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Abstract: In this paper we analyze the bias in a general linear least-squares parameter estimation
problem, when it is caused by deterministic variables that have not been included in the model.
We propose a method to substantially reduce this bias, under the hypothesis that some a-priori
information on the magnitude of the modelled and unmodelled components of the model is known.
We call this method Unbiased Least-Squares (ULS) parameter estimation and present here its essential
properties and some numerical results on an applied example.
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1. Introduction

The well known least-squares problem [1], very often used to estimate the parameters of
a mathematical model, assumes an equivalence between a matrix-vector product Ax on the left,
and a vector b on the right hand side: the matrix A is produced by the true model equations, evaluated
at some operating conditions, the vector x contains the unknown parameters and the vector b are
measurements, corrupted by white, Gaussian noise. This equivalence cannot be satisfied exactly, but the
least-squares solution yields a minimum variance, maximum likelihood estimate of the parameters
x, with a nice geometric interpretation: the resulting predictions Ax are at the minimum Euclidean
distance from the true measurements b and the vector of residuals is orthogonal w.r.t. the subspace of
all possible predictions.

Unfortunately, each violation of these assumptions produces in general a bias in the estimates.
Various modifications have been introduced in the literature to cope with some of them: mainly, colored
noise on b and/or A due to model error and/or colored measurement noise. The model error is often
assumed as an additive stochastic term in the model, e.g., error-in-variables [2,3], with consequent
solution methods like Total Least-Squares [4] and Extended Least-Squares [5], to cite a few. All these
techniques let the model to be modified to describe, in some sense, the model error.

Here, instead, we assume that the model error depends from deterministic variables in a way that
has not been included in the model, i.e., we suppose to use a reduced model of the real system, as it is
often the case in applications. In this paper we propose a method to cope with the bias in the parameter
estimates of the approximate model by exploiting the geometric properties of least-squares and using
small additional a-priori information about the norm of the modelled and un-modelled components of
the system response, available with some approximation in most applications. To eliminate the bias
on the parameter estimates we perturb the right-hand-side without modifying the reduced model,
since we assume it describes accurately one part of the true model.

2. Model Problem

In applied mathematics, physical models are often available, usually rather precise at describing
quantitatively the main phenomena, but not satisfactory at the level of detail required by the application
at hand. Here we refer to models described by differential equations, with ordinary and/or partial
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derivatives, commonly used in engineering and applied sciences. We assume, therefore, that there are
two models at hand: a true, unknown modelM and an approximate, known modelMa. These models
are usually parametric and they must be tuned to describe a specific physical system, using a-priori
knowledge about the application and experimental measurements. Model tuning, and in particular
parameter estimation, is usually done with a prediction error minimization criterion that makes the
model response to be a good approximation of the dynamics shown by the measured variables used
in the estimation process. Assuming that the true modelM is linear in the parameters that must be
estimated, the application of this criterion brings to a linear least-squares problem:

x̄ = argmin
x′∈Rn

‖Ax′ − f̄ ‖2, (1)

where, from here on, ‖·‖ is the Euclidean norm, A ∈ Rm×n is supposed full rank rank(A) = n, m ≥ n,
x̄ ∈ Rn×1, Ax′ are the model response values and f̄ is the vector of experimental measurements.
Usually the measured data contain noise, i.e., we measure f = f̄ + ε, with ε a certain kind of additive
noise (e.g., white Gaussian). Since we are interested here in algebraic and geometric aspects of the
problem, we suppose ε = 0 and set f = f̄ . Moreover, we assume ideally that f̄ = Ax̄ holds exactly.
Let us consider also the estimation problem for the approximate modelMa:

x‖ = argmin
x′∈Rna

‖Aax′ − f̄ ‖2, (2)

where Aa ∈ Rm×na , x‖ ∈ Rna×1, with na < n. The choice of the notation for x‖ is to remind that the
least-squares solution satisfies Aax‖ = PAa( f ) =: f ‖, where f ‖ is the orthogonal projection of f̄ on the
subspace generated by Aa, and the residual Aax‖ − f̄ is orthogonal to this subspace. Let us suppose
that Aa corresponds to the first na columns of A, which means that the approximate modelMa is
exactly one part of the true modelM, i.e., A = [Aa, Au] and so the solution x̄ of (1) can be decomposed
in two parts such that

Ax̄ = [Aa, Au]

[
x̄a

x̄u

]
= Aa x̄a + Au x̄u = f̄ . (3)

This means that the model error corresponds to an additive term Au x̄u in the estimation problem.
Note that the columns of Aa are linearly independent since A is supposed to be of full rank. We do

not consider the case in which Aa is rank-deficient, because it would mean that the model is not well
parametrized. Moreover, some noise in the data is sufficient to determine a full rank matrix.

For brevity, we will call A the subspace generated by the columns of A and Aa, Au the
subspaces generated by the columns of Aa, Au respectively. Note that if Aa and Au were orthogonal,
decomposition (3) would be orthogonal. However, in the following we will consider the case in which
the two subspaces are not orthogonal, as it commonly happens in practice. Oblique projections, even if
not as common as orthogonal ones, have a large literature, e.g., [6,7].

Now, it is well known and easy to demonstrate that, when we solve problem (2) and Au is not
orthogonal to Aa, we get a biased solution, i.e., x‖ 6= x̄a:

Lemma 1. Given A ∈ Rm×n with n ≥ 2 and A = [Aa, Au], and given b ∈ Rm×1 6∈ Im(Aa), call x the
least-squares solution of (2) and x̄ = [x̄a, x̄u] the solution of (1) decomposed as in (3). Then

(i) if Au ⊥ Aa then x‖ = x̄a,
(ii) if Au 6⊥ Aa then x‖ 6= x̄a.

