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In this paper, we propose a novel algorithm to solve the corrosion estimation prob-

lem from experimental data produced by infrared thermography. This is therefore
a thermal inverse problem. The algorithm is put in a predictor-corrector form and

uses an Adaptive Finite Element model as the reference model. The adaptation

is done in the (linear) predictor step, while the parameter estimation is done in
the (nonlinear) corrector step. A special regularization strategy has been devel-

oped. Experiments with real data have confirmed the effectiveness of the method.

Considerable computational savings have been achieved compared to a standard
algorithm formulation.

1. Introduction

Pulsed Infrared Thermography becomes practical in detecting hidden corro-
sion in those cases where induced temperature signals are high enough, even
if they exist for short periods of time. The principle of operation is based on
analyzing spatial-temporal phenomena which occur in corroded sites sub-
jected to stimulated heat diffusion. In the framework of one-dimensional
(1D) approach, it has been shown that pulse heating is capable to produce
high temperature contrasts but absolute temperature signals might be low
due to insufficient amount of total energy injected into the sample. Oppo-
sitely, long heating can significantly warm up the tested object but provides
lower contrasts over defects. In this work the pulse heating is considered.

1



November 1, 2007 18:53 Proceedings Trim Size: 9in x 6in preprint˙ricostruzione˙accurata˙profili˙di˙corrosione

2

The 1D approach assumes that transient thermal events occur indepen-
dently in sound and defect areas, therefore, defects are to be very large
so that the boundary heat diffusion effect can be neglected in the defect
center. In such a case an analytical approach is possible. It was shown in
Vavilov et al12 that the relative material loss (i.e. the ratio between the
residual thickness in the corroded spot and the thickness of the defect-free
area) is a function of the temperatures over the defect and the sound area.

When dealing with small defects, the lateral heat diffusion is no longer
negligible and must be taken into account (2D and 3D cases). In Marinetti
et al10, a large number of numerical simulations allowed to define a cor-
rection curve that retrieves the actual amount of material loss from the
underestimate obtained by applying the 1D formula, but only for some
known-shaped defects. Moreover, the numerical model was used just in
order to replicate virtual tests with different defect sizes and depths and
did not play any role in the solution of the inverse problem.

In this paper, a Finite Element model is used in an optimization loop
to solve the inverse heat transfer problem. In the numerical model, the
corrosion profile is approximated by a general piecewise-constant function
f(x).

We consider particularly situations in which the corrosion profile may
have high gradients, as it happens e.g. in problems where there is a localized
deep corrosion. It is important to be able to estimate the local depth of the
corrosion. To represent adequately the corrosion profile with a piecewise-
constant approximation it is necessary to use a quite small discretization
step, at least locally. Without substantial limitations in the approach, we
will consider a 2D model problem.

A second issue arise because a small discretization step of the corrosion
profile corresponds to a large number nθ of segments and, therefore, of pa-
rameters to be estimated. This fact increases the computational complexity
of the estimation problem and, considering also the ill-conditioning of the
problem, may ask for prohibitive computing times for a real-time diagnostic
instrument, especially in a 3D problem setting. Moreover, a uniform subdi-
vision of the corrosion profile means small segments even where the profile
is almost constant, or possesses small gradients, and therefore the model
may have more parameters than necessary, i.e. less parameters could be
sufficient to approximate well the profile. The criterion of using a model of
complexity not higher than necessary is a guideline in identification theory,
suggested by computational and statistical arguments, see e.g. Ljung8.

On the other hand, the corrosion profile is a-priori unknown. We pro-
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pose an adaptive subdivison of the profile, based on indicators obtained
after iterative comparisons between the experimental measurements and
model predictions, i.e. a-posteriori.

In short, we propose a novel algorithm to solve the corrosion estima-
tion problem from experimental data produced by infrared thermography.
The algorithm is put in a predictor-corrector form and uses an Adaptive
Finite Element model as the reference model. The adaptation is done in
the (linear) predictor step, while the parameter estimation is done in the
(nonlinear) corrector step. A special regularization strategy has been de-
veloped.

In the literature, different aspects and solution methods for this problem
have been studied. In 7 they consider the time-harmonic case (thermal
waves) and the impulsive excitation with a boundary integral formulation
of the forward problem. Uniqueness and stability have been studied in 3,?.
Moreover, 6,? have proposed a kind of predictor-corrector algorithm for a
different thermal inverse problem. The topic of using an adaptive finite
element model in parameter estimation problems is discussed, for example,
in 2 and 1.

