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ABSTRACT: Classification problems with imbalanced class distributions are perva-
sive in a plurality of real-world applications, such as network intrusion detection, fraud
detection and rare disease diagnosis. In this context, most of standard classification
models are heavily compromised, as they tend to focus on the majority class, yet the
minority class is often the one of greatest importance. To tackle the problem, we com-
bine XGBoost, a powerful and recent formulation of the gradient boosting, with a loss
function specifically derived to optimise the Area Under the ROC curve, an evaluation
metric more robust towards class imbalance.
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1 Introduction

Class imbalance refers to all supervised classification tasks which suffer of
uneven class distributions. The issue has gained ground with some further
implicit assumptions, such that imbalanced data are expected to have rare in-
stances belonging to the class of greatest interest and a (relatively) large num-
ber of units from the other classes. An imbalanced class distribution may
severely affect the performance of classification algorithms, by interfering with
both model estimation and accuracy evaluation phases. Disregarding each
model own specificities, model estimation is typically driven by the optimi-
sation of a global loss function, which favours classification rules ignoring the
rare units as overwhelmed by the prevalent class. A number of techniques have
been developed to cope with imbalanced classes: data level approaches attempt
to re-balance the class distribution before building learning models, whereas
classifier level approaches aim to adapt existing algorithms to focus on the mi-
nority class. The latter group includes cost-sensitive techniques, methods that
replace the loss function with more meaningful measures and combinations of
classifiers, that follow the logic of boosting, bagging and random forests.
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Under imbalanced scenarios, assessing the performance of a classifier plays
a role that is at least as crucial as its estimation. Accuracy, which is the most
commonly used metric for classification tasks, is not sufficient, as it is gov-
erned by the majority class. Other performance metrics which account for the
class distribution are preferred in this context, as the G-mean, the F-measure,
and especially the Area Under the ROC Curve (AUC). See Menardi & Torelli
(2014) for a more comprehensive discussion about the imbalance problem.

Within the logic of the approaches at a classifier level, in this work we
derive a differentiable loss function that optimises the AUC to train a gradient-
based model within the boosting family, in order to extend the benefits of the
AUC as evaluation metric to the phase of model estimation. After presenting
the building blocks relevant for a full comprehension of the proposed method,
we discuss our contribution and show some numerical results.

2 Gradient boosting optimisation based on the AUC

Given a training set Tn containing n i.i.d. pairs (xi,yi), i = 1, . . . ,n, where
xi ∈ Rd is a vector of attributes and yi ∈ {Y0,Y1} is a response variable whose
classes are conventionally labeled as negative and positive respectively, a clas-
sifier H : X 7→ R is a function that allows to predict the response variable y,
based on the observed x. The output H (x) measures the confidence of x be-
longing to the positive class, whereas the predicted label ŷ is defined on the
basis of a threshold k ∈ R such that ŷ = Y0 if H (x)< k and ŷ = Y1 otherwise.
A non-negative loss function L(y, ŷ), that measures the discrepancy between
observed and fitted values, is used either to optimize the classifier during the
learning process and to assess the performance of the model.

Even if not specifically developed to tackle the class imbalance problem,
the gradient boosting (Friedman, 2001) has showed to achieve competitive
results in this domain. In broad terms, it exploits the connection between Ad-
aBoost, the first applicable approach of boosting, that relies on the idea of
increasing the weight of the hardest to classify units, and a forward-stagewise
additive modeling approach. At each iteration of the algorithm, a functional
gradient descent optimisation is applied to a loss function, in the n-dimensional
space of the fitted values, and it is then approximated by some simple model.
The final rule is a linear combination of all the previous estimated functions.
A specific formulation of the gradient boosting is XGBoost (Chen & Guestrin,
2016), which, at each iteration, approximates the objective loss function by a
second order Taylor’s series expansion, and estimates a classification model
via its minimisation. This implementation easily supports different loss func-



tions, as it is sufficient to provide the algorithm with its first two derivatives.
The rationale behind the proposed approach is to integrate into the XG-

Boost a loss function independent on the class distribution. In this perspective,
the AUC - its ones’ complement, in fact - represents a sensible candidate.

