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1. Purpose of the paper 

This paper aims to highlight chaos in the secular motions of a binary asteroid system interacting with a planet whose

orbit is external to the orbits of the asteroids. These chaotic motions turn to bifurcate from an a–priori stable configuration,

in the sense of [1] . We shall not provide rigorous proofs, besides the heuristic arguments that we are going to present in

this introduction. In fact, our study will be purely numerical. Moreover, we shall not implement any algorithm to control

machine errors. We are however convinced that our computations are correct thanks to a–posteriori checks that we shall

describe in the course of the paper. 

Let us describe the physical setting. Three point masses constrained on a plane undergo Newtonian attraction. Two of

them (the asteroids) have comparable (in fact, equal) mass and, approximately, orbit their common barycentre. The orbit of

a much more massive body (the planet) keeps external to the couple, for a sufficiently long time. We do not assume 2 any

prescribed trajectory for any of the bodies, but just Newton law as a mutual interaction. We fix a reference frame centred

with one of the asteroids and we look at the motions of the other one and the planet. As no Newtonian interaction can be

regarded as dominant – as, for example, in the cases investigated in [3–7] and [8,9] – in order to simplify the analysis, we

look at a certain secular system, obtained, roughly, averaging out the proper time of the reference asteroid. This means that

we are assuming that the time scale of the movements of the planet is much longer. Beware that our secular problem has

nothing to do with the one usually considered in the literature, where the average is performed with respect to two proper

times ( e.g., [10] ). Let us look, for a moment, to the case where the planet is constrained on a circular trajectory. In such case,

the only observables are the eccentricity and the pericentre of the instantaneous ellipse of the asteroid. Quantitatively, this

system may be described by only two conjugate Hamiltonian coordinates: the angular momentum G (related to the eccen-

tricity) and the pericentre coordinate g of the asteroidal ellipse. There is a limiting situation, which roughly corresponds to
∗ Corresponding author. 
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Fig. 1. Schematic representation of the model we are dealing with. The model is composed by three bodies P 0 , P 1 , P 2 , where the first two have equal 

masses m 0 and the third body has the largest mass κm 0 , κ > 1. The point b 1 is the barycentre of P 0 and P 1 , whilst b 2 is the barycentre of all the three 

points (close but different from P 2 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the planet being at infinite distance, where, exploiting results from [11–13] , the phase portrait of the system in the plane ( g,

G ) reveals only librational periodic motions. Physically, such motions correspond to the perihelion direction of the asteroidal

ellipse affording small oscillations about one equilibrium position, with the ellipse highly eccentric and periodically squeez-

ing to a segment. The movements are accompanied by a change of sense of motion every half–period. The purpose of this

paper is to highlight the onset of chaos in the full secular problem, when the planet is far and moves almost circularly. 

The Hamiltonian governing the motions of three point masses undergoing Newtonian attraction is, as well known, 

H = 

| y 0 | 2 
2 m 0 

+ 

| y 1 | 2 
2 μm 0 

+ 

| y 2 | 2 
2 κm 0 

− μm 

2 
0 

| x 0 − x 1 | −
κm 

2 
0 

| x 0 − x 2 | −
μκm 

2 
0 

| x 1 − x 2 | . (1.1) 

Here, x 0 , x 1 , x 2 and y 0 , y 1 , y 2 are, respectively, positions and impulses of the three particles relatively to a prefixed orthonor-

mal frame (i, j, k ) ⊂ R 

3 ; m 0 , m 1 = μm 0 , m 2 = κm 0 , with y i = m i ̇ x i , are their respective gravitational masses; | · | denotes the

Euclidean distance and the gravity constant has been taken equal to one, by a proper choice of the unit system. In the se-

quel, in accordance to our problem, we shall take x i , y i ∈ R 

2 × { 0 } � R 

2 and μ = 1 � κ, so that x 0 , x 1 correspond to the

position coordinates of the asteroids; x 2 is the planet. The Hamiltonian H is translation invariant, so we rapidly switch to a

translation–free Hamiltonian by applying the well known Jacobi reduction. We recall that this reduction consists of using,

as position coordinates, the centre of mass r 0 of the system (which moves linearly in time); the relative distance x of two

of the three particles; the distance x ′ of the third particle with respect to the centre of mass of the former two. Namely, 

r 0 = (x 0 + μx 1 + κx 2 )(1 + μ + κ) −1 , x = x 1 − x 0 x ′ = x 2 − (x 0 + μx 1 )(1 + μ) −1 . (1.2) 

Note that, under the choice of the masses specified above, we are choosing the asteroidal coordinate x 0 as the “starting

point” of the reduction. This reverses a bit the usual practice, as x 0 is most often chosen as the coordinate of the most

massive body; see Fig. 1 . At this point, the procedure is classical: the new impulses ( p 0 , y, y ′ ) are uniquely defined by the

constraint of symplecticity, with p 0 (“total linear momentum”) being proportional to the velocity of the barycentre. Choosing

(as it is possible to do) a reference frame centred at, and moving with, r 0 , so to have r 0 ≡ 0 ≡ p 0 , after a suitable rescaling,

one obtains (see Appendix A ) 

H = 

1 

2 m 0 

| y | 2 + 

σ

2 m 0 

| y ′ | 2 − m 

2 
0 

| x | −
m 

2 
0 σ

| x ′ + β̄x | −
β̄

β

m 

2 
0 σ

| x ′ − βx | , (1.3) 

with 

β = 

κ2 ( 1 + μ) 

μ2 ( 1 + μ + κ) 
, β = 

κ2 ( 1 + μ) 

μ( 1 + μ + κ) 
, σ = 

κ3 ( 1 + μ) 
2 

μ2 ( 1 + μ + κ) 
. (1.4) 

The choice κ 	 μ = 1 gives β = β̄ 	 1 and simplifies H to 

H = 

| y | 2 
2 m 0 

− m 

2 
0 

| x | + 

σ | y ′ | 2 
2 m 0 

− m 

2 
0 σ

| x ′ + βx | −
m 

2 
0 σ

| x ′ − βx | . (1.5) 

From now on, we regard β as mass parameter, with β ~ κ and σ ~ β2 . By choosing a region of the phase–space where 

| x ′ | > | βx | , (1.6) 

we ensure the denominators of the two last terms in (1.5) to be different from zero. The Hamiltonian (1.5) with x, x ′ , y ,

y ′ ∈ R 

2 , has 4–degrees–of–freedom (DoF , from now on), but is SO(2)–invariant. We choose a system of canonical coordinates

which reduces this symmetry and hence lowers the number of DoF to 3. If k = i × j is normal to the plane of the orbits, we

denote as 

C = x × y · k + x ′ × y ′ · k 
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the total angular momentum, which is a constant of the motion. Then we take a 3–DoF system of coordinates, which we

name (�, G, R, �, g, r) ∈ R 

3 × T 

2 × R , where ( �, G , � , g ) are “Delaunay coordinates for the asteroid, relatively to x ′ ”, while ( R,

r ) are “radial coordinates for the planet”. More precisely, they are defined as ⎧ ⎪ ⎨ 

