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Abstract Simulating a depositional (or stratigraphic) sequence conditionally on bore-1

hole data is a long-standing problem in hydrogeology and in petroleum geostatistics.2

This paper presents a new rule-based approach for simulating depositional sequences3

of surfaces conditionally on lithofacies thickness data. The thickness of each layer is 14

modeled by a transformed latent Gaussian random field allowing for null thickness5

thanks to a truncation process. Layers are sequentially stacked above each other fol-6

lowing the regional stratigraphic sequence. By choosing adequately the variograms of7

these random fields, the simulated surfaces separating two layers can be continuous8

and smooth. Borehole information is often incomplete in the sense that it does not 29

provide direct information about the exact layer that some observed thickness belongs10

to. The latent Gaussian model proposed in this paper offers a natural solution to this11

problem by means of a Bayesian setting with a Markov chain Monte Carlo (MCMC)12

algorithm that can explore all possible configurations that are compatible with the13

data. The model and the associated MCMC algorithm are validated on synthetic data14

and then applied to a subsoil in the Venetian Plain with a moderately dense network15

of cored boreholes.16
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Keywords Subsoil modeling · Stratigraphic sequence · PC prior · Stochastic 3D17

model · Data augmentation · Conditional simulation18

1 Introduction19

The case study motivating this work is a subsoil in the Venetian Plain with a moderately20

dense network of cored boreholes. Geologists and hydrogeologists managing this sub-21

soil are in need of stochastic three-dimensional models of the stratigraphic sequence.22

The model should of course be conditioned to borehole data. The sequence of layers23

must correspond to the known regional stratigraphic sequence and, in addition, to the24

surfaces separating the layers are required to be smooth and continuous.25

Simulating a depositional (or stratigraphic) sequence conditionally on boreholes26

data has been and still is a long-standing problem in hydrogeology and in petroleum27

geostatistics. In the context of reservoir modeling, Pyrcz et al. (2015) offers a compre-28

hensive overview of the literature and a convincing conceptual framework in which29

methods are represented along a complexity gradient with one extreme corresponding30

to pixel based models with statistics and conditioning derived from the data and the31

other extreme representing geological concepts unconditional to local observations.32

As models tend to move away from the less complex extreme to the more complex33

one, they are less versatile and more difficult to condition (Pyrcz et al. 2015). Easy-to-34

condition pixel based methods thus tend to be favored when data are dense, whereas35

rule-based or process-based models are preferred when conditioning data is sparse.36

Pixel based approaches, whether based on variograms (Matheron et al. 1987), trun-37

cated Gaussian random fields and plurigaussian random fields (Beucher et al. 1993;38

Galli et al. 1994; Armstrong et al. 2011; Le Blévec et al. 2017; Le Blévec et al.39

2018), transiograms (Carle and Fogg 1996), or MCP (Allard et al. 2011; Sartore et al.40

2016; Benoit et al. 2018b), are well known and relatively easy to handle. For these41

approaches, variogram and transiogram fitting is well understood and conditioning to42

well data is efficient, even for truncated Gaussian models (Marcotte and Allard 2018).43

However, one source of difficulty in the fitting procedure is the fact that the processes44

and the amount of information are often anisotropic. Typically, for borehole data, there45

is much more information along the depth than along horizontal directions.46

Multiple point statistics (MPS) approaches (Strebelle 2002; Mariethoz and Caers47

2014) require a training image when simulations are performed in two dimensions.48

Three-dimensional simulations are much more difficult to perform, since training49

cubes are rarely available at kilometer scales. Methods for combining images in three-50

dimensional simulations have been proposed (Comunian et al. 2012, 2014). But since51

a high degree of continuity is required for layers in this work, pixel based methods,52

including MPS, are not deemed appropriate.53

Object models, such as Boolean models, are more difficult to fit and to condition,54

in particular when accounting for non-stationarity and erosion rules, see for example55

Syversveen and Omre (1997) and Allard et al. (2006). In addition, object models are56

not geologically appropriate for simulating sequences of layers.57

Rule-based and process-based models incorporate some amount of understanding of58

the geological processes. They use rules to control the temporal sequence and spatial59
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position of geological objects so as to mimic geological processes. Among others,60

they have been applied to fluvial systems, deepwater channel systems and turbiditic61

lobes systems. Particular cases of interest to this work are surface-based models. For62

simulating lobes in a turbidite reservoir, Bertoncello et al. (2013) proposed a rule-based63

stacking of lobe-shape events with quite complicated sequential placement rules that64

depend partly on the already simulated events. The conditioning to well-log data and65

seismic data is achieved through sequential optimization. One of the limitations of this66

approach is that the variability between the conditional simulations is low, owing to67

the optimization approach. A second limitation recognized by the authors is that their68

method works best with a limited amount of data.69

This paper presents a new rule-based approach for simulating depositional70

sequences of surfaces conditionally to lithofacies thickness data. It is a stochastic71

model that belongs to the Markov rules sub-class of rule-based methods, see Pyrcz72

et al. (2015) and appropriate references therein. The thickness of each layer is modeled73

by a transformed latent Gaussian random field allowing for null thickness. The random74

fields are latent because they can be unobserved on some parts of the domain under75

study, thanks to a truncation process. Layers are sequentially stacked above each other76

following the regional stratigraphic sequence. By choosing adequately the variograms77

of these random fields, the simulated surfaces separating two layers can be continuous78

and smooth. Conditioning to the observed borehole data is made possible thanks to79

constrained Gaussian conditioning, as will be explained later on.80

A problem that has been barely addressed in geostatistical models for depositional81

sequences is the fact that borehole information is often incomplete in the sense that it82

does not provide direct information regarding the exact layers that have been observed.83