Proof. The least-squares problem Ax = f boils down to finding x such that Ax = PAa( f ). Let us
consider the unique decomposition of f on Aa and A⊥a as f = f ‖ + f⊥ with f ‖ = PAa( f ) and
f⊥ = PA⊥a ( f ). Call f = fa + fu the decomposition on Aa and Au, hence there exist two vectors
xa ∈ Rna , xu ∈ Rn−na such that fa = Aaxa and fu = Auxu. If Au ⊥ Aa then the two decompositions
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are the same, hence f ‖ = fa and so x‖ = x̄a. Otherwise, for the definition of orthogonal projection ([6],
third point of Def at page 429), it must hold x‖ 6= x̄a.

3. Analysis of the Parameter Estimation Error

The aim of this paper is to propose a method to decrease substantially the bias of the solution of
the approximated problem (2), with the smallest additional information about the norms of the model
error and of the modelled part responses.

In this section we will introduce sufficient conditions to remove the bias and retrieve the true
solution in a unique way, as summarized in Lemma 4. Let us start with a definition.

Definition 1 (Intensity Ratio). The intensity ratio I f between modelled and un-modelled dynamics is defined as

I f =
‖Aaxa‖
‖Auxu‖

.

In the following we assume that a good approximation of this intensity ratio is available and
that its magnitude is sufficiently big, i.e., we have an approximate model that is quite accurate.
This information about the model error will be used to reduce the bias, as shown in the following
sections. Moreover we will consider also the norm N f = ‖Aaxa‖ (or, equivalently, the norm ‖Auxu‖).

3.1. The Case of Exact Knowledge about I f and N f

Here we assume, initially, to know the exact values of I f and N f , i.e.,N f = N̄ f = ‖Aa x̄a‖,
I f = Ī f =

‖Aa x̄a‖
‖Au x̄u‖ .

(4)

This ideal setting is important to figure out the problem also with more practical assumptions.
First of all, let us show a nice geometric property that relates xa and fa under a condition like (4).

Lemma 2. The problem of finding the set of xa ∈ Rn that give a constant, prescribed value for I f and N f is
equivalent to that of finding the set of fa = Aaxa ∈ Aa of the decomposition f = fa + fu (see the proof of
Lemma 1) lying on the intersection of Aa and the boundaries of two n-dimensional balls in Rn. In fact, it holds:N f = ‖Aaxa‖

I f =
‖Aaxa‖
‖Auxu‖

⇐⇒
{

fa ∈ ∂Bn(0, N f )

fa ∈ ∂Bn( f ‖, Tf )
with Tf :=

√√√√(N f

I f

)2

− ‖ f⊥‖2. (5)

Proof. For every xa ∈ Rna holds,

N f = ‖ fa‖ = ‖Aaxa‖
I f =

‖ fa‖
‖ fu‖ =

N f

‖ f⊥u + f ‖u ‖
=

N f√
‖ f⊥‖2+‖ f ‖−Aaxa‖2

=
N f√

‖ f⊥‖2+‖ f ‖− fa‖2

⇐⇒ (6)

⇐⇒


‖ fa‖ = N f

‖ f ‖ − fa‖ =
√(N f

I f

)2
− ‖ f⊥‖2 =: Tf ,

(7)

where we used the fact that fu = f ‖u + f⊥u with f⊥u := PA⊥a
( fu) = f⊥, f ‖u := PAa( fu) = Aaδxa =

f ‖ − Aaxa, and δxa = (x‖ − xa). Hence the equivalence (5) is proved.
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Given I f and N f , we call the feasible set of accurate model responses all the fa that satisfy the
relations (5). Now we will see that Lemma 2 allows us to reformulate problem (2) in the problem of
finding a feasible fa that, replaced to f̄ in (2), gives as solution an unbiased estimate of x̄a. Indeed,
it is easy to note that Aa x̄a belongs to this feasible set. Moreover, since fa ∈ Aa, we can reduce the
dimensionality of the problem and work on the subspace Aa which has dimension na, instead of the
global space A of dimension n. To this aim, let us consider Ua the matrix of the SVD decomposition
of Aa, Aa = UaSaVT

a , and complete its columns to an orthonormal basis of Rn to obtain a matrix U.
Since the vectors fa, f ‖ ∈ Rn belong to the subspace Aa, the vectors f̃a, f̃ ‖ ∈ Rn defined such that
fa = U f̃a and f ‖ = U f̃ ‖ must have zeros on the last n− na components. Since U has orthonormal
columns, it preserves the norms and so ‖ f ‖‖ = ‖ f̃ ‖‖ and ‖ fa‖ = ‖ f̃a‖. If we call f̂a, f̂ ‖ ∈ Rna the
first na components of the vectors f̃a, f̃ ‖ (which have again the same norms of the full vectors in Rn)
respectively, we have {

f̂a ∈ ∂Bna(0, N f ),

f̂a ∈ ∂Bna( f ‖, Tf ).
(8)

In this way the problem depends only on the dimension of the known subspace, i.e., the value of na,
and does not depend on the dimensions m � na and n > na. From (8) we can deduce the equation
of the (na − 2)-dimensional boundary of an (na − 1)-ball to which the vector fa = Aaxa must belong.
In the following we discuss the various cases.

3.1.1. Case na = 1

In this case, we have one unique solution when both conditions on I f and N f are imposed.
When only one of these two is imposed, two solutions are found, shown in Figure 1a,c. Figure 1b
shows the intensity ratio I f .