⎪ ⎩ 

� = 

√ 

m 

3 
0 
a 

G = x × y · k 
� = 2 π S 

S tot 

g = αx ′ ,P 

, 

{
R = y ′ · x ′ 

| x ′ | 
r = | x ′ | (1.7)

where, considering the instantaneous ellipse generated by the first two terms in the Hamiltonian (1.5) , a is the semi–major

axis (see again Fig. 1 ), S and S tot are the area of the ellipse spanned from the perihelion P and the total area and αx ′ ,P is

the angle between the direction of x ′ and P relatively to the positive direction established by x × y . With these notations,

� represents the mean anomaly, G is the projection of the angular momentum of the asteroid on the direction of the unit

vector k and g is the anomaly of the perihelion P with respect to the direction of x ′ . Using the coordinates (1.7) , condition

(1.6) becomes 

ε < 

1 

2 

, ε := 

βa 

r 
(1.8)

as a body moving on an ellipse does not go further than twice the semi–axis from the focus of the ellipse. The canonical

character of the coordinates (1.7) has been discussed, in a more general setting, in [11] . In terms of the coordinates (1.7) ,

the Hamiltonian (1.5) reads 

H = − m 

5 
0 

2�2 
+ 

σ

2 m 0 

(
R 

2 + 

(G − C) 2 

r 2 

)
− σm 

2 
0 √ 

r 2 + 2 βarp + β2 a 2 
 

2 

− σm 

2 
0 √ 

r 2 − 2 βarp + β2 a 2 
 

2 
, (1.9)

where, for short, we have let 


 = 
 ( �, G, � ) = 1 − e cos ξ ( λ, G, � ) , p = p ( �, G, �, g ) = ( cos ξ − e ) cos g − G 

�
sin ξ sin g. 

Here, 

e = e (�, G ) = 

√ 

1 − G 

2 

�2 

is the eccentricity, and ξ = ξ (�, G, � ) denotes the eccentric anomaly, defined as the solution of Kepler’s equation 

ξ − e (�, G ) sin ξ = � . 

The next step is to switch to the 2–DoF � –averaged (hereafter, secular ) Hamiltonian, which we write as 

H̄ (G, R, g, r) = 

1 

2 π

∫ 
T 

H d � 

= − m 

5 
0 

2�2 
+ σK(R, r, G ) + σU(G, g, r) , (1.10)

with 

K(R, r, G ) := 

R 

2 

2 m 0 

+ 

(G − C) 2 

2 m 0 r 2 
− 2 m 

2 
0 

r 

U(G, g, r) := U + (G, g, r) + U −(G, g, r) + 

2 m 

2 
0 

r 
(1.11)

where 

U ±(G, g, r) := − m 

2 
0 

2 π

∫ 2 π

0 

d� √ 

r 2 ± 2 βarp + β2 a 2 
 

2 
. (1.12)

In (1.10) we have omitted to write � and C among the arguments of H̄ , as they now play the rôle of parameters. Observe

that the function U is π–periodic in g , as changing g with g + π corresponds to swap U + and U −, as one readily sees from

(1.9) –(1.12) . 

We do not provide rigorous bounds ensuring that the secular problem may be regarded as a good model for the full

problem. Heuristically, we expect that this is true as soon as (1.8) is strengthened requiring, also, 

r 	 β3 / 2 a. (1.13)
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Indeed, extracting r from the denominators of the two latter functions in (1.9) and expanding the resulting functions in

powers of βa 
r , one sees that the lowest order terms depending on � have size 

m 

2 
0 
σβa 

r 2 
∼ m 

2 
0 

β3 a 

r 2 
(recall that σ ~ β2 ). So, such

terms are negligible compared to the size 
m 

2 
0 

a of the Keplerian term, provided that (1.13) is verified. 

Neglecting the constant term − m 

5 
0 

2�2 and, after a further change of time, the common factor σ in the remaining terms,

the secular Hamiltonian (1.10) reduces to 

ˆ H (G, R, g, r) = K(R, r, G ) + U(G, g, r) . (1.14) 

We now specify the range of parameters C , � and β and the region of the phase space for the coordinates ( G, R, g, r ) that

we consider in this paper. In particular, we look for values of parameters and coordinates where the Hamiltonian (1.14) is

weakly coupled , and describe the motions we expect to find in such region. As above, our discussion will be extremely

informal. 

First of all, we take � and C verifying 

� � C . (1.15) 

This condition implies that also | G | � C (as | G | < �) and hence K affords the natural splitting K = K 0 + K 1 , where 

K 0 = 

R 

2 

2 m 0 

+ 

C 2 

2 m 0 r 2 
− 2 m 

2 
0 

r 
, K 1 = 

G ( G − 2 C ) 

2 m 0 r 2 
. 

We consider a region of phase–space where r and R take values 

r ∼ r 0 = 

C 2 

2 m 

3 
0 

, R ∼ 0 . (1.16) 

These are the values where K 0 attains its minimum, and correspond to circular motions of the planet, with r 0 being the

radius of the circle. In the region of phase space defined by (1.16) , the relative sizes of K 1 and U to K 0 are 

‖ K 1 ‖ < c 1 
�

C 
‖ K 0 ‖ , ‖ U ‖ < c 2 ε 

2 ‖ K 0 ‖ , (1.17) 

where c i are independent of m 0 , β , � and C . Even though (by (1.15) and (1.13) ) K 1 and U are small compared to K 0 ,

however, they cannot be neglected, as their sum governs the slow motions of the coordinates G and g , which do not appear

in K 0 . Remark that K 1 and U are coupled with K 0 , since they depend on r . It is however reasonable to expect that, as long

as the minimum of K 0 cages r to be close to the value r 0 , the coupling is weak and the dynamics of G and g is, at a first

approximation, governed by the 1–DoF Hamiltonian 

F(G, g) := (K 1 + U ) | r= r 0 . (1.18) 

To understand the global phase portrait of F in the plane ( g, G ), we need to recall some results from [13] . We go back to

the functions U ± in (1.12) , which enter in the definition of U . In [13, Section 3] , it is proved that, under the assumption (1.8) ,

the following identity holds 

U ±(G, g, r) = − m 

2 
0 

2 π r 

∫ 2 π

0 

(1 − cos ξ ) dξ√ 

1 ∓ ε(1 − cos ξ ) t ± + ε 2 (1 − cos ξ ) 2 
(1.19) 

with ε as in (1.8) and 

t ±(G, g, ε) := 

√ 

1 − G 

2 

�2 
cos g ± ε 

G 

2 

�2 
. 

