning the Navier–Stokes equations, the matrices used are obtained after five iterations of
a Picard scheme, which ensures that the nonlinear phenomena are well represented. The value of
the viscosity is set to 1 for the Stokes problem. For the Navier–Stokes equations, it will assume the
values 10−1, 10−2, 5 · 10−3, and 10−3. Lowering the viscosity, the system will become more asymmetric,
which is expected to worsen the properties of the preconditioner.

The numerical results will regard the Navier–Stokes equations, for which we will be analyzing
both the spectral properties and number of iterations required for the GMRES to converge. It is
worth pointing out that the scalability of the results would not change using another Krylov subspace
solver, e.g., BICGSTAB, since the preconditioner is derived based on the properties of the underlying
problem, and not considering the specific solver used. The notation will be the following: αF and βF
represent the maximum and minimum eigenvalues in modulus of the preconditioned (1, 1) block;
αS and βS represent the maximum and minimum eigenvalues in modulus of the preconditioned Schur
complement (obviously, the zero eigenvalue of the Schur complement is not considered, since it is
always present).

7.3. Some Details on Implementation

All of the results have been obtained using codes written in Matlab on a laptop with equipped with
an Intel processor i5-8350U quad core with 16GB RAM. The finite elements have been implemented
using a four-point Gaussian quadrature scheme. The eigenvalue estimates are obtained using the
Arnoldi method. The solver used is left-preconditioned GMRES with a tolerance of 10−8 and without
restart. Using the right-preconditioned version instead would not change the obtained scalability
results. See the brief discussion in Section 7.8. All of the times reported are in seconds. The † symbol
in the Tables will denote no convergence within 400 iterations.

7.4. Multigrid and BFBt

We now report the results that were obtained using the various Multigrid schemes and the
BFBt preconditioner. These results are not scalable, due to the poor smoothers and the non-scalable
implementation of the BFBt preconditioner. Hence, we will only show the results in terms of the
iteration count. We will also show the eigenvalue distribution, which helps to understand the quality
of the Multigrid smoother. The Multigrid parameters will be shown as mV(pre, post), where m is the
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number of cycles used, V or W represent the type of cycle used, and pre and post indicate the number
of pre and post smoothing steps. The coarsest level for Multigrid in these tests is the matrix M10.

7.4.1. Jacobi/BFBt

The first combination involves a damped Jacobi smoother; the Multigrid used is 5V(1, 1), while the
BFBt preconditioner is implemented using an incomplete factorization.

Table 2 reports the spectral properties of the preconditioned matrices.

Table 2. Spectral properties of the preconditioned matrices using Jacobi and BFBt.

Matrix Viscosity αF βF αS βS

M40
0.1 0.4256 1.261 0.6926 25.86
0.01 0.4251 1.905 0.4746 21.87

M80
0.1 0.3555 1.442 0.2107 26.62
0.01 0.3588 2.911 0.1494 25.92

M160
0.1 0.3371 1.700 0.0557 39.41
0.01 0.3383 5.013 0.1744 28.97

The eigenvalues of the preconditioned (1, 1) block show a slight dependence on the mesh size
(αF is decreasing, βF is increasing), even for the highest viscosity, which represents a problem that
is similar to the Stokes one. The smallest eigenvalue αF does not seem to be affected by the value
of the viscosity, while the biggest one βF grows substantially with the viscosity, getting in the worst
case to a value larger than 5. The fact that the spectral properties deteriorate as the viscosity grows is
perfectly in line with the fact that this Multigrid preconditioner was built for a symmetric problem,
while lowering the viscosity makes the problem increasingly asymmetric. For an even lower viscosity
(0.005), the eigenvalues become negative, leading to a complete failure of the preconditioner.

The situation is not better for the Schur complement preconditioner: even in this case, the spectral
interval widens as the mesh is refined. Moreover, the eigenvalues are less clustered around 1, as the
spectral radius is always above 20.

Figure 6 illustrates the spectrum of the preconditioned Schur complement for various values of the
viscosity. Every dot represents an eigenvalue in the complex plane (only the first 100 eigenvalues found
by Arnoldi are represented). These spectra do not depend on the Multigrid scheme used, so they would
be the same as even using a different Multigrid. It is clear that, as the viscosity gets lower, the system
becomes more asymmetric and, consequently, the imaginary part of the eigenvalues increases.
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Figure 6. Spectra of the BFBt-preconditioned Schur complement for different values of viscosity.
(a) ν = 0.1; (b) ν = 0.01; (c) ν = 0.005.