(a)

(c)

(b)
Figure 1. Case na = 1. (a): Case na = 1, m = n = 2. Solutions with the condition on N f . In the figure:
the true decomposition obtained imposing both the conditions (blue), the orthogonal decomposition
(red), another possible decomposition (green) that satisfy the same norm condition N f , but different I f ;
(b): Case na = 1. Intensity Ratio value w.r.t the norm of the vector Aaxa: given a fixed value of Intensity
Ratio there can be two solution, i.e. two possible decomposition of f as sum of two vectors with the
same Intensity Ratio; (c): Case na = 1, m = n = 2. Solutions with the condition on I f . In the figure:
the true decomposition obtained imposing both the conditions (blue), the orthogonal decomposition
(red), another possible decomposition (green) with the same intensity ratio I f , but different N f .
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3.1.2. Case na = 2

Consider the vectors f̂a, f̂ ‖ ∈ Rna=2 as defined previously, in particular we are looking for
f̂a = [ξ1, ξ2] ∈ R2. Hence, conditions (8) can be written asξ2

1 + ξ2
2 = N2

f

(ξ1 − f̂ ‖ξ1
)2 + (ξ2 − f̂ ‖ξ2

)2 = T2
f

−→ F : ( f̂ ‖ξ1
)2 − 2 f̂ ‖ξ1

ξ1 + ( f̂ ‖ξ2
)2 − 2 f̂ ‖ξ2

ξ2 = N2
f − T2

f , (9)

where the right equation is the (na − 1) = 1-dimensional subspace (line) F obtained subtracting
the first equation to the second. This subspace has to be intersected with one of the beginning
circumferences to obtain the feasible vectors f̂a, as can be seen in Figure 2a and its projection on Aa

in Figure 2b. The intersection of the two circumferences (5) can have different solutions depending on
the value of (N f − ‖ f ‖‖)− Tf . When this value is strictly positive there are zero solutions, this means
that the estimates of I f and N f are not correct: we are not interested in this case because we suppose the
two values to be sufficiently well estimated. When the value is strictly negative there are two solutions,
that coincide when the value is zero.

(a) (b)
Figure 2. Case na = 2. (a): Case na = 2, m = n = 3, with Aaxa = [Aa(1)Aa(2)][xa(1)xa(2)]T .
In the figure: the true decomposition (blue), the orthogonal decomposition (red), another possible
decomposition of the infinite ones (green); (b): Case na = 2, m = n = 3. Projection of the
two circumferences on the subspace Aa, and projections of the possible decompositions of f (red,
blue and green).

When there are two solutions, we have no sufficient information to determine which one of the
two solutions is the true one, i.e., the one that gives fa = Aa x̄a: we cannot choose the one that has
minimum residual, neither the vector fa that has the minimum angle with f , because both solutions
have the same values of these two quantities. However, since we are supposing the linear system to be
originated by an input/output system, where the matrix Aa is a function also of the input and f are
the measurements of the output, we can take two tests with different inputs. Since all the solution sets
contain the true parameter vector, we can determine the true solution from their intersection, unless
the solutions of the two tests are coincident. The condition for coincidence is expressed in Lemma 3.

Let us call Aa,i ∈ Rn×na the matrix of the test i = 1, 2, to which correspond a vector fi. The line
on which lie the two feasible vectors fa of the same test i is Fi and Si = A†

a,iFi is the line through the
two solution points. To have two tests with non-coincident solutions, we need that these two lines
S1,S2 do not have more than one common point, that in the case na = 2 is equivalent to S1 6= S2, i.e.,
A†

a,1F1 6= A†
a,2F2, i.e., F1 6= Aa,1 A†

a,2F2 =: F12. We represent the lines Fi by means of their orthogonal

vector from the origin f ort,i = lort,i
f ‖i
‖ f ‖i ‖

. We introduce the matrices Ca, C f , C f p such that Aa,2 = Ca Aa,1,

f2 = C f f1, f ‖2 = C f p f ‖1 and k f such that ‖ f ‖2 ‖ = k f ‖ f ‖1 ‖.
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Lemma 3. Consider two tests i = 1, 2 from the same system with na = 2 with the above notation. Then it
holds F1 = F12 if and only if Ca = C f p.

Proof. From the relation f ‖i = PAa,i ( fi) = Aa,i(AT
a,i Aa,i)

−1 AT
a,i fi, we have

f ‖2 = Aa,2(AT
a,2 Aa,2)

−1 AT
a,2 f2 = Ca Aa,1(AT

a,1CT
a Ca Aa,1)

−1 AT
a,1CT

a C f f1. (10)

It holds F1 = F12 ⇐⇒ f ort,1 = f ort,12 := Aa,1 A†
a,2 f ort,2, hence we will show this second equivalence.

We note that lort,2 = k f lort,1 and calculate

f ort,12 = Aa,1 A†
a,2 f ort,2 = Aa,1 A†

a,1C†
a

(
lort,2

f ‖2
‖ f ‖2 ‖

)
= Aa,1 A†

a,1C†
a

k f lort,1
C f p f ‖1
k f ‖ f ‖1 ‖

 = Aa,1 A†
a,1C†

a C f p f ort,1. (11)

Now let us call sort,1 the vector such that f ort,1 = Aa,1sort,1, then, using the fact that Ca = C f p
we obtain

f ort,12 = Aa,1 A†
a,1C†

a C f p Aa,1sort,1 = Aa,1(A†
a,1 Aa,1)sort,1 = (sinceA†

a,1 Aa,1 = Ina) = Aa,1sort,1 (12)

Hence we have F12 = F1 ⇐⇒ Aa,1 A†
a,1C†

a C f p f ort,1 = f ort,1 ⇐⇒ C†
a C f p = I.

3.1.3. Case na ≥ 3

More generally, for the case na ≥ 3, consider the vectors f̂a, f̂ ‖ ∈ Rna as defined previously,
in particular we are looking for f̂a = [ξ1, . . . , ξna ] ∈ Rna . Conditions (8) can be written as∑na

i=1 ξ2
i = N2

f

∑na
i=1(ξi − f̂ ‖ξi

)2 = T2
f

−→ F :
na

∑
i=1

(( f̂ ‖ξi
)2 − 2 f̂ ‖ξi

ξi) = N2
f − T2

f , (13)

where the two equations on the left are two (na− 1)-spheres, i.e., the boundaries of two na-dimensional
balls. Analogously to the case na = 2, the intersection of these equations can be empty, one point
or the boundary of a (na − 1)-dimensional ball (with the same conditions on (N f − ‖ f ‖‖) − Tf ).
The equation on the right of (13) is the (na − 1)-dimensional subspace F on which lies the boundary
of the (na − 1)-dimensional ball of the feasible vectors fa, and is obtained subtracting the first equation
to the second one. In Figure 3a the graphical representation of the decomposition f ‖ = fa + f ‖u for
the case na = 3 is shown, and in Figure 3b the solution ellipsoids of 3 tests whose intersection is one
point. Figure 4a shows the solution hyperellipsoids of 4 tests whose intersection is one point, in the
case na = 4.