The equality (1.19) has two main consequences. The former is that, even though the transformation (1.7) looses its mean-

ing when G = 0 , however, U ± keep their regularity, provided that (1.8) holds. Indeed, the functions t ± are regular at G = 0

and, being bounded below by −1 and above by 1, the denominator of the function under the integral never vanishes, under

(1.8) , as it is immediate to verify. Secondly, the phase portrait of the functions U + (·, ·, r) , U −(·, ·, r) coincides, a part for a

rescaling, with the one of t + (·, ·, ε) , t −(·, ·, ε) , respectively. In particular, U + (·, ·, r) and U −(·, ·, r) have elliptic equilibria at

(G, g) = (0 , 0) and (G, g) = (0 , π) , because this is true for t ±, as it is immediate to check. The phase portrait of t + (·, ·, ε)

for ε < 

1 
2 is shown in Fig. 2 (left); the one of t −(·, ·, ε) is specular, interchanging the equilibria. We now merge these infor-

mations, in order to build the phase portrait of the function F in (1.18) . By the Implicit Function Theorem, one can argue

that, for an open set of values of the parameters, due to the linear term in G in K 1 , the equilibria of U + and U − are shifted

along the G –axis, but are not destroyed. Quantifying this shift is not easy, as U has an involved dependence on t + , t −. Based

on the ε–expansion of U , with 

m 0 = 1 , C = 75 , � = 

√ 

a = 3 , β = 40 , (1.20) 

(which comply with (1.8) , (1.13) , (1.15) ) we obtain the phase portrait of F as in Fig. 2 (right). We observe that, at contrast

with the figure at left–hand side, where the motions are purely of elliptic kind, the phase portrait at right–hand side also
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Fig. 2. Left: the phase portrait of t + (·, ·, ε) in the plane ( g, G / �), for 0 < ε < 

1 
2 

. Right: the phase portrait of F in the plane ( g, G / �), with m 0 , C , � and β

as in (1.20) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

includes rotational motions. The linear term of K 1 is responsible of this fact, breaking the symmetry G → −G . We underline

at this respect that the present framework is in a sense complementary to the one studied in [13] , where the phase portrait

of F has, in fact, only elliptic motions: in that case, the linear term of K 1 does not exist, as C is fixed to 0. Remark also

that the vanishing of C in [13] affects condition (1.15) (which is not satisfied) and the motions generated by K 0 (which are

collisional, rather than circular). 

The purpose of this paper is to show that, if the parameters are chosen about (1.20) and the energy is fixed to the level

of a suitable initial datum ( G  , R  , g  , r  ) satisfying (1.16) (see Appendix B.1 for the exact values), then, in the system (1.14) a

topological horseshoe wakes up in the plane ( g, G / �). The analysis will be purely numerical, based on techniques developed

in [14] , [15] . More details on the methodological strategy are given along the following sections. 

2. Poincaré mapping 

From now on, we neglect to write the “hat” in (1.14) . Moreover, for the purposes of the computation, we replace the

function U with a finite sum 

U k = 

k ∑ 

ν=1 

q ν (G, g, r) 
(
β

a 

r 

)ν

(2.1)

where q ν ( G, g, r ) are the Taylor coefficients in the expansion of U with ν = 1 , . . . , k . Using the parity of U as a function of

r , these coefficients have the form 

q ν (G, g, r) = 

{
m 

2 
0 

r 

∑ ν/ 2 
p=0 

˜ q p (G ) cos (2 p g) if ν is even 

0 otherwise . 

In our numerical implementation, we use the truncation in (2.1) with k = k max = 10 , so as to balance accuracy and number

of produced terms. We still denote as H the resulting Hamiltonian: 

H(G, R, g, r) = K(G, R, r) + U k (G, g, r) 

= 

1 

2 m 0 

(
R 

2 + 

(G − C) 2 

r 2 

)
− 2 m 

2 
0 

r 
+ 

k ∑ 

ν=1 

q ν (G, g, r) 
(
β

a 

r 

)ν

. (2.2)

The study of the secular 2–DoF Hamiltonian in the continuous time t can be reduced to the study of a discrete mapping

through the introduction of ad–hoc Poincaré’s section [16] . The advantage consists in reducing further the dimensionality of

the phase–space, and, in the case of n = 2 , to sharpen the visualisation of the dynamical system. In fact, for a 2–DoF system,

the phase–space has dimension 4 and, due to the conservation of the energy (the Hamiltonian H itself), orbits evolve on

a three–dimensional manifold M . By choosing an appropriate surface � transverse to the flow, one can look at the inter-

sections of the orbits on the intersection of M ∩ �, i.e., a two–dimensional surface. The surface � chosen is a plan passing
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Fig. 3. The admissible points of the ( g, G ) section are displayed in cream colour. They correspond to points satisfying the energetic condition H = h  
with R 2 ≥ 0. The complementary set (points leading to negative R 2 ) appear in purple and define the inadmissible seeds . See text for more details. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

through a given point ( G  , g  , r  ) and normal to the associated orbit, i.e., to the velocity vector (v  
G 
, v  g , v  r ) ; it is defined by 

� = 

{
( G, g, r ) : v  G ( G − G  ) + v  g ( g − g  ) + v  r ( r − r  ) = 0 

}
. 

Let us now formally introduce the Poincaré map. We start by defining two operators l and π consisting in “lifting” the

initial two–dimensional seed z = (G, g) to the four–dimensional space ( G, R, g, r ) and “projecting” it back to plan after the

action of the flow–map �t 
H 

during the first return time τ . The lift operator reconstructs the four–dimensional state vector

from a seed on D × T / 2 , where the domain D of the variable G is a compact subset of the form [ −�, �] . For a suitable

(A , A ) ⊂ R 

2 × R 

2 , its definition reads 

l : D × T / 2 ⊃ A → D × T / 2 × A 

z �→ 

˜ z = l(z) , 

where ˜ z = (G, g, R, r) satisfies the two following conditions: 

1. Planarity condition. The triplet ( G, g, r ) belongs to the plane �, i.e., r solves the algebraic condition v  
G 
(G − G  ) + v  g (g −

g  ) + v  r (r − r  ) = 0 . 