Let n+ and n− be the sample size of positive and negative observations re-
spectively, and assume that H (x+i ) and H (x−j ) are the fitted scores respectively
for the i-th positive and the j-th negative instances. The AUC is equivalent to
the normalized Wilcoxon Mann-Whitney statistic, in the form:

AUC =
1

n+n−

n+

∑
i=1

n−

∑
j=1

I0.5(H (x+i )−H (x−j )), (1)

where I0.5(t) is 0 if t < 0, 0.5 if t = 0, 1 otherwise. The AUC estimates the
probability that a positive unit receives a higher score than a negative one by
means of comparisons between instances belonging to different classes. While
the global accuracy of a classifier depends on the choice of a classification
threshold, the AUC evaluates its discriminating ability as the threshold varies
over all its range. This allows to cater for the presence of rare units as, by
construction, it does not place more emphasis on one class over the other.

Unfortunately, two issues prevent the expression (1) from being directly
used as a loss function: first and foremost, the function is non differentiable,
secondly, its argument is not the single observation but rather refers to pairs of
instances. To overcome the first limitation, we consider the following differ-
entiable approximation (Yan et al., 2003):

Us =
1

n+n−

n+

∑
i=1

n−

∑
j=1

S(H (x+i ),H (x−j )), where: (2)

S(H (x+i ),H (x−j ))=

{
(−(H (x+i )−H (x−j )− τ))p if H (x+i )−H (x−j )< τ,

0 otherwise,
(3)

for a given τ ∈ (0,1] and p > 1 selected by the user. A pair of observations
contributes to the loss function when the score of a positive unit exceeds the
one of a negative unit by τ. The authors suggest to choose τ ∈ [0.1,0.7] and
p ∈ {2,3}. The quantity Us is then reformulated to refer to unique instances:

Us =
1

n+n−

n

∑
i=1

[
I(yi=1)

i−1

∑
i′=1

S+
i′ + I(yi=−1)

i−1

∑
i′=1

S−i′
]
, where: (4)

S+
i′ = I(yi′=−1)S(H (xi),H (xi′)) and S−i′ = I(yi′=1)S(H (xi′),H (xi)). Once the

parameters are defined, the computation of the first two derivatives is straight-
forward and the method can be implemented.



Empirical results reveal that the proposed approach outperforms many other
competitive classifiers, especially in scenarios of extreme rarity and nontrivial
data patterns. In the bidimensional setting illustrated in Figure 1, as well as in
its generalisation in 5 dimensions, rare units lie in small disjunct sets, over-
lapping with the majority class at the margins of each box. The results of the
analysis are outlined in Table 1. As expected, standard models as the logis-
tic regression and the classification tree fail in this domain. The algorithm
SMOTEBoost (Chawla et al., 2003), specifically developed to address the im-
balance, performs even worse than the original AdaBoost. Conversely, the
modified XGBoost achieves better results in the majority of the cases, includ-
ing the hardest.

Figure 1: Simulated data in the
bidimensional space. Red dots
represent the rare instances.

% dim. Logistic
Reg.

Tree
(Gini)

Ada-
Boost

SMOTE-
Boost

Gradient
boosting

Modified
XGBoost

0.6
2

0.500 0.500 0.772 0.602 0.782 0.790
(0.004) (0.000) (0.047) (0.059) (0.043) (0.041)

5
0.500 0.500 0.721 0.563 0.712 0.736

(0.012) (0.000) (0.041) (0.059) (0.040) (0.042)

1
2

0.500 0.501 0.830 0.632 0.838 0.833
(0.003) (0.008) (0.034) (0.059) (0.030) (0.030)

5
0.499 0.501 0.786 0.609 0.777 0.790

(0.008) (0.014) (0.032) (0.067) (0.030) (0.031)

Table 1: Average AUC (and standard deviation) over 300 Monte
Carlo samples of size 1000, with dimension 2 and 5, rare class fre-
quency of 0.6% and 1%. For boosting algorithms 200 iterations were
considered; for the AUC-based loss function τ = 0.7 and p = 2.
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