We note that, to obtain one unique solution xa we must intersect the solutions of at least two tests.
Let us give a more precise idea of what happens in general. Given i = 1, . . . , na tests we call, as in
the previous case, f ort,i the vector orthogonal to the (na − 1)-dimensional subspace Fi that contains
the feasible fa, and Si = A†

a,iFi. We project this subspace on Aa,1 and obtain F1i = Aa,1 A†
a,iFi that

we describe through its orthogonal vector f ort,1i = Aa,1 A†
a,i f ort,i. If the vectors f ort,1, f ort,12, . . . f ort,1na

are linearly independent, it means that the (na − 1)-dimensional subspaces F1,F12, . . .F1na intersect
themselves in one point. In Figure 4b it is shown an example in which, in the case na = 3 the vectors
f ort,1, f ort,12, f ort,13 are not linearly independent. The three solution sets of this example will intersect
in two points, hence, for na = 3, three tests are not always sufficient to determine a unique solution.
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(a) (b)
Figure 3. Case na = 3. (a): Case na = 3, m = n = 4, n− na = 1: in the picture f̄ ‖, i.e., the projection of
f on Aa. The decompositions that satisfies the conditions on I f and N f are the ones with fa that lies on
the red circumference on the left. The spheres determined by the conditions are shown in yellow for
the vector fa and in blue for the vector f ‖ − aa. Two feasible decompositions are shown in blue and
green; (b): Case na = 3. Intersection of three hyperellipsoids, set of the solutions xa of three different
tests, in the space Rna=3.

(a) (b)
Figure 4. Case na ≥ 3. (a): Case na = 4. Intersection of four hyperellipsoids, set of the solutions xa of
four different tests, in the space Rna=4; (b): Case na = 3. Example of three tests for which the solution
has an intersection bigger than one single point. The three (na − 1)-dimensional subspaces F1,F12,F13

in the space generated by Aa,1 intersect in a line and their three orthogonal vectors are not linearly
independent.

Lemma 4. For all na > 1, the condition that, given i = 1, . . . , na tests, the na hyperplanes Si = A†
a,iFi

previously defined have linearly independent normal vectors is sufficient to determine one unique intersection,
i.e., one unique solution vector x̄a, that satisfies the system of conditions (4) for each test.

Proof. The intersection of na independent hyperplanes in Rna is a point. Given a test i and Si = A†
a,iFi

the affine subspace of that test

Si = vi + Wi = {vi + w ∈ Rna : w · ni = 0} = {x ∈ Rna : nT
i (x− vi) = 0},

where ni is the normal vector of the linear subspace and vi the translation with respect to the origin.
The conditions on Si relative to na tests correspond to a linear system Ax = b, where ni is the i-th

row of A and each component of the vector b given by bi = nT
i vi. The matrix A has full rank because of

the linear independence condition of the vectors ni, hence the solution of the linear system is unique.
The unique intersection is due to the hypothesis of full column rank of the matrices Aa,i:

this condition implies that the matrices Aa,i map the surfaces Fi to hyperplanes Si = Aa,iFi.
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For example, with na = 2 (Lemma 3) this condition is equal to considering two tests with
non-coincident lines S1,S2, i.e., two non-coincident F1,F12.

3.2. The Case of Approximate Knowledge of I f and N f Values

Let us consider N tests and call I f ,i, N f ,i and Tf ,i the values as defined in Lemma 2, relative to test
i. Since the system of conditionsN f ,i = ‖Aa,ixa‖

I f ,i =
‖Aa,ixa‖
‖zi−Aa,ixa‖

and

{
N f ,i = ‖Aa,ixa‖
Tf ,i = ‖ f ‖i − Aa,ixa‖

(14)

is equivalent, as shown in Lemma 2, we will take into account the system on the right for its simplicity:
the equation on Tf ,i represents an hyperellipsoid, translated with respect to the origin.

In a real application, we can assume to know only an interval in which the true values of I f is
contained and, analogously, an interval for N f values. Supposing we know the bounds on I f and N f ,
then the bounds on Tf can be easily computed. Let us call these extreme values Nmax

f , Nmin
f , Tmax

f , Tmin
f ,

we will assume it always holdsNmax
f ≥ maxi(N f ,i),

Nmin
f ≤ mini(N f ,i),

and

Tmax
f ≥ maxi(Tf ,i),

Tmin
f ≤ mini(Tf ,i),

(15)

for each i-th test of the considered set i = 0, . . . , N.
Condition (4) is now relaxed as follows: the true solution x̄a satisfies‖Aa,i x̄a‖ ≤ Nmax

f ,

‖Aa,i x̄a‖ ≥ Nmin
f ,

and

‖Aa,i x̄a − f ‖i ‖ ≤ Tmax
f ,

‖Aa,i x̄a − f ‖i ‖ ≥ Tmin
f ,

(16)

for each i-th test of the considered set i = 0, . . . , N.
Assuming the extremes to be non-coincident (Nmin

f 6= Nmax
f and Tmin

f 6= Tmax
f ), these conditions

do not define a single point, i.e., the unique solution x̄a (as in (4) of Section 3.1), but an entire closed
region of the space that may be even not connected, and contains infinite possible solutions x different
from x̄a.