2. Energetic condition. The component R solves the energetic condition H(G  , g  , R  , r  ) = h  . The Hamiltonian is separable in

R , so this condition amounts to solve a quadratic equation. If R 2 ≥ 0, then we choose the root associated to the “positive”

branch + 

√ 

R 2 . If R 2 < 0, then we are led to the notion of inadmissible seed . The set of admissible seeds, noted by A , for

the chosen section � is portrayed in Fig. 3 . 

The projector π is the projection onto the first two components of the vector, 

π : D × T / 2 × A → D × T / 2 

˜ z = (z 1 , z 2 , z 3 , z 4 ) �→ π(z) = (z 1 , z 2 ) . 

The Poincaré mapping is therefore defined and constructed as 

P : D × T / 2 → D × T / 2 

z �→ z ′ = P (z) = 

(
π ◦ �τ(z) 

H 

◦ l 
)
(z) . 

The mapping is nothing else than a “snapshots” of the whole flow at specific return time τ . It should be noted that the

successive (first) return time is in general function of the current seed (initial condition or current state), i.e., τ = τ ( ̃ z ) ,

formally defined (if it exists) as 

τ (z) = inf 

{ 

t ∈ R + , 
(
G (t ) , g(t ) , r(t ) 

)
∈ �

} 

, 

where ( G ( t ), g ( t ), r ( t )) is obtained though �t 
H 

(G, R, g, r) . The Poincaré return map we described has been constructed nu-

merically based on the numerical integration of the Hamiltonian equation of motions (the details regarding our numerical
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Fig. 4. Phase–space structures of the mapping P at different scales. Upper left: global phase–space; lower: microscales structures; upper right: the global 

phase–space analysis obtained by iterating the mapping P is confirmed by computing finite time chaos indicators based on the variational dynamics derived 

from the continuous model H. 

 

 

 

 

 

 

 

 

 

 

 

 

settings are presented in the Appendix B .) This mapping being now explicit, we are able to unveil the phase–space struc-

tures through successive iterations of P . Fig. 4 presents the successive coordinates of { P n ( z )} where the initial seeds z cover a

discretisation of D × T / 2 domain (mesh) and n ~ 10 3 . The phase–space structures can be roughly categorised in three distinct

zones. In the lower part, say for G < −2 , we can distinguish one “pic” centred around g = π/ 2 . One elliptic zone is immersed

inside this structure, surrounded by “scattered dots”, indicative of chaos. There is a large region of the phase–space foliated

by circulational tori. The last upper region is a large zone where almost all regular structures have disappeared. The panel

provided by Fig. 4 presents some magnifications of phase–space structures. The obtained phase–space structures have been

confirmed using a finite time dynamical chaos indicator, the Fast Lyapunov Indicator (FLI) computed with the whole flow

on an iso–energetic section (see Appendix C for more details). The FLIs computation relies on monitoring the growth over

time of the tangent vector under the action of the tangent flow–map ( variational dynamics ). The final FLIs values are colour

coded according to their values and projected onto the section to provide a stability chart. Stable orbits correspond to dark

regions, orbits possessing the sensitivity to initial conditions appear in reddish/yellow color. As shown in Fig. 4 , the FLIs



8 S. Di Ruzza, J. Daquin and G. Pinzari / Commun Nonlinear Sci Numer Simulat 91 (2020) 105414 

Fig. 5. Phase–space of P together with its fixed–points. Hyperbolic points appear with red crosses, elliptical points appear with blue circles. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

confirm nicely the global structures depicted via the mapping. Moreover, numeric suggests that the lift of P on the variables

( G, g, r ) ( i.e., the map obtained from �τ
H 

by projection on ( G, g, r )) is generically twist. 

2.1. Hyperbolic structures and heteroclinic intersections 

Equilibrium points of the mapping P ( i.e., periodic orbits of the Hamiltonian system (2.2) ), have been found using a New-

ton algorithm with initial guesses distributed on a resolved grid of initial conditions in D × T / 2 (again, see Appendix B for

more details regarding the numerical setup). We found more than 20 fixed points x  whose coordinates have been reported

in Appendix B.4 . The eigensystems associated to the fixed points have been computed to determine the local stability prop-

erties. The point x  is hyperbolic when one of its real eigenvalues has modulus greater than one, the other less than one

(expanding and contracting directions, respectively). In the case of complex eigenvalues, the point is elliptical. The result of

the analysis is displayed on Fig. 5 along with the following convention: hyperbolic fixed points appear as red crosses, el-

liptical points are marked with blue circles. As intuitively expected, the hyperbolic points are embedded within the chaotic

sea. On the contrary, the stable islands host the elliptic points. Note that even the fixed–point in the small stability island

has been recovered with the Newton scheme. In the vicinity of the unstable fixed–points, the dynamics is dominated by the

stable and unstable manifolds who have the eigenvectors of DP ( x  ) asymptotically tangents near x  . The local stable manifold

associated to an hyperbolic point x  , 

W 

s 
loc. ( x  ) = 

{ 

x 

∣∣∣ ‖ P n ( x ) − x  ‖→ 0 , n ∈ N + , n → ∞ 

} 

, 

can be grown by computing the images of a fundamental domain I ⊂ E s ( x  ), E s ( x  ) being the stable eigenspace associated

to the saddle point x  . We considered the simplest parametrisation of I , namely a normalised version of the eigenvector

associated to the saddle point x  . This allowed us to compute a piece of W 

s 
loc. 

(x  ) under the action of the flow–map [17,18] .

To compute the unstable manifold, the same computations are performed by reversing the time and changing E s by E u . Finite

pieces of those manifolds are presented in Fig. 6 for two saddle points. Following the well established conventions of the

cardiovascular system (as reported in [19] ), the stable manifolds are displayed with blue tones, unstable manifolds appear

in red tones. As we can observe, those curves intersect transversally forming the sets of heteroclinic points, trademark of

the heteroclinic tangle and chaos [20] . We now have at hands all the necessary ingredients and tools to prove the existence

of symbolic dynamics using covering relationships and their images under P . 