Table 3 shows the results obtained with Jacobi and BFB: even with very high viscosity,
the preconditioner is not scalable; for low viscosity instead, it fails completely.
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Table 3. Results using Jacobi and BFBt. The † symbol means no convergence within 400 iterations.

Matrix ν = 0.1 ν = 0.01 ν = 0.005

M40 67 110 †
M80 97 195 †

M160 141 336 †

7.4.2. Simple GS/BFBt

Using the simple Gauss–Seidel method as smoother is expected to improve the results, but it
still should not be scalable, since the smoothing is performed following the original numbering of
the nodes and not following the convective flow. The Multigrid is again 5V(1, 1). Table 4 shows the
spectral properties in this case.

Table 4. Spectral properties of the preconditioned matrices while using sGS and BFBt.

Matrix Viscosity αF βF αS βS

M40
0.1 1.0000 1.002 0.6966 25.44
0.01 0.9784 1.006 0.4527 21.83

0.005 0.6591 1.422 0.2522 25.15

M80
0.1 1.0000 1.003 0.2159 26.47
0.01 0.9984 1.015 0.1290 25.82

0.005 <0 19.35 0.0349 27.95

There is a great improvement in the eigenvalue bounds of the preconditioned (1, 1) block for the
highest viscosity: indeed, the spectral interval is extremely narrow and focused around 1. However,
this nice property disappears for the lowest viscosity, even leading to negative eigenvalues for the
matrix M80. That is exactly what we expected: for high viscosities, the convection phenomena are not
relevant; hence, there is not much difference between smoothers that follow or not the flow. Instead,
for low viscosities, the convection process must be taken into account to produce a suitable smoother.

Table 5 shows the results in this case: they are still not scalable and again for low viscosities
convergence is not achieved.

Table 5. Results using sGS and BFBt. The † symbol means no convergence within 400 iterations.

Matrix ν = 0.1 ν = 0.01 ν = 0.005

M40 64 107 †
M80 87 183 †

M160 135 334 †

7.4.3. Two-Direction GS/BFBt

The next combination uses a Gauss–Seidel smoother applied using two patterns that try to follow
the convective flow. We also employed a W cycle, which means that the Multigrid used is now 2W(1, 1).
Table 6 shows the spectral properties.

The results are promising, at least for the Multigrid preconditioner: the smallest eigenvalue αF
is very close to 1 and it does not suffer from refinement of the mesh or reduction in the viscosity.
The spectral radius βF is slightly above 1 and again does not deteriorate too much changing the
properties of the problem: there is a little growth when the viscosity is reduced and there is a decrease
when the mesh is refined (this can be explained noticing that the convective phenomena are better
represented when the matrix is larger, therefore improving the efficiency of this Multigrid scheme that
is based on these phenomena).

Figure 7 shows the spectrum of the preconditioned (1, 1) block while using the three previous
smoothers. It is clearly visible how only the last choice is able to cluster the eigenvalues around one.
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Table 7 displays the results with this combination: they are again not scalable, but the behavior for the
lowest viscosity is improved, thanks to the more efficient smoother.

Table 6. Spectral properties of the preconditioned matrices using 2dir GS and BFBt.

Matrix Viscosity αF βF αS βS

M40
0.1 0.9907 1.022 0.6973 25.46
0.01 0.9912 1.133 0.4899 21.84

0.005 0.9153 1.291 0.1962 25.20

M80
0.1 0.9907 1.027 0.2159 26.55
0.01 0.9889 1.032 0.1242 25.83

0.005 0.9619 1.130 0.0350 25.25

M160
0.1 0.9908 1.036 0.0554 27.20
0.01 0.9874 1.036 0.0315 26.68

0.005 0.9859 1.050 0.0283 26.46
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Figure 7. Spectra of various Multigrid schemes for the matrix M40 and ν = 0.005.

Table 7. NS-W2dGS-BFBt results for various values of the relaxation parameter. The † symbol means
no convergence within 400 iterations.