In Figure 5 two examples, with na = 2, of the conditions for a single test are shown: on the left
in the case of exact knowledge of the N f ,i and Tf ,i values, and on the right with the knowledge of
two intervals containing the right values.

Given a single test, the conditions (16) on a point x can be easily characterized. Given the condition

‖ fa‖ = ‖Aaxa‖ = N f ,

we write xa = ∑ χivi with vi the vectors of the orthogonal basis, given by the columns V of the SVD
decomposition Aa = USVT . Then

fa = Aaxa = USVT(∑
i

χivi) = US(∑
i

χiei) = U(∑
i

siχiei) = ∑
i

siχiui.

Since the norm condition ‖ fa‖2 = ∑i(siχi)
2 = N2

f holds, then we obtain the equation of the
hyperellipsoid for xa as:

∑
i
(siχi)

2 = ∑
i

χ2
i

( 1
si
)2

= N2
f . (17)

The bounded conditions hence gives the region inside the two hyperellipsoids centered in
the origin:
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Nmin
f ≤∑

i

χ2
i

( 1
si
)2
≤ Nmax

f . (18)

Analogously for the I f condition, the region inside the two translated hyperellipsoids:

Tmin
f ≤∑

i

χ2
i

( 1
si
)2
− f ‖ ≤ Tmax

f . (19)

Given a test i, each of the conditions (18) and (19), constrain x̄a to lie inside a thick hyperellipsoid,
i.e., the region between the two concentric hyperellipsoids. The intersection of these two conditions
for test i is a zero-residual region that we call Zri

Zri = {x ∈ Rna | (18) and (19) hold }. (20)

It is easy to verify that if N f ,i is equal to the assumed Nmin
f or Nmax

f , or Tf ,i is equal to the assumed

Tmin
f or Tmax

f , the true solution will be on a border of the region Zri , and if it holds for both N f ,i and
Tf ,i it will lie on a vertex.

(a) (b)
Figure 5. Examples of the exact and approximated conditions on a test with na = 2. In the left equation
the two black ellipsoids are the two constraints of the right system of (14), while in the right figure
the two couples of concentric ellipsoids are the borders of the thick ellipsoids defined by (16) and the
blue region Zri is the intersection of (18) and (19). The black dot in both the figures is the true solution.
(a): Exact conditions on N f and Tf ; (b): Approximated conditions on N f and Tf .

When more tests i = 1, . . . , N are put together, we have to consider the points that belong to the
intersection of all these regions Zri , i.e.,

Izr =
⋂

i=0,...,N
Zri . (21)

These points minimize, with zero residual, the following optimization problem:

min
x

N

∑
i=1

min(0, ‖Aa,ix‖ − Nmin
f )2 +

N

∑
i=1

max(0, ‖Aa,ix‖ − Nmax
f )2+

+
N

∑
i=1

min(0, ‖Aa,ix− f ‖i ‖ − Tmin
f )2 +

N

∑
i=1

max(0, ‖Aa,ix− f ‖i ‖ − Tmax
f )2.

(22)

It is also easy to verify that, if the true solution lies on an edge/vertex of one of the regions Zri ,
it will lie on an edge/vertex of their intersection.
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The intersected region Izr tends to monotonically shrink in a way that depends from the properties
of the added tests. We are interested to study the conditions that make it reduce to a point, or at least
to a small region. A sufficient condition to obtain a point is given in Theorem 1.

Let us first consider the function that, given a point in the space Rna , returns the squared norm of
its image through the matrix Aa:

N2
f (x) = ‖Aax‖2

2 = ‖UΣVTx‖2
2 = ‖ΣVTx‖2

2 = (ΣVTx)T(ΣVTx) = xT(VΣTΣVT)x =

= ‖

 σ1vT
1 x

σ2vT
2 x

...

‖2
2 = σ2

1 (v
T
1 x)2 + σ2

2 (v
T
2 x)2 + . . . ,

(23)

where vi are the columns of V and x = [x(1) x(2) . . . , x(na)].
The direction of maximum increase of this function is given by its gradient

∇N2
f (x) = 2(VΣ2VT)x =

 2σ2
1 vT

1 xv1(1) + 2σ2
2 vT

2 xv2(1) + · · ·+ 2σ2
na vT

na xvna(1)
2σ2

1 vT
1 xv1(2) + 2σ2

2 vT
2 xv2(2) + · · ·+ 2σ2

na vT
na xvna(2)

...

 . (24)

Analogously, define the function T2
f (x) as

T2
f (x) = ‖Aax− f ‖‖2

2 = ‖UΣVTx− f ‖‖2
2 = ‖ΣVTx− f ‖‖2

2 =

= (ΣVTx− f ‖)T(ΣVTx− f ‖) = (ΣVTx)T(ΣVTx)− 2(ΣVTx)T f ‖ + ( f ‖)T( f ‖)

= x(VΣ2VT)x− 2(x)TVΣ f ‖ + ( f ‖)T( f ‖) =

=
∥∥∥
 σ1vT

1 x
σ2vT

2 x
...

− f ‖
∥∥∥2

2

(25)

with gradient

∇T2
f (x) = 2(VΣ2VT)x− 2VΣ f ‖ =

=


2σ2

1 vT
1 xv1(1) + 2σ2

2 vT
2 xv2(1) + · · ·+ 2σ2

na vT
na xvna(1)

...
2σ2

1 vT
1 xv1(j) + 2σ2

2 vT
2 xv2(j) + · · ·+ 2σ2

na vT
na xvna(j)

...

−

−2σ2

i ∑i f ‖(i)vi(1)
...

−2σ2
i ∑i f ‖(i)vi(j)

...