2. Model Problem

Let Ω be a rectangular domain, having two sides much shorter than the
others. This can be seen as an horizontal section of a thin slab. Let us
suppose to stimulate one face of the slab with an impulsive, uniform heat
source, and to measure repeteadly the surface temperature at very short
time intervals, even after the source has been switched off. The physical
phenomenon that makes it visible the eventual corrosion at the other face
of the slab is, in general: in presence of hidden corrosion, the heat supplied
at the surface from the source has less material to diffuse within and the
superficial temperature remains locally higher. This is a common exper-
iment in infrared thermography for the non-destructive test of materials.
The purpose is to recognize, from inspection of the thermographic data
taken at the front (accessible) face, whether the rear (unaccessible) face
is uncorroded and, in case, to estimate the corrosion profile. We make
the simplifying assumption that the phenomenon is constant along z, the
vertical axis. Therefore, we can study the problem in a two-dimensional
horizontal section of the slab. Here, the two faces (rear- and front-) collapse
to the corresponding edges of the section and, consequently, of the problem
domain.
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To this aim, let us define a parametric rear-edge in our model, described
by a piecewise-constant function, defined in a generally non uniform sub-
division of the edge. To each segment it is associated a parameter, whose
value indicates the mean depth of the corrosion in the segment. Therefore,
a zero valued parameter vector indicates the uncorroded material. The cor-
rosion profile is therefore approximated with a piecewise-constant function.

Let us suppose to adopt an explicative mathematical model for the ther-
mographic data, and in particular an heat transfer Finite Element model.
Given ny measurement points and N data samples for each point, for each
value of the parameter vector θ ∈ Rnθ , the numerical solution of the finite
element model produces simulation data Ŷ ∈ Rny×N that can be compared
with the experimental ones Y ∈ Rny×N , i.e. Ŷ = G(θ). This is our forward
problem, which we solve as a main tool for the main problem of this paper,
which is an inverse problem: from a given set of experimental data , find the
value of the parameter vector θ such that the simulation data are as close
as possibile to the corresponding experimental ones. Different definition of
distance can be used; we will adopt a cost function that uses the classical
L2-norm. Usually, ny ≈ nθ and N > ny. Note that a nonzero value of θ
means an excavation (corrosion) of the domain and, therefore, the domain
varies with θ, i.e. Ω = Ωθ.

The map G : Rnθ → Rny×N is, in general, nonlinear. Note that the
simulation data Ŷ ∈ Rny×N are produced to satisfy the het transfer finite
element model, with pre-assigned initial and boundary conditions. Start-
ing from the knowledge that is a-priori available, i.e. that the system is
still uncorroded, and looking at the experimental data, the algorithm that
solves the inverse problem must produce a good estimate θ̂ of the parameter
vector, i.e. an estimate of the corrosion profile.

Here we refer mainly to problems in which the corrosion may be arbi-
trarily distributed on the rear edge. No simplifying assumptions are taken
about the corrosion pattern. It is particularly important to estimate the
depth of narrow creaks.

We do a couple of main assumptions:

(1) if we are able to accurately describe the (geometrical) profile of
the corrosion, we can describe the thermal response of the corroded
system at the same level of accuracy that we do with the uncorroded
one. In this way we can distinguish whether we have reached a
suboptimal estimate of the parameter vector θ;

(2) in general, when the estimation algorithm changes θ̂(i) to a value
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closer to the true one, the cost function diminishes monotonically,
at least locally.

These assumptions are quite reasonable, in general; they cannot be
demonstrated easily for a general application experimental setting, but it is
quite easy to do experiments that satisfy them. Without entering in these
details, which are out of the scope of this paper, we simply assume that
they are valid in this discussion.

3. Basic formulation of the algorithm

The corrosion profile is, in general, unknown. Let us suppose to approxi-
mate it with a piecewise-costant function. The behaviour of its derivative
determines the number of segments needed to approximate it at a prescribed
level of accuracy. Therefore, the number of the parameters in our model,
i.e. the dimension of the vector θ, and their physical location, vary with the
unknown geometry of the profile. Definitely, the quality of the estimated
profile depends strongly on the choice of the parameterization. The search
for the optimal parameterization must be done through an adaptive proce-
dure, which tries by successive iterations to describe the corrosion profile
efficiently, i.e. with a minimum number of parameters. A straightforward
implementation of this concept is an algorithm made of two nested loops:
an outer loop which improves adaptively the parameterization, and an in-
ner loop which estimates the parameter values of each parameterization
considered. They will be described in the following subsections.