ω
M40 M80 M160

0.1 0.01 0.005 0.1 0.01 0.005 0.1 0.01 0.005

1 64 107 118 88 181 253 136 330 †
0.5 62 104 115 86 177 249 135 328 †

0.25 61 102 111 85 174 246 133 325 †
0.1 59 100 112 82 171 242 129 321 †

0.05 59 113 134 81 174 265 128 319 †

In Table 7, we also show the effect of the relaxation parameter ω, as proposed in [7], and briefly
described at the end of Section 4, with the aim of improving the condition number of the preconditioned
matrices. Setting ω < 1 provides a slight decrease in the number of iterations, and this is due to
the spectra of the preconditioned blocks, which partially overlap. Because of these (not completely
satisfactory) preliminary results, the relaxation parameter will not be employed in the next results.
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7.5. Multigrid and BFBt-c

To obtain scalable results, we used the BFBt-c preconditioner, which was also implemented using a
Multigrid scheme. In the following tables, we also show the true residual tres of the solution computed
by GMRES (‖Mx− f‖/‖f‖). This datum is useful to understand the quality of the preconditioner:
indeed, using left preconditioning, the exit test of GMRES is performed with the residual of the
preconditioned system, which may differ substantially from the residual of the actual system. Moreover,
we also show the computational time, which includes the time to build the preconditioner, apply it’s
and solve the linear system with GMRES.

The coarsest level for Multigrid in these tests is the matrix M20.

7.5.1. Jacobi/BFBt-c

The first test involves the Jacobi smoother; the Multigrid in this case is 2V(2, 2) for the (1, 1) block
and 5V(2, 2) for the BFBt-c preconditioner.

The results are shown in Table 8: we can see that, for high viscosities, the results are scalable,
but the preconditioner fails when using low viscosities, providing erratic iteration numbers.

Table 8. Results using Jacobi and BFBt-c.

Matrix
ν = 0.1 ν = 0.01 ν = 0.005

iter time tres iter time tres iter time tres

M20 45 1.76 2.40E-3 59 2.29 3.33E-3 99 3.83 3.56E-2
M40 49 3.49 3.30E-3 65 4.53 3.90E-3 215 15.77 4.06E-2
M80 53 8.76 2.20E-3 69 11.46 3.50E-3 232 39.45 1.22E-2
M160 55 38.46 1.11E-3 71 50.04 2.10E-3 113 82.38 4.60E-3
M320 55 162.95 4.69E-4 73 215.95 1.10E-3 121 420.06 1.50E-3

7.5.2. Simple GS/BFBt-c

We then used the simple Gauss-Seidel smoother with the BFBt-c preconditioner, with the same
parameters as before. The results, shown in Table 9, show an improved behavior, with good results
also in the case of ν = 0.005. However, for the lowest ν = 10−3 viscosity, the non-scalability remains.

Table 9. Results using sGS and BFBt-c.

Matrix
ν = 0.1 ν = 0.01 ν = 0.005

iter time tres iter time tres iter time tres

M20 43 1.70 2.00E-4 56 2.21 8.85E-4 55 2.18 1.78E-2
M40 47 3.49 1.32E-4 60 4.47 6.75E-4 78 5.75 1.25E-2
M80 50 8.87 3.43E-5 63 11.20 1.66E-4 91 16.23 1.60E-3
M160 52 39.91 3.49E-5 62 47.67 1.32E-5 103 81.14 5.58E-4
M320 53 171.20 9.57E-5 65 211.05 3.71E-5 111 370.35 2.74E-4

7.6. Handling the Low Viscosity Case. Two-Direction GS/BFBt-c

The next test is performed using the 2dir GS smoother and the BFBt-c preconditioner.
The Multigrid for the (1, 1) block is now 2W(2, 2).

In Figure 8 (left), we compare the spectrum of BFBt and BFBt-c, while, in Figure 8 (right),
we show the spectrum of the (1, 1) block and the one of the BFBt-c preconditioned Schur complement.
The plot reveals the clear superiority of the BFBt-c preconditioner, which provides a better clustering
of the eigenvalues.

To better follow the circulant flow with so high Reynolds number, we choose to select as the
coarsest mesh M20 instead of M10. As a first consequence, the cost per iteration is expected to increase,
mainly for the smallest problems.
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Figure 8. On the left, the spectra of the preconditioned Schur complement for BFBt and BFBt-c
preconditioners. On the right the spectra of the preconditioned (1, 1) block and the Schur complement
using BFBT-c. Plots referring to matrix M40 and ν = 0.005.