3. Symbolic dynamics via covering relations 

In this section we prove the existence of symbolic dynamics for the considered model. The tools rely on ad–hoc covering

relations that we present briefly following [14] , in particular for the case n = 2 . 
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Fig. 6. Finite pieces of manifolds of two hyperbolic fixed points q 1 , q 2 . Their stable and unstable manifolds intersect transversally in (more than one) 

heteroclinic points. Stable manifolds are in blue while unstable manifolds are in red. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

3.1. Covering relations and topological horseshoe 

Let us introduce some notations. Let N be a compact set contained in R 

2 and u (N) = s (N) = 1 being, respectively, the

exit and entry dimension (two real numbers such that their sum is equal to the dimension of the space containing N ); let

c N : R 

2 → R 

2 be an homeomorphism such that c N (N) = [ −1 , 1] 2 ; let N c = [ −1 , 1] 2 , N 

−
c = {−1 , 1 } × [ −1 , 1] , N 

+ 
c = [ −1 , 1] ×

{−1 , 1 } ; then, the two set N 

− = c −1 
N 

(N 

−
c ) and N 

+ = c −1 
N 

(N 

+ 
c ) are, respectively, the exit set and the entry set . In the case of

dimension 2, they are topologically a sum of two disjoint intervals. The quadruple ( N, u ( N ), s ( N ), c N ) is called a h–set and

N is called support of the h –set. Finally, let S(N) l c = (−∞ , −1) × R , S(N) r c = (1 , ∞ ) × R , and S(N) l = c −1 
N 

(S(N) l c ) , S(N) r =
c −1 

N 
(S(N) r c ) be, respectively, the left and the right side of N . The general definition of covering relation can be found in [14] .

Here we provide a simplified notion, suited to the case that N is two–dimensional, based on 

3 [15, Theorem 16] . 

Definition 3.1. Let f : R 

2 → R 

2 be a continuous map and N and M the supports of two h –sets. We say that M f –covers N

and we denote it by M 

f �⇒ N if: 

(1) ∃ q 0 ∈ [ −1 , 1] such that f (c N ([ −1 , 1] × { q 0 } )) ⊂ int (S(N) l 
⋃ 

N 

⋃ 

S(N) r ) , 

(2) f (M 

−) 
⋂ 

N = ∅ , 
(3) f (M) 

⋂ 

N 

+ = ∅ . 

Conditions (2) and (3) are called, respectively, exit and entry condition . 

The case of self–covering is not excluded. The Fig. 7 shows two schematic examples of covering relation between two

different sets N, M and a self–covering relation of N . The notions of covering relationships are useful in defining topological

horseshoe (confer [14,15] ). 

Definition 3.2. Let N 1 and N 2 be the supports of two disjoint h –sets in R 

2 . A continuous map f : R 

2 → R 

2 is said to be a

topological horseshoe for N 1 and N 2 if 

N 

f �⇒ N , N 

f �⇒ N , N 

f �⇒ N , N 

f �⇒ N . 
1 1 1 2 2 1 2 2 

3 More precisely, Definition 3.1 is based on the proof of [15, Theorem 16] . Indeed, [15, Theorem 16] asserts that under conditions (1), (3) and one of the 

inclusions in [15, (78) or (79)] , one has M 

f �⇒ N in the sense of [14] . However, during the proof of [15, Theorem 16] , inclusions [15, (78) or (79)] are only 

used to check the validity of (2). 
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Fig. 7. Examples of covering relations. On the left M 

f �⇒ N. On the right, a case of self–covering N 
f �⇒ N is illustrated. In red the entry sets and their 

images are represented, while in blue the exit sets and their images are represented. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 8. An example of topological horseshoe where both N 1 , N 2 cover themselves and each others. In red tones the entry sets and their images are 

represented, while in blue tones the exit sets and their images are represented. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

Topological horseshoes are associated to symbolic dynamics as presented in Theorem 2 in [14] and Theorem 18 in [15] ,

where the authors show that the existence of a horseshoe for a map f provides a semi–conjugacy between f and a shift map

{ 0 , 1 } Z , meaning that for any sequence of symbols 0 and 1 there exists an orbit generated by f passing through the sets N 1 

and N 2 in the order given by the sequence, guaranteeing the existence of “any kind of orbit” (periodic orbits, chaotic orbits,

etc.). 

From the Definition 3.1 , the covering relation N 1 
P �⇒ N 2 is verified if the three following conditions are satisfied: 

1. The image P ( N 1 ) of N 1 lies in the strip between the top and the bottom edges of N 2 , 

2. The image of the left part of N 

−
1 

lies on the left of N 2 , 

3. The image of the right part of N 

−
1 

lies on the right of N 2 ; 

the conditions can be easily checked in Fig. 8 and, then, in Fig. 9 . 

3.2. Existence of a topological horseshoe 

In this section we describe how we construct explicitly a topological horseshoe for the Poincaré map of the Hamilto-

nian (1.10) . 

We start by considering one hyperbolic fixed point q for the Poincaré map P and we denote by v s and v u , respectively,

the stable and the unstable eigenvectors related to DP ( q ). We construct a parallelogram N containing q whose edges are

parallel to v s and v u and thus we define N as 

N = q + A v s + B v u , 

where A and B are suitable chosen closed real intervals. If the intervals A and B are sufficiently small, under the action

of the map P , the parallelogram N will be contracted in the stable direction and expanded in the unstable direction. We

denote by P ( N ) the image of N through the map P . In practice, we choose two hyperbolic fixed points q 1 and q 2 having the

important property of transversal intersection of their stable and unstable manifolds as shown in Fig. 6 . This property is a

good indication of the existence of a topological horseshoe. Based on this couple of fixed points whose coordinates read {
q 1 = (g 1 , G 1 ) = (0 . 203945459 , 2 . 06302430) , 
q 2 = (g 2 , G 2 ) = (0 . 278077917 , 2 . 21418596) , 
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Fig. 9. Horseshoe connecting the points q 1 and q 2 proving symbolic dynamics for the map P . Red represents the entry sets and their images and blue the 

exit sets and their images. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

we define two sets N 1 , N 2 ⊂ R 

2 which are supports of two h –sets as follows: {
N 1 = q 1 + A 1 v s 1 + B 1 v u 1 , 

N 2 = q 2 + A 2 v s 2 + B 2 v u 2 , 

where {
A 1 = [ −0 . 02 , 0 . 08] ⊂ R , B 1 = [ −0 . 025 , 0 . 01] ⊂ R , 

A 2 = [ −0 . 075 , 0 . 025] ⊂ R , B 2 = [ −0 . 02 , 0 . 01] ⊂ R , 

and v s 
1 
, v u 

1 
, v s 

2 
, v u 

2 
are the stable and the unstable eigenvectors related to q 1 , q 2 , respectively. Then the following covering

relations hold 

N 1 
P �⇒ N 1 , N 1 

P �⇒ N 2 , N 2 
P �⇒ N 1 , N 2 

P �⇒ N 2 , 

proving the existence of a topological horseshoe for P, i.e., existence of symbolic dynamics for P . The obtained horseshoe

associated to q 1 and q 2 with the aforementioned parameters is illustrated in Fig. 9 , providing the existence of symbolic

dynamics. 