3.1. Inner loop

Given a parameterization of the corrosion profile, the model problem of
section 2 can be formulated as an (unconstrained) nonlinear optimization
problem: let it be Eθ ∈ Rny×N the matrix of prediction errors, whose n-
th column εn,θ ∈ Rny is the prediction error at the discrete time n and
dependent on the parameter vector θ:

εn,θ = yn − ŷn,θ(n) (1)

where yn ∈ Rny is the n-th column of Y and ŷn,θ ∈ Rny is the n-th
column of Ŷθ.

Be VN,θ = {VN,θ(i)} ∈ Rny a vector cost function whose generic compo-

nent VN,θ(i) =
(

1
N

∑N
n=1 εn,θ(i)

2
)1/2

corresponds to the i-th measurement
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point. The parameter estimates are produced by solving a nonlinear least-
squares problem:

θ̂ = arg min
θ
FN,θ , FN,θ = ‖VN,θ‖22

‖VN,θ‖22 =
ny∑
i=1

VN,θ(i)2 =
1
N

N∑
n=1

ny∑
i=1

εn,θ(i)2 =
1
N

N∑
n=1

‖εn,θ‖22

which is solved using the well-known damped Gauss-Newton method 11.
The matrix ψθ ∈ Rny×N×nθ , i.e. the sensitivity matrix of the simulation
data Ŷθ ∈ <ny×N with respect to parameter perturbations:

ψθ = − d

dθ
Ŷθ (2)

has a central role in the method. Let us reshape the matrix ψθ into ψrθ ∈
R(nyN)×nθ , and analogously the matrix Eθ into the vector εrθ ∈ R(nyN)×1.
Indeed, the Gauss-Newton update δθ comes from the least-squares solution
of the overdetermined system

ψrθ δθ = εrθ (3)

solved using the normal equations.

3.1.1. ill-conditioning

The perturbation of different parameters may produce quite similar re-
sponses in the simulation data, i.e. couples of columns in the matrix ψrθ
which are close to linear dependence. In our problem, this is related to
the length of the corrosion profile segment corresponding to the parameter.
The presence of short segments produces, in general, an ill-conditioned ma-
trix ψrθ . Therefore, the search for a better accuracy in the determination
of the corosion profile, which means to reduce the size of a few parameters,
brings to higher numerical problems.

Let us study the behaviour of singular values of ψrθ for diminishing
values of the parameters length. We want to see whether the parameter
update problem in the Gauss-Newton direction is rank-deficient (i.e. there
is a well-determined subset of nearly-zero singular values and an evident
gap with nonzeros) or ill-posed (i.e. the singular values decrease regularly,
without an evident gap) 5:

The Figure 1 shows that in our case there is no evident gap between large
and small singular values. In section 4 we will discuss how to regularize the
problem before computing the solution.
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Figure 1.

3.2. Outer-loop

Since the optimal parameterization is unknown, it is determined adaptively,
starting from an initial guess. This means that, according to suitable indi-
cators, the algorithm decide whether to locally refine the parameterization.
This is iteratively made until the comparison, between the actual value
FN,θ of the cost function and the reference value previously obtained for
the uncorroded system, shows that they are sufficiently close to desume
that the actual parameterization is nearly optimal.

A local refinement is more efficient than a uniform refinement. In a
problem where the corrosion profile have strong gradients it can produce
much less parameters to update. But, a crucial aspect is where to refine.
The distributed nature of the corrosion parameters and of the finite element
model variables makes it possible to localize the discrepancies between ex-
perimental and simulation data. Note that the accuracy of this localization
is disturbed from the strong diffusive character of the heat conduction pro-
cess.

In the corrosion estimation problem we propose to use the parameter
estimates, obtained at each execution of the inner-loop, as indicators for
local refinement. We have verified that their values are not always reliable
estimates of the corrosion depth, since in general these values are good only
when the parameterization is also good, but they are reliable indicators of
where the corrosion exists. Therefore, they are reliable indicators for the



November 1, 2007 18:53 Proceedings Trim Size: 9in x 6in preprint˙ricostruzione˙accurata˙profili˙di˙corrosione

8

refinement of the parameterization, to reach the optimal one. At the next
execution of the inner-loop, the previous estimates are discarded.

For completeness, it should be mentioned that when dealing with real
data, other than evaluating the cost function from the prediction error, we
must also test the prediction error sequence from a statistical point of view
9, but this is not relevant in the discussion here.

4. Regularization

We have seen at section 3.1 that an accurate estimation of the corrosion
profile may often produce parameterizations that makes ill-conditioned the
corresponding parameter estimation problem. In particular, the more ac-
curate is the actual parameterization in describing the corrosion profile,
the more difficult is to obtain a valid numerical value for the parameter
estimates. A regularization of the problem is needed.