Table 10 shows the results while using this combination. The preconditioners are scalable for all
viscosities, confirming the promising impression that we got from the spectral information. However,
the true residual of the final solution is a couple of orders of magnitude larger than the original
tolerance of GMRES.

To try saving some of the added computational time, we employed strategy split-GS, which is
supposed to be cheaper than 2dir-GS. We show the results in Table 11: when compared with Table 10,
these results indeed show a lower computational time, revealing, as expected, that split-GS is a cheap
variant of 2dir-GS. However, it also introduces some instabilities that prevent the reduction of the true
residual in some cases.

Table 10. Results using 2dir-GS and BFBt-c.

Matrix
ν = 0.1 ν = 0.01 ν = 0.005 ν = 0.001

iter time tres iter time tres iter time tres iter time tres

M40 46 14.08 1.8e-5 52 21.14 4.6e-5 60 18.53 3.0e-4 80 24.49 1.5e-2
M80 49 33.99 1.5e-5 55 49.64 2.3e-5 65 42.35 7.6e-5 85 56.16 6.9e-3
M160 52 125.01 8.9e-6 53 127.17 1.4e-5 66 158.49 2.1e-5 93 224.67 9.3e-4
M320 52 589.25 1.1e-6 52 614.96 1.1e-5 66 651.42 1.3e-5 99 1128.95 1.4e-4

Table 11. Results using ICP with split-GS and M20 as the coarsest mesh.

Matrix
ν = 0.1 ν = 0.01 ν = 0.005 ν = 0.001

iter time tres iter time tres iter time tres iter time tres

M40 47 13.13 1.6e-4 53 14.76 1.5e-4 62 16.97 4.7e-4 82 22.31 1.5e-2
M80 50 27.43 1.7e-4 52 28.10 8.2e-5 64 35.47 5.2e-4 89 49.34 5.5e-3

M160 52 75.46 3.2e-4 56 81.91 5.7e-6 67 98.77 1.4e-4 94 140.11 6.4e-3
M320 55 312.79 3.3e-4 58 332.21 1.5e-5 67 384.49 1.2e-4 99 697.55 1.9e-3

If we compare Tables 8–11, we can see that, for high viscosities, the results are scalable using
any method. In this situation, the most efficient approach in terms of computational time is the one
that involves the Jacobi smoother, since the convection is not sufficiently strong to justify the use of a
complicated flow-following technique. However, when it comes to low viscosities, the Gauss–Seidel
smoother with proper ordering is the only strategy that manages to produce scalable results.

We also report the results while using a Block Triangular Preconditioner, as shown in Table 12.
The higher number of iterations needed is balanced by the reduced cost per iteration, producing a
final computational time that is better than in the previous case. However, the true residual gets even
higher in some cases.
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The low-rank update, whose effects will be described next, will mitigate this effect.

Table 12. Results using BTP with split-GS and M20 as the coarsest mesh.

Matrix
ν = 0.1 ν = 0.01 ν = 0.005 ν = 0.001

iter time tres iter time tres iter time tres iter time tres

M40 52 11.66 1.20E-3 55 11.93 1.62E-4 71 15.37 4.43E-4 94 20.29 2.10E-3
M80 55 24.46 5.20E-3 57 22.98 2.31E-4 72 28.83 6.64E-5 102 41.56 1.50E-3

M160 58 63.11 1.55E-3 59 63.81 4.29E-4 72 78.87 1.57E-4 106 118.64 1.60E-3
M320 62 281.67 5.29E-2 59 273.62 1.20E-3 67 301.17 3.90E-4 108 493.86 1.66E-4

7.7. Handling the Low Viscosity Case. Preconditioner Update by Low-Rank Matrices

We have obtained a scalable preconditioner for all viscosities considered using, as the coarsest
level, the matrix M20 instead of M10, which implies a high computational cost at each application
of the Multigrid. This choice is necessary, since using matrix M10 produces the spectral distribution
that is shown in Table 13, where the Multigrid is completely unable to properly precondition the
(1, 1) block.

Table 13. Spectral properties of the preconditioned matrices with viscosity 0.001 using the coarsest
matrix M10.