 .
(26)

Definition 2. (Upward/Downward Outgoing Gradients) Take a test i, and the functions N2
f (x) and T2

f (x) as
in (23) and (25), with the formulas of the gradient vectors of these two functions ∇N f ,i(x),∇Tf ,i(x) as in (24)
and (26). Given the two extreme values Nmin/max

f and Tmin/max
f for each test, let us define

• the downward outgoing gradients as the set of gradients calculated on the points on the minimum hyperellipsoid

{−∇N f ,i(x) | N f ,i(x) = Nmin
f } and {−∇Tf ,i(x) | Tf ,i(x) = Tmin

f } (27)

they point inward to the region of the thick hyperellipsoid.
• the Upward Outgoing Gradients as the set of negative gradients of points on the maximum hyperellipsoid

{∇N f ,i(x) | N f ,i(x) = Nmax
f } and {∇Tf ,i(x) | Tf ,i(x) = Tmax

f } (28)
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they point outward the region.

Note that the upward/downward outgoing gradient of function N2
f (x) (or T2

f (x)) on point x
is the normal vector to the tangent plane on the hyperellipsoid on which the point lies. Moreover,
these vectors point outward the region defined by Equation (18) (and (19) respectively). In Figure 6,
an example of some upward/downward outgoing gradients of function N2

f (x) is shown.

Figure 6. In the figure some upward/downward outgoing gradients are shown: the blue internal ones
are downward outgoing gradients calculated on points x on the internal ellipsoid with N f ,i(x) = Nmin

f ,
while the external red ones are upward outgoing gradients calculated on points x on the external
ellipsoid with N f ,i(x) = Nmax

f .

Theorem 1. Given N tests with values I f ,i and N f ,i in the closed intervals [Imin
f , Imax

f ] and [Nmin
f , Nmax

f ], take
the set of all the upward/downward outgoing gradients of functions N2

f ,i(x) and T2
f ,i(x) calculated in the true

solution x̄a, i.e.,

{∇N f ,i(x̄a) for i = 1, . . . , N | N f ,i(x̄a) = Nmax
f } ∪ {∇N f ,i(x̄a) for i = 1, . . . , N | N f ,i(x̄a) = Nmin

f }∪

∪{∇Tf ,i(x̄a) for i = 1, . . . , N | Tf ,i(x̄a) = Tmax
f } ∪ {∇Tf ,i(x̄a) for i = 1, . . . , N | Tf ,i(x̄a) = Tmin

f }.
(29)

If there is at least one outgoing gradient of this set in each orthant of Rna , then the intersection region Izr of
Equation (21) reduces to a point.

Proof. What we want to show is that given any perturbation δx of the real solution x̄a, there exists at
least one condition among (18) and (19) that is not satisfied by the new perturbed point x̄a + δx.

Any sufficiently small perturbation δx in an orthant in which lies an upward/downward outgoing
gradient (from now on “Gradient”), determines an increase/decrease in the value of the hyperellipsoid
function relative to that Gradient, that makes the relative condition to be unsatisfied.

Hence, if the Gradient in the orthant considered is upward, it satisfies N f ,i(x̄a) = Nmax
f (or

analogously with Tf ,i) and for each perturbation δx in the same orthant we obtain

N f ,i(x̄a + δx) > N f ,i(x̄a) = Nmax
f

(or analogously with Tf ,i). In the same way, if the Gradient is downward we obtain

N f ,i(x̄a + δx) < N f ,i(x̄a) = Nmin
f

(or analogously with Tf ,i).
When in one orthant there are more than one Gradient, it means that more than one condition

will be unsatisfied by the perturbed point x̄a + δx for a sufficiently small δx in that orthant.
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4. Problem Solution

The theory previously presented allows us to build a solution algorithm that can deal with
different a-priori information. We will start in Section 4.1 with the ideal case, i.e., with exact knowledge
of I f and N f . Then, we generalize to a more practical setting, where we suppose to know an interval
that contains the Tf values of all the experiments considered and an interval for the N f values. Hence,
the estimate solution will satisfy Equations (18) and (19). In this case we describe an algorithm for
computing an estimate of the solution, that we will test in Section 5 against a toy model.

4.1. Exact Knowledge of I f and N f

When the information about I f and N f is exact, with the minimum amount of experiments
indicated in Section 3 we can find the unbiased parameter estimate as the intersection Izr of the
zero-residual sets Zri corresponding to each experiment. In principle this could be done also following
the proof of Lemma 4, but the computation of the vi vectors is quite cumbersome. Since this is an ideal
case, we solve it by simply imposing the satisfaction of the various N f and Tf conditions (Equation (14))
as an optimization problem:

min
x

F(x) with F(x) =
N

∑
i=1

(‖Aa,ix‖ − N f ,i)
2 +

N

∑
i=1

(‖Aa,ix− f ‖i ‖ − Tf ,i)
2. (30)

The solution of this problem is unique when the tests are in a sufficient number and satisfies the
conditions of Lemma 4.

This nonlinear least-squares problem can be solved using a general nonlinear optimization
algorithm, like Gauss–Newton method or Levenberg–Marquardt [8].

4.2. Approximate Knowledge of I f and N f

In practice, as already pointed out in Section 3.2, it is more realistic to know the two intervals that
contain all the N f ,i and I f ,i values for each test i. Then, we know that within the region Izr there is also
the exact unbiased parameter solution x̄a, that we want at least to approximate. We introduce here
an Unbiased Least-Squares (ULS) Algorithm 1 for the computation of this estimate.

Algorithm 1 An Unbiased Least-Squares (ULS) algorithm.
1: Given a number ntests of available tests, indexed with a number between 1 and ntests,

and two intervals,
[

Imin
f , Imax

f

]
and

[
Nmin

f , Nmax
f

]
, containing the I f and N f values of all tests.

2: At each iteration we will consider the tests indexed by the interval [1, it]; set initially it = na.
3: while it ≤ ntests do
4: 1) compute a solution with zero residual of the problem (22) with a nonlinear least-squares

optimization algorithm,
5: 2) estimate the size of the zero-residual region as described below in (31),
6: 3) increment by one the number it of tests.
7: end while
8: Accept the final solution if the estimated region diameter is sufficiently small.