The mostly used regularization methods, i.e. the method of Tikhonov
and the Truncated Singular Value Decomposition (TSVD) 4 13, are sound
general methods, but they do not take into account the distributed nature
of the parameters, as it is relevant in our model problem.

The TSVD computes a better conditioned matrix which has minimum
L2 distance from the original matrix ψrθ , but the truncation most often
discards just the components due to the smallest parameters.

In the Tikhonov aproach, the addition of a regularizing term means
the addition of some constraints to the parameters and requires preferably
some knowledge about their true values. In our problem, they should be
imposed to the zero value. The Tikhonov method does not truncate and,
instead, raises the small singular values, but not their relative importance
in the estimation problem. Therefore, the components due to the smallest
parameters remains the less visible and the poorest conditioned.

In practice, both methods have a tendency to sacrifice the small pa-
rameters for a better conditioned estimation problem. This means that the
regularized problem may loose accuracy. In our problem, the smallest com-
ponents in L2-norm are often related to the smallest parameters and they
may be the most significative, if the purpose is to describe some details of
a nonsmooth corrosion profile.

To overcome these limitations, we adopted a regularization strategy that
takes into account the meaning of the parameters in our model problem. It
could be quite general, at least for a class of distributed parameter problems.
We discuss it in the following subsections.
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4.1. Balancing the columns of ψr
θ

In our problem, the L2-norm of the columns of ψrθ is almost proportional
to the size of the corresponding parameter. Therefore, reducing the size of
a small parameter corresponds to an increase of the condition number of
ψrθ .

In unconstrained optimization, a problem is said to be poorly scaled if
changes to θ in one direction produce much larger variations in the value
of F than do changes to θ in another direction 11. Now, we can say that
the problem of estimating corrosion parameters of varying size is a poorly
scaled problem. In this case, diagonal scaling improves the sensitivity of
the problem. It can be seen as a diagonal preconditioning.

In the model problem here discussed, the scaling factor for each column
of ψrθ can be set simply to the relative size of the corrosion profile segment
corresponding to the column. This is a convenient semplification for the
computational cost of the algorithm.

This balancing operation gives a more accurate estimate of small pa-
rameters and produces a better conditioned ψrθ (cfr. section 7.2).

4.2. Selective update of the parameters

In general, excluding some parameters from the update process is not opti-
mal. However, excluding a few parameters according with the assumption
(2) of section 2 makes the estimation problem better conditioned (cfr. sec-
tion 7.3). In case of the excluded parameters are the biggest ones, situation
that can often happen in the final iterations of the estimation process, we
can obtain a substantial improvement in the conditioning of ψrθ .

5. Analysis of convergence

With the assumptions (1) and (2) of section 2, there are two main reasons
for not reaching the minimum value of the cost function FN,θ: the cost
function is not the optimal one (remember that it depends on the parame-
terization) or the algorithm has reached a local minimum.

5.1. Cost function misfit

The cost function depends on the parameterization. If the latter is not
optimal, even the cost function differs from the optimal one. In general,
with a parameterization (cost function) not optimal, we cannot reach the
reference minimum level (cfr sec. 3.2).
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A way to recognize a cost-function misfit is when the perturbation of a
parameter satisfies the assumption (2) of section 2 only in a small region of
the measurement boundary. This means that the segment corresponding
to that parameter covers a bigger interval than the corrosion channel.

5.2. Local minima

In the model problem here considered, a local minimum arise mainly when
the measurement points are not sufficiently sensitive to the perturbation
of a small parameter. In this case, the parameter is not updated (the
TSVD would even truncate this component). The regularization techniques
proposed in section 4 avoid this problem effectively.

6. A predictor-corrector Newton method

Taking into account what we have seen in the previous sections, we propose
here an improved solution method for the model problem of section 2. In
particular, we want to improve the efficiency of the standard algorithm
presented in section 3. The two nested loops are the main targets: their
execution is too much computationally demanding. Anyway, both have a
specific task: the outer should adapt the parameterization, and the inner
should estimate its parameter values.

We propose to reorganize the inner loop in a predictor-corrector format.
The predictor step is linear and his task is to adaptively refine the

parameterization. According to the assumption (2) of section 2, increasing
each parameter of a predefined quantity (which depends essentially from
the resolution of the measurement devices and other technicalities) we can
easily decide if there is corrosion in the corresponding segment and if the
size of the segment is adequate to describe it or it is necessary a local
refinement. Only nθ matrix-vector products are needed in this phase. The
corrector step is the entire inner-loop in the algorithm of section 3.