4. Conclusions and open problems 

This work originates from [11] , where it has been pointed out that the average U + (1.12) of the Newtonian potential with

respect to one of the two mean anomalies is an integrable function which in turn may be written as a function of another

function t + , whose dynamics is completely known. The functional dependence (1.19) between these two functions, holding

in the case of the planar problem, has been pointed out in [13, Section 3] . The identity (1.19) raises the very natural question

whether and at which extent such relation has a consequence on the dynamics of the three–body problem. Giving an answer

to such question is in fact demanding, as it requires to understand whether it is possible to find a region of phase space

where the three–body Hamiltonian is well represented by its simple average (here “simple average” is used as opposite to

“double average”, most often encountered in the literature, e.g., [5] ) and, simultaneously, the kinetic term K in (1.11) does

not interfere with U too much. In [13] it has been proved that if the total angular momentum C of the system vanishes, by

symmetry reasons, and using a well–suited perturbation theory, the librational motions of t + reported in Fig. 2 (left) have

a continuation in the averaged three–body problem. In this paper we investigated the case C � = 0. With purely pioneering

spirit, in order to simplify the analysis, we focused on the very peculiar situation where the two minor bodies have equal

mass and we fixed an energy level once forever. We believe that both such choices can be removed without affecting the

results too much, because, as informally discussed in the introduction, what really matters is the relative weight of K and

U . Figs. 2 and 4 not only show that, in our simplified model, this continuation is numerically evident, but also exhibit the
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onset of chaos in certain zones, clearly highlighted along the paper using techniques of [14] . Even though the results are

encouraging, many questions are still pending (some of them have been pointed out in [13] ), and we aim to face them in

the future: 

(Q 1 ) If C � = 0, is there a choice of parameters and phase space where the phase portrait of F includes only librational

motions? 

(Q 2 ) In the case that the orbit of the planet is inner to the one of the asteroids, the phase portrait of U + includes a saddle

and a separatrix through it (see [13, Figures 1, 2 and 3] ). How does this affect the three–body problem motions? 

(Q 3 ) By [11] , relation (1.19) has a generalisation to the spatial problem. What are the consequences on the spatial three–

body problem? 

(Q 4 ) Is the onset of chaos in the averaged problem present also in the full (non–secular) system? 

(Q 5 ) What can we prove analytically? 

(Q 6 ) What can we prove with computer–assisted techniques? 
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Appendix A. The Hamiltonian 

The impulses p 0 , y, y ′ conjugated to r 0 , x, x ′ in (1.2) are 

p 0 = y 0 + y 1 + y 2 y = y 1 + 

μ

1 + μ
y 2 − μ

1 + μ
p 0 y ′ = y 2 − κ

1 + μ + κ
p 0 . (A.1) 

If r 0 ≡ 0 ≡ p 0 , the transformation of coordinates defined by (1.2) and (A.1) reduces to the injection ⎧ ⎨ 

⎩ 

x 0 = − μ
1+ μ x − κ

1+ μ+ κ x ′ 
x 1 = 

1 
1+ μ x − κ

1+ μ+ κ x ′ 

x 2 = 

1+ μ
1+ μ+ κ x ′ 

, 

⎧ ⎨ 

⎩ 

y 0 = −y − 1 
1+ μ y ′ 

y 1 = y − μ
1+ μ y ′ 

y 2 = y ′ 

and the Hamiltonian (1.1) becomes 

H = 

1 + μ

2 μm 0 

| y | 2 + 

1 + μ + κ

2(1 + μ) κm 0 

| y ′ | 2 − μm 

2 
0 

| x | − κm 

2 
0 

| x ′ + 

μ
μ+1 

x | −
μκm 

2 
0 

| x ′ − 1 
μ+1 

x | . 

Rescaling the coordinates via 

x → (1 + μ) x y → 

μ

1 + μ
y x ′ → β−1 x ′ y ′ → μβy ′ , 

with β as in (1.4) and multiplying the Hamiltonian H by (1 + μ) /μ, we obtain H as in (1.3) . 

Appendix B. Numerical setups and results 

B1. Choice of the parameters 

The analysis we have done is related to the choice of parameters and initial data we started with. The Hamiltonian

(1.10) is composed by three parts 

H = H 0 + σK + σU =: H 0 + P, 
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where the first one is the unperturbed and constant part depending on �, the second one represents the kinetic part and

the third is the perturbing part. To ensure the non–resonant terms of P to be small with respect to H 0 we choose, as

mentioned in the introduction, ⎧ ⎪ ⎨ 

⎪ ⎩ 

m 0 = 1 , 

β = 40 , 

C = 75 . 597 

� = 3 . 099 . 

The initial datum is taken to be ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

G  = −2 . 4915 , 

R  = −0 . 0039 , 

g  = 1 . 4524 , 

r  = 3132 . 069 . 

Note that R  and r  verify (1.16) but are not exactly centred at 0 and r 0 because the r –component of the Hamiltonian vector–

field vanishes for R = 0 , while it needs to be different from zero in order that the Poincaré map is well defined. The values

of G  and g  have been empirically chosen such that the orbit from ( G  , R  , g  , r  ) is approximately periodic and hence the

Poincaré map is well defined. 

B2. Flow 

The Hamiltonian equations of motion have been numerically propagated using a fixed time–step RK4 method [21] . Even

though the step has been kept fixed, no numerical issues have been encountered and the integration times were reasonable

for the whole numeric exploration. 

Under the choice of our time–step δ, the flow–map preserves the Hamiltonian itself, a conserved quantity ( first integral ),

with a relative error of about 10 −14 for stable orbits and 10 −12 for chaotic orbits on a arc length of about τ ~ 10 2 orbital

revolutions. Besides the first integral being numerically well preserved, the quality of the integration has been assessed

further using a forwards/backwards strategy. The method consists in propagating forwards in time (say on [0, τ ]) the Cauchy

problem 

{
˙ x = v H 

(x ) , 
x (0) = x 0 , 

and then to back–propagate (from τ to 0) the new Cauchy problem {
˙ x = v H 

(x ) , 

where the initial seed x τ is obtained from the forward numerical flow–map, x τ = �τ (x 0 ) . Then the relative error 

� = 

∥∥x 0 − �−τ
(
�τ (x 0 ) 

)∥∥
‖ 

x 0 ‖ 

is estimated. On a selection of orbits, we found � to be of the order of 10 −12 for regular orbits, 10 −8 for chaotic orbits on

timescale of about 10 2 orbital revolutions. 

B3. Poincaré mapping P 

The construction of the Poincaré map P is based on the time evolution of the whole flow and a bisection procedure.