In general, the zero-residual region Zri of each test contains the true point of the parameters vector,
while the estimated iterates with the local optimization usually start from a point outside this region
and converge to a point on the boundary of the region.

The ULS estimate can converge to the true solution in two cases:

1. the true solution lies on the border of the region Izr and the estimate reach the border on that
point;

2. the region Izr reduces to a dimension smaller than the required accuracy, or reduces to a point.
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The size of the intersection set Izr, of the zero-residual regions Zri , is estimated in the
following way.

Let us define an index, that we call region shrinkage estimate, as follows:

ŝ(x) = min{n | ∑
δ∈P

∆Izr (x + µ−nδ) > 0}, (31)

where we used µ = 1.5 in the experiments below, P = {δ ∈ Rna | δ(i) ∈ (−1, 0, 1) ∀i = 1, . . . , na} and
∆Izr is the Dirac function of the set Izr.

5. Numerical Examples

Let us consider a classical application example, the equations of a DC motor with a mechanical
load, where the electrical variables are governed by the following ordinary differential equation{

Lİ(t) = −Kω(t)− RI(t) + V(t)− fu(t)

I(t0) = I0,
(32)

where I is the motor current, ω the motor angular speed, V the applied voltage, and fu(t) a possible
unmodelled component

fu(t) = −merrcos(npolesθ(t)), (33)

where npoles is the number of poles of the motor, i.e., the number of windings or magnets [9], merr the
magnitude of the error model and θ the angle, given by the system{

ω̇(t) = θ(t)

ω(t0) = ω0.
(34)

Note that the unknown component fu of this example can be seen as a difference in the potential
that is not described by the approximated model. We are interested in the estimation of parameters
[L, K, R]. In our test the true values were constant values [L = 0.0035, K = 0.14, R = 0.53].

We suppose to know the measurements of I and ω at equally spaced times t0, . . . , tN̄ with step h,
such that tk = t0 + kh, and tk+1 = tk + h. In Figure 7 we see the plots of the motor speed ω and of the
unknown component fu for this experiment.

(a) (b)

Figure 7. The plots of (a) ω(t) and (b) fu(t) in the experiment.

We compute the approximation of the derivative of the current signal ˆ̇I(tk) with the forward finite
difference formula of order one

ˆ̇I(tk) =
I(tk)− I(tk−1)

h
, for tk = t1, . . . , tN̄
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with a step h = 4× 10−4. The applied voltage is held constant to the value V(t) = 30.0.
To obtain a more accurate estimate, or to allow the possibility of using higher step size values h,

finite differences of higher order can be used, for example the fourth order difference formula

ˆ̇I(tk) =
I(tk − 2h)− 8I(tk − h) + 8I(tk + h)− I(tk + 2h)

12h
, for tk = t2, . . . , tN̄−2.

With the choice of the finite difference formula, we obtain the discretized equations

L ˆ̇I(tk) = −Kω(tk)− RI(tk) + V(tk)− fu(tk), for tk = t1, . . . , tN̄ . (35)

We will show a possible implementation of the method explained in the previous sections, and the
results we get with this toy-model example. The comparison is made against the standard least-squares.
In particular, we will show that when the information about I f and N f is exact, we have an exact
removal of the bias. In case this information is only approximate, which is common in a real application,
we will show how the bias asymptotically disappears when the number of experiments increases.

We build each test taking the Equation (35) for n samples in the range t1, . . . , tN̄ , obtaining the
linear system 

ˆ̇I(tk) ω(tk) I(tk)
ˆ̇I(tk+1) ω(tk+1) I(tk+1)

...
...

...
ˆ̇I(tk+n) ω(tk+n) I(tk+n)


L

K
R

+


fu(tk)

fu(tk+1)
...

fu(tk+n)

 =


V(tk)

V(tk+1)
...

V(tk+n)

 (36)

so that the first matrix in the equation is Aa ∈ Rn×na with na = 3, the number of parameters to
be estimated.

To measure the estimation relative error êrel we will use the following formula, where x̂a is the
parameter estimate:

êrel =
1
na

na

∑
i=1

||x̂a(i)− x̄a(i)||2
||x̄a(i)||2

. (37)

Note that the tests that we built in the numerical experiments below are simply small chunks of
consecutive data, taken from one single simulation for each experiment.

The results have been obtained with a Python code developed by the authors, using NumPy for
linear algebra computations and scipy.optimize for the nonlinear least-squares optimization.

5.1. Exact Knowledge of I f and N f

As analyzed in Section 4.1, the solution of the minimization problem (30) is computed with a local
optimization algorithm.

Here the obtained results show an error êrel with an order of magnitude of 10−7 in every test we
made. Note that it is also possible to construct geometrically the solution, with exact results.

5.2. Approximate Knowledge of I f and N f

When I f and N f are known only approximately, i.e., we know only an interval that contains all the
I f values and an interval that contains all the N f values, we lose the unique intersection of Lemma 4,
that would require only na tests. Moreover, with a finite number of tests we cannot guarantee in
general to satisfy the exact hypotheses of Theorem 1. As a consequence, various issues open up. Let’s
start by showing in Figure 8 that when all the four conditions of (15) hold with equality, the true
solution lies on the boundary of the region Izr as already mentioned in Section 3.2. If this happens,
then with the conditions of Theorem 1 on the upward/downward outgoing gradients, the region Izr is
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a point. When all the four conditions of (15) hold with strict inequalities, the true solution lies inside
the region Izr (Figure 8b). From a theoretical point of view this distinction has a big importance, since
it means that the zero-residual region can or cannot be reduced to a single point. From a practical
point of view it becomes less important, for the moment, since we cannot guarantee that the available
tests will reduce Izr exactly to a single point and we will arrive most of the times to an approximate
estimate. This can be more or less accurate, but this depends on the specific application, and this is out
of the scope of the present work.