Note that the predictor phase does not produce an initial guess for the
parameter values, which would be not significant. Instead, it does a selec-
tion/refinement of the parameters that will be estimated in the corrector
step, which is nonlinear (Gauss-Newton). The implementation we have
tested, builds the matrix ψrθ while it refines the parameterization.

In practice, the predictor step does the job of the outer-loop, which
becomes almost unnecessary. The number of outer iterations is in this way
drastically reduced.
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7. Numerical Experiments

In this section we present a few numerical experiments that explain in
practice what has been asserted in the previous sections.

7.1. Tikhonov and TSVD regularization

Here we see that the method of Tikhonov and the TSVD produce a better
conditioned matrix problem, but they cut the update for the smallest pa-
rameters (cfr. sec. 4). Let us see a small example (the real ill-conditioning
arise in bigger problems, but here the phenomenon can be shown much
more easily). Let us consider the problem in Figure 2: we want to estimate
a small corrosion defect (left) and the parameterization is optimal (right).
The singular values for this example are the following: 71.2652, 68.8787,
24.4291, 19.1298, 16.6326, 9.8319, 2.3478. In Table 1 it is shown the be-
haviour of Tichonov, TSVD and column scaling (see next section). The
second row contains the adopted value for the regularization parameter. In
rows 3 to 9 it is shown the parameter update δθ obtained; it must be read as
a −δy, i.e. negative values indicates a corrosion (the correponding segment
moves vertically downward) while positive values are discarded. The tenth
row contains the condition number of the regularized matrix problem.

TSVD Tikhonov Scaling
0 9 225 0 9 225

0.0013 0.0013 0.0013 0.0013 0.0012 0.0012 0.0013
0.0052 0.0061 0.0044 0.0052 0.0045 0.0033 0.0052
0.0038 0.0020 0.0047 0.0038 0.0028 0.0028 0.0038
0.0030 0.0094 0.0019 0.0030 0.0053 0.0034 0.0030
0.0125 -0.0049 0.0008 0.0125 -0.0014 -0.0008 0.0125
-0.0245 -0.0107 0.0004 -0.0245 -0.0066 -0.0034 -0.0245
0.0012 0.0012 0.0011 0.0012 0.0011 0.0011 0.0012

30.3535 7.2484 4.2847 30.3535 7.7228 4.7967 6.7406
Table 1: results for example 1.

Note that Tichonov and TSVD actually improves the condition number
of an order of magnitude but totally destroy the estimation of the corro-
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Figure 2.

sion parameter, which was exactly a small one. The two methods behaves
equivalently, as already known.

7.2. Regularization from balancing the columns of ψr
θ

The example is the same of the previous section. Now we consider the
column marked with ”‘scaling”’ in Table 1. We can see that in case of
parameters of variable size, the column scaling of ψrθ improves the condition
number while maintaining the acuracy of the estimate.

7.3. Selective update of the parameters

To implement in a general way a selection criterion based on the assump-
tion (2) of section 2, we assume that the resolution in the estimate of the
corrosion is given. That is the minimum perturbation value that can rea-
sonably be sensed at the measurement points. Example 2: the results are
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shown in Figure 3. From top-left: the true corrosion pattern, the initial pa-
rameterization (top right), the corrosion estimate without selective update
(bottom left) and the corrosion estimate with a selective update (bottom
right). The selective update has improved the conditioning of the problem:
Kψr

θ
= 1.5280, while without selection Kψr

θ
= 11.9286.

Note from the figure that, without selection, there are more updated
parameters than necessary. This can produce a relevant computational
overhead if it is done during the beginning of the adaptation process, where
the updated parameters are then also refined.

7.4. Predictor-corrector Newton method

Example 3: the results are shown in Figure 4. From top-left: the true
corrosion pattern, the initial parameterization (top right), the corrosion
estimate at the beginning of the corrector step (bottom left), the corrosion
estimate at the end of the corrector step (bottom right).

Note that the predictor step has produced an effective local refinement
of the parameterization.

Note also the interaction with the finite element numerical solution:
the refinement to the left is due to the need of adapting the model to the
experimental data, i.e. to adapt the mesh, not to indicate a corrosion. The
example shows in practice the fact that the adaptation algorithm is guided
by a modeling error that can have multiple origins.

8. Conclusions

We have proposed a novel algorithm to solve the corrosion estimation prob-
lem.

The algorithm is put in a predictor-corrector form and uses an adap-
tive finite element model as a reference model. The adaptation is done in
the (linear) predictor step, while the parameter estimation is done in the
(nonlinear) corrector step.

A special regularization strategy has been developed.
Experiments with real data have confirmed the effectiveness of the

method. Considerable computational savings have been achieved compared
to a standard algorithm formulation.
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Figure 3.
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Figure 4.