Given an initial point z , to find its next state z ′ = P (z) we compute x (t) = �t (x 0 ) , x = l(z) , until following conditions are

met: 

1. Section condition : X = (x 1 (t) , x 2 (t) , x 4 (t)) ∈ � up to a numerical tolerance ε � = 10 −10 . This step relies on a bisection

method halving the length of the numerical step δ until we drop under the tolerance ε� . 

2. Orientation condition : The scalar product ˙ X (0) · ˙ X (t) is positive, meaning that the orbit is intersecting the plan � in the

same direction as the starting point. 
3. First-return condition : for τ < t , neither (1) and (2) are fulfilled. 
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B4. Coordinates of the fixed–points of P 

Below we provide the coordinates of the fixed–points of P (periodic orbits of H). 

Appendix C. The Fast Lyapunov Indicator & dynamical timescales 

The Fast Lyapunov Indicator (FLI) is an easily implementable tool suited to detect phase–space structures and local diver-

gence of nearby orbits. It has a long–lasting tradition with problems motivated by Celestial Mechanics [22] . The indicator can

be used in the context of deterministic ODEs, mappings, and is able to detect manifolds and global phase–space structures

[23–25] . A large literature exists with the FLI tested on idealised systems ( e.g., low dimensional quasi–integrable Hamilto-

nian system [23,26] , drift in volume–preserving mappings [27] ) but also on many applied gravitational problems across a

variety of scales, ranging from the near–Earth space environment [28] to exoplanetary systems [29] . For simplicity, let us

present the tool in the case of ODEs. Let us assume we are dealing with a n –dimensional autonomous ODE system. If the

system is non–autonomous, we classically extend the dimension of the phase–space by 1 dimension. The FLI indicator is

based on the variational dynamics in R 

2 n , {
˙ x = f ( x ) 

˙ w = Df ( x ) · w, 

w ∈ T x M , and is defined at time t as 

FLI (x 0 , w 0 , t) = sup 0 ≤τ≤t log ‖ 

w (τ ) ‖ 

. (C.1) 

The FLI is able to distinguish quickly the nature of the orbit emanating from x 0 . Orbits containing the germ of hyperbolicity

will have their final FLI values larger than regular orbit (for the same horizon time τ ). More precisely, chaotic orbits will

display a linear growth (with respect to time) of their FLIs, whilst regular orbits have their FLIs growing logarithmically. In

order to reduce the parametric dependence of the FLIs upon the choice of the initial tangent vector, the FLIs are computed

over an orthonormal basis of the tangent space ( i.e., we compute Eq. (C.1) 4 times with a different initial w ) and averaged
0 
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Fig. 10. On the left: calibration of the finite time chaos indicators (FLI) for three distinct orbits. After a transient time of about t ~ 5, 0 0 0 ( i.e., ~ 10 orbital 

revolutions) the discrimination of the nature of the orbits is sharp enough. On the right: time evolution of the maximal Lyapunov exponents χ . For chaotic 

orbits, they define Lyapunov timescales of about 0.76 orbital revolutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[26] . As a rule of thumb, the FLI is computed over a few Lyapunov times τL , but in practice, the choice of the final τ re-

quires a calibration procedure by testing few orbits. By computing FLIs on discretised domains of initial conditions, the color

coding of the FLIs (using a divergent color palette) reveals the global topology of the phase–space ( e.g., web of resonances

and preferred routes of transport, see [26] ) furnishing a so–called stability map . The Lyapunov time τL is obtained as the

inverse of the maximal Lyapunov characteristic exponent (we refer to [30] for computational aspects related to characteristic

exponents), 

τL = 1 /χ, 

where χ denotes the maximal Lyapunov characteristic exponent 

χ(x 0 , w 0 ) = lim 

t→ + ∞ 

1 

t 
log ‖ 

w (t) ‖ 

. 

Stable orbits do satisfy χ → 0 and hence τL tends to be large. On the contrary, chaotic orbits are characterised by

χ → r ∈ R 

 + and therefore τL converges to a finite value. The panel shown in Fig. 10 presents the calibration procedure

based on three orbits. The stable orbit displayed in black (logarithmic growth of the FLI) admits for initial condition

(G, g) = (−2 , π) . The two others orbits are chaotic but one (red) is less hyperbolic than the other (blue). The respective

initial conditions read (G, g) = (−2 , 1 . 6) and (G, g) = (2 , π) . As it is observed, after a transient time of about t ~ 5, 0 0 0 ( i.e.,

10 orbital revolutions), safe conclusions can be formulated regarding the stability of the orbits (left panel). The respective

maximal Lyapunov characteristic exponents are presented in the right panel of Fig. 10 . The inverse, the Lyapunov time, de-

fines timescales of ~ 380 for the most chaotic one (which is about 0.76 revolutions) and ~ 1, 100 for the second chaotic

one (2.2 orbital revolutions). 

References 

[1] Chierchia L, Gallavotti G. Drift and diffusion in phase space. Ann Inst H Poincaré Phys Théor 1994;60(1):144 . http://www.numdam.org/item?id=AIHPA _

1994 _ 60 _ 1 _ 144 _ 0 . 
[2] Paez RI, Locatelli U. Trojan dynamics well approximated by a new hamiltonian normal form. Monthly Notices of the Royal Astronomical Society

2015;453(2):2177–88. doi: 10.1093/mnras/stv1792 . https://academic.oup.com/mnras/article-pdf/453/2/2177/3962292/stv1792.pdf . 

[3] Arnold V . Small denominators and problems of stability of motion in classical and celestial mechanics. Russian Math Surveys 1963;18(6):85–191 . 
[4] Féjoz J . Démonstration du ‘théorème d’Arnold’ sur la stabilité du système planétaire (d’après Herman). Ergodic Theory Dynam Systems

2004;24(5):1521–82 . 
[5] Laskar J , Robutel P . Stability of the Planetary Three-Body Problem. I. Expansion of the Planetary Hamiltonian. Celestial Mech Dynam Astronom

1995;62(3):193–217 . 
[6] Pinzari G . On the Kolmogorov set for many–body problems. Università Roma Tre; 2009. Ph.D. thesis . 