(a) (b)
Figure 8. Two examples of (zero-residual) intersection regions Izr ⊂ R3 with different location of the
true solution: inside the region or on its border. For graphical reasons the region has been discretized
and the dots are the grid nodes; the bigger ball (thick point) is the true solution. (a): The true solution
(ball) is on the border of Izr; (b): The true solution (ball) is internal to Izr.

To be more precise, when the conditions of Theorem 1 are not satisfied, there is an entire region
of the parameters space which satisfies exactly problem (30), but only one point of this region is the
true solution x̄a. As more tests are added and intersected together, the zero-residual region Izr tends to
reduce, simply because it must satisfy an increasing number of inequalities. In Figure 9 we can see
four iterations taken from an example, precisely with 3, 5, 9 and 20 tests intersected and merr = 19.
With only three tests (Figure 9a), there is a big region Izr (described by the mesh of small dots), and here
we see that the true solution (thick point) and the current estimate (star) stay on opposite sides of
the region, as accidentally happens. With five tests (Figure 9a) the region has shrunk considerably
and the estimate is reaching the boundary (in the plot it is still half-way), and even more with nine
tests (Figure 9c). The convergence arrives here before the region collapses to a single point, because
accidentally the estimate has approached the region boundary at the same point where the true solution
is located.

In general, the zero-residual region Zri (20) of each test contains the true solution, while the
estimate arrives from outside the region and stops when it bumps the border of the intersection
region Izr (21). For this reason we have convergence when the region that contains the true solution is
reduced to a single point, and the current estimate x̂a does not lie in a disconnected sub-region of Izr

different from the one in which the true solution lies. Figure 10 shows an example of an intersection
region Izr which is the union of two closed disconnected regions: this case creates a local minimum in
problem (30).
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(a) (b)

(c) (d)
Figure 9. The intersection region Izr ⊂ R3 at different number of tests involved. For graphical reasons
the region has been discretized and the dots are the grid nodes; the bigger ball is the true solution and
the star is the current estimate in the experiment. (a) 3 tests; (b) 5 tests; (c) 9 tests; (d) 20 tests.

(a) (b)
Figure 10. The intersection region Izr ⊂ R3 at different number of tests involved. On the left a few
tests have created a single connected region while, on the right, adding more tests have splitted it into
two subregions. For graphical reasons the region has been discretized and the dots are the grid nodes;
the bigger ball is the true solution and the star is the current estimate in the experiment. (a) A (portion
of a) connected region Izr; (b) A region Izr split into two not connected sub regions.
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In Figure 11 we see the differences Nmax
f − Nmin

f and Tmax
f − Tmin

f vs. merr. The differences are
bigger for higher values of the model error. It seems that this is the cause of a more frequent creation
of local minima.

(a) (b) (c)
Figure 11. The three plots show the values assumed by the extreme values (15) as a function of merr.
(a): {Imin

f , Imax
f } vs. merr; (b): {Nmin

f , Nmax
f } vs. merr; (c) {Tmin

f , Tmax
f } vs. merr.

Figure 12 synthesizes the main results that we have experienced with this new approach. Globally
it shows a great reduction of the bias contained in the standard least-squares estimates; indeed, we had
to use the logarithmic scale to enhance the differences in the behaviour of the proposed method while
varying merr. In particular,

• with considerable levels of modelling error, let us say merr between 2 and 12, the parameter
estimation error êrel is at least one order of magnitude smaller that that of least-squares; this is
accompanied by high levels of shrinkage of the zero-residual region (Figure 12b);

• with higher levels of merr, we see a low shrinkage of the zero-residual region and consequently
an estimate whose error is highly oscillating, depending on where the optimization algorithm has
brought it to get in contact with the zero-residual region;

• at merr = 18 we see the presence of a local minimum, due to the falling to pieces of the
zero-residual region as in Figure 10: the shrinkage at the true solution is estimated to be
very high, while at the estimated solution it is quite low, since it is attached to a disconnected,
wider sub-region.

• the shrinking of the zero-residual region is related to the distribution of the outgoing gradients,
as stated by Theorem 1: in Figure 12d we see that in the experiment with merr = 18 they occupy
only three of eight orthants, while in the best results of the other experiments the gradients
distribute themselves in almost all orthants (not shown).

It is evident from these results that for lower values of modelling error merr, it is much easier to
produce tests that reduce the zero-residual region to a quite small interval of Rna , while for high values
of merr it is much more difficult and the region Izr can even fall to pieces, thus creating local minima.
It is also evident that a simple estimate of the Izr region size, like (31), can reliably assess the quality of
the estimate produced by the approach here proposed, as summarized in Figure 12c.
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(a) (b)

(c) (d)
Figure 12. The plots summarize the results obtained by the ULS approach to parameter estimation no
the model problem explained at the beginning of this section. (a): The relative estimation error (37)
vs. merr; (b): The Izr region shrinkage estimate (31) vs. merr; (c): The relative estimation error (37) vs.
the estimate of the Izr region shrinkage, considering the experiments with merr ∈ [2, 20]; (d): A three
dimensional view of the Outgoing Gradients at the last iteration of the experiment with merr = 18.

6. Conclusions

In this paper we have analyzed the bias commonly arising in parameter estimation problems
where the model is lacking some deterministic part of the system. This result is useful in applications
where an accurate estimation of parameters is important, e.g., in physical (grey-box) modelling typically
arising in the model-based design of multi-physical systems, see e.g., the motivations that the authors
did experience in the design of digital twins of controlled systems [10–12] for virtual prototyping,
among an actually huge literature.

At this point, the method should be tested in a variety of applications, since the ULS approach
here proposed is not applicable black-box as Least-Squares are. Indeed, it requires some additional
a priori information. Moreover, since the computational complexity of the method here presented
is relevant, efficient computational methods must be considered and will be a major issue in future
investigations.

Another aspect that is even worth to deepen is also the possibility to design tests that contribute
optimally to the reduction of the zero-residual region.
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