Matrix # Outliers
max |λ(M−1

F F)− 1|
# Outliers

max |λ(M−1
S S)− 1|in the (1,1) Block in the Schur Complement

M40 11 22.8 4 2.9
M80 10 511.9 7 3.7

M160 10 1.2× 105 10 3.4

The situation that is depicted by Table 13 is a promising situation that suggests the use of the
low-rank update: the number of outlier for the preconditioned F block is relatively small and does
not roughly change with the meshsize. On the contrary, updating the preconditioner for the Schur
complement block does not seem to be advisable, as the eigenvalues of this block are not much far
away from 1.

The results where the split-GS based preconditioner is used in combination with the low-rank
update for the (1, 1) block, as described in Section 6, are reported in Table 14. We employed
50 non-restarted Arnoldi iterations to assess the corresponding eigenvectors (as they are well separated,
Arnoldi convergence reveals very fast). The preprocessing time that is related to this task is reported
in the Table as prep. The results using the Constraint Preconditioner and the BTP are summarized in
Table 14.

The results show that this approach yields similar results as in the previous Tables, with two
exceptions: first, the fact that we selected M10 as the coarsest mesh provided a notable reduction of
the CPU time per iterations. Second, the true norm of the residual is much lower, showing a closer
relation between the residual provided by the GMRES method and the true residual, and suggesting
the better conditioning of the preconditioner. Moreover, the preprocessing time to assess dominant
eigenvectors is around 10% of the overall CPU time. Scalability with respect to h is almost perfect,
the number of iterations, on the average, being slightly increased with respect to starting from M20
mesh with no update.
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Table 14. Results using split-GS and low-rank update for ν = 0.001 with ICP (left) and BTP (right).
The coarsest mesh is M10.

Inexact Constraint Preconditioner Block Triangular Preconditioner

Matrix Iter
Time

tres Iter
Time

tresprep GMRES Total prep GMRES Total

M20 115 0.51 4.85 5.36 6.60E-3 93 0.55 5.23 5.78 9.80E-3
M40 86 1.38 9.29 10.67 2.40E-3 106 1.27 8.20 9.47 3.85E-4
M80 92 4.15 31.20 35.35 3.32E-4 112 3.57 25.58 29.15 4.27E-4

M160 98 11.87 127.11 138.98 4.75E-4 113 11.92 96.51 108.43 2.00E-4
M320 118 59.26 658.55 707.81 5.90E-5 117 48.97 488.38 537.35 5.89E-5

7.8. Comparisons with Right-Preconditioned GMRES

As anticipated, the scalability results obtained so far with the left-preconditioned GMRES would
also be confirmed by the right-preconditioned GMRES implementation. It is well-known that, in this
last case, the exit test is on the true residual (instead of the preconditioned residual). However this
advantage is in some instances purely theoretical as the exact residual may be much different from the
computed residual due to ill-conditioning of the systems matrices. We report in Table 15 the results
for ν = 0.001 and both BTP and ICP approaches while using the right-preconditioned GMRES, to be
compared with the last columns in Tables 11 and 12 and with Table 14. The results confirm the optimal
scalability of the proposed preconditioner.

Table 15. Results using right-preconditioned GMRES with split-GS for ν = 0.001 with ICP (left) and
BTP (right). The coarsest mesh is M20.

ICP BTP
Matrix Iter Time tres Iter Time tres

M40 71 22.55 3.24E-4 84 21.20 2.00E-4
M80 72 48.26 6.64E-5 86 43.73 7.56E-4
M160 75 123.80 5.94E-5 83 108.82 1.84E-4
M320 78 485.84 1.32E-5 82 422.72 2.77E-5

8. Conclusions

The algebraic solution of the discretized and linearized Navier Stokes equations, in case of high
Reynolds number, is still a challenging numerical linear algebra problem. Our contribution is to give
an overview of the main multigrid approaches to precondition the advection-diffusion block and to
approximate the Schur complement matrix. We have also proposed some variants that can improve
efficiency and scalability of the block preconditioner in the case of low viscosity value. The use of
such sophisticated multigrid variants leads to solving the finest Navier–Stokes discretized system
with almost one-million unknowns and 17 million nonzeros in a few minutes, even for the smallest
(ν = 10−3) value of the viscosity. We have also shown that the use of low-rank updates may constitute
a viable improvement of a given block preconditioner when the number of the eigenvalues of the
preconditioned (1, 1) block, which are far away from 1 (outliers) is small and roughly independent
of h.
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