[7] Chierchia L, Pinzari G. The planetary N -body problem: symplectic foliation, reductions and invariant tori. Invent Math 2011;186(1):1–77. doi: 10.1007/

s00222- 011- 0313- z . 
[8] Giorgilli A, Locatelli U, Sansottera M. Secular dynamics of a planar model of the Sun-Jupiter-Saturn-Uranus system; effective stability in the light of

Kolmogorov and Nekhoroshev theories. Regular and Chaotic Dynamics 2017;22(1):54–77. doi: 10.1134/S156035471701004X . 
[9] Volpi M, Locatelli U, Sansottera M. A reverse KAM method to estimate unknown mutual inclinations in exoplanetary systems. Celestial Mechanics and

Dynamical Astronomy 2018;130(5):36. doi: 10.1007/s10569- 018- 9829- 5 . 
[10] Féjoz J, Guardia M. Secular instability in the three-body problem. Arch Ration Mech Anal 2016;221(1):335–62. doi: 10.10 07/s0 0205- 015- 0962- y . 

http://www.numdam.org/item?id=AIHPA_1994_60_1_144_0
https://doi.org/10.1093/mnras/stv1792
https://academic.oup.com/mnras/article-pdf/453/2/2177/3962292/stv1792.pdf
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0003
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0003
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0004
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0004
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0005
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0005
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0005
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0006
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0006
https://doi.org/10.1007/s00222-011-0313-z
https://doi.org/10.1134/S156035471701004X
https://doi.org/10.1007/s10569-018-9829-5
https://doi.org/10.1007/s00205-015-0962-y


16 S. Di Ruzza, J. Daquin and G. Pinzari / Commun Nonlinear Sci Numer Simulat 91 (2020) 105414 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[11] Pinzari G . A first integral to the partially averaged newtonian potential of the three-body problem. Celestial Mechanics and Dynamical Astronomy
2019;131(5):22 . 

[12] Pinzari G. Euler integral and perihelion librations. Discrete and continuous dynamical systems 2020. doi: 10.3934/dcds.2020165 . 
[13] Pinzari G. Perihelion Librations in the Secular Three–Body Problem. J Nonlinear Sci 2020;30(4):1771–808. doi: 10.10 07/s0 0332- 020- 09624- x . 

[14] Gierzkiewicz A , Zgliczy ́nski P . A computer-assisted proof of symbolic dynamics in hyperions rotation. Celestial Mechanics and Dynamical Astronomy
2019;131(7):33 . 

[15] Zgliczynski P , Gidea M . Covering relations for multidimensional dynamical systems. J Differ Equ 2004;202(1):32–58 . 

[16] Meiss J . Symplectic maps, variational principles, and transport. Rev Mod Phys 1992;64(3):795 . 
[17] Simó C . On the analytical and numerical approximation of invariant manifolds.. In: Les Méthodes Modernes de la Mécanique Céleste. Modern methods

in celestial mechanics; 1990. p. 285–329 . 
[18] Krauskopf B , Osinga HM , Doedel EJ , Henderson ME , Guckenheimer J , Vladimirsky A , et al. A survey of methods for computing (un) stable manifolds of

vector fields. In: Modeling And Computations In Dynamical Systems: In Commemoration of the 100th Anniversary of the Birth of John von Neumann.
World Scientific; 2006. p. 67–95 . 

[19] Meiss J . Visual explorations of dynamics: the standard map. Pramana 2008;70(6):965–88 . 
[20] Morbidelli A. Modern celestial mechanics: aspects of solar system dynamics. London: Taylor & Francis; 2002 . https://ui.adsabs.harvard.edu/abs/

2002mcma.book.....M . 

[21] Press WH , Teukolsky SA , Flannery BP , Vetterling WT . Numerical recipes in Fortran 77: volume 1, volume 1 of Fortran numerical recipes: the art of
scientific computing. Cambridge university press; 1992 . 

[22] Froeschlé C , Lega E , Gonczi R . Fast Lyapunov indicators. application to asteroidal motion. Celestial Mechanics and Dynamical Astronomy
1997;67(1):41–62 . 

[23] Froeschlé C , Guzzo M , Lega E . Graphical evolution of the arnold web: from order to chaos. Science 20 0 0;289(5487):2108–10 . 
[24] Guzzo M , Lega E . Evolution of the tangent vectors and localization of the stable and unstable manifolds of hyperbolic orbits by Fast Lyapunov Indica-

tors. SIAM J Appl Math 2014;74(4):1058–86 . 

[25] Lega E , Guzzo M , Froeschlé C . Theory and applications of the Fast Lyapunov Indicator (FLI) method. In: Chaos Detection and Predictability. Springer;
2016. p. 35–54 . 

[26] Guzzo M , Lega E . The numerical detection of the arnold web and its use for long-term diffusion studies in conservative and weakly dissipative systems.
Chaos: An Interdisciplinary Journal of Nonlinear Science 2013;23(2):023124 . 

[27] Guillery N , Meiss JD . Diffusion and drift in volume-preserving maps. Regular and Chaotic Dynamics 2017;22(6):700–20 . 
[28] Daquin J, Gkolias I, Rosengren AJ. Drift and its mediation in terrestrial orbits. Frontiers in Applied Mathematics and Statistics 2018;4:35. doi: 10.3389/

fams.2018.0 0 035 . 

[29] Paez RI , Efthymiopoulos C . Trojan resonant dynamics, stability, and chaotic diffusion, for parameters relevant to exoplanetary systems. Celestial Me-
chanics and Dynamical Astronomy 2015;121(2):139–70 . 

[30] Skokos C . The Lyapunov Characteristic Exponents and Their Computation. In: Dynamics of Small Solar System Bodies and Exoplanets. Springer; 2010.
p. 63–135 . 

http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0011
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0011
https://doi.org/10.3934/dcds.2020165
https://doi.org/10.1007/s00332-020-09624-x
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0014
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0014
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0014
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0015
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0015
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0015
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0016
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0016
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0017
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0017
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0018
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0018
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0018
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0018
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0018
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0018
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0018
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0018
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0019
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0019
https://ui.adsabs.harvard.edu/abs/2002mcma.book.....M
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0021
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0021
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0021
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0021
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0021
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0022
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0022
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0022
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0022
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0023
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0023
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0023
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0023
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0024
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0024
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0024
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0025
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0025
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0025
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0025
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0026
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0026
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0026
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0027
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0027
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0027
https://doi.org/10.3389/fams.2018.00035
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0029
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0029
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0029
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0030
http://refhub.elsevier.com/S1007-5704(20)30245-8/sbref0030

	Symbolic dynamics in a binary asteroid system
	1 Purpose of the paper
	2 Poincaré mapping
	2.1 Hyperbolic structures and heteroclinic intersections

	3 Symbolic dynamics via covering relations
	3.1 Covering relations and topological horseshoe
	3.2 Existence of a topological horseshoe

	4 Conclusions and open problems
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A The Hamiltonian
	Appendix B Numerical setups and results
	B1 Choice of the parameters
	B2 Flow
	B3 Poincaré mapping P
	B4 Coordinates of the fixed-points of P

	Appendix C The Fast Lyapunov Indicator & dynamical timescales
	References