For example, let us consider that the stratigraphic sequence of the study domain con-84

tains several repetitions of a given lithofacies, say Clay. Consider also that the recorded85

data at one given borehole measures one single thickness for Clay. A first possibil-86

ity is that there is actually only one Clay layer at this location, but it could be any87

of the several Clay layers of the regional stratigraphic sequence. Simulations should88

therefore account for this uncertainty. A second possibility is that the measurement89

actually corresponds to two (or more) Clay layers, one on top of the other, with miss-90

ing intermediate layers at this location. In this case, the measured thickness should be91

shared between two layers. The latent Gaussian model proposed in this paper offers a92

natural solution to this problem by means of a Bayesian setting with a Markov Chain93

Monte Carlo (MCMC) algorithm that can explore all possible configurations compat-94

ible with the data. Notice that the approach proposed in Bertoncello et al. (2013) does95

not address this problem at all.96

The rest of this paper is organized as follows. Section 2 is devoted to the concep-97

tual model. In particular, the difference between the (unique) regional stratigraphic98

sequence, referred to as the parent sequence, and the observed sequences is detailed.99

Section 3 presents the stochastic model. In Sect. 4 all details for Bayesian inference100

with an MCMC algorithm are given. It is then validated on a synthetic data set in101

Sect. 5. Finally, it is successfully applied to the Venetian Plain that motivated this102

work in Sect. 6. Some concluding remarks are then given in Sect. 7.103
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2 The Conceptual Model104

2.1 Notations105

Let us consider a spatial domain S ∈ R
2 and an interval T ⊂ R

+, which will106

correspond to “depth”. Note that depth can be converted into time through depositional107

processes, which is the reason why t ∈ T is used to denote depth. Let us also consider108

a family of K lithofacies, C = {C1, . . . , CK }. The aim of this work is to build a process109

X = {X (s, t)}, defined at any point (s, t) ∈ S × T and taking values in C. In other110

words, at each location is associated one and only one lithofacies. The process must111

be continuous almost everywhere and the discontinuity surfaces should be smooth112

and have a general horizontal orientation. The process X is observed along depth at113

a finite number of locations s1, . . . , sn and each observation corresponds to a drilled114

core, referred to as boreholes in the rest of this work.115

Let X i = {X (si , t), t ∈ T } be one of these observations at site si , i = 1, . . . , n,116

where n is the number of sites. The observation X i is piece-wise constant, with Mi117

discontinuities at different depths each time a new layer is encountered. The resulting118

information is a sequence of facies and depths, referred to as the observed sequence,119

(Co
i , To

i ), where Co
i = (Co

1,i , . . . , Co
Mi ,i

) with Co
j,i ∈ C for j = 1, . . . , Mi , and120

To
i = (T o

1,i , . . . , T o
Mi ,i

) with T o
j,i ∈ T and T o

1,i < · · · < T o
Mi ,i

. The depths are121

measured with respect to a ground-level T0,i . The thicknesses of each observed layer122

Zo
i = (Zo

1,i , . . . , Zo
Mi ,i

) can be derived from the depths, with Zo
j,i = T o

j,i −T o
j−1,i , j =123

1, . . . , Mi . Finally, the last layer is assumed to be completely observed, that is the depth124

Zo
Mi ,i

is assumed to be not censored.125

2.2 Parent Sequence126

The working hypothesis is that there exists a common lithological sequence of facies,127

hereafter referred to as the “parent sequence,” which is compatible with all observed128

sequences in the area of study in the sense that each observed sequence can be obtained129

from the parent sequence by deleting some layers of the parent sequence.130

This sequence can result from the prior knowledge of the scientists. Alternatively, it131

can be derived from the observed data. From a mathematical viewpoint, there always132

exists a parent sequence. For example, it can easily be obtained by simply stacking all133

observed sequences into a single sequence. Then, each observed sequence of layers134

is simply obtained by “deleting” all other observed sequences. Obviously, this parent135

sequence is of no modeling interest, but it is mathematically important since it provides136

a proof of the existence of this concept. In general, very long parent sequences are137

uninteresting from a modeling point of view. In accordance with a parsimony principle,138

one should seek the shortest possible parent sequences. Clearly, there is only a finite139

number of parent sequences of minimal length. Such parent sequences could be built140

using discrete optimization algorithms, or they could be provided by scientists, based141

on prior geological knowledge. Either way, how minimal parent sequences are obtained142

is a subject out of the scope of the present research, and this route is not pursued any143

longer.144
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Fig. 1 Parent sequence and four

possible incomplete observed

sequences. Since the parent

sequence is conceptual,

thicknesses are only meaningful

in the observed sequences

From now on it will be considered that the parent sequence is known, and that it is145

one of the minimal length parent sequences. The parent sequence of length M will be146

denoted C = (C1, . . . , CM ), Ci ∈ C, with M ≥ max{K , M1, . . . , Mn}.147

2.3 From the Parent Sequence to the Observed Sequences148

When analyzing sequences of lithofacies, it is quite common that some facies are unob-149

served at one or several boreholes. In order to allow for this, each observed sequence150

at each site si is therefore a subset of a complete sequence (C, Ti ) corresponding to151

the parent sequence. The corresponding vector of complete thickness is Zi , and, in152

contrast to the observed ones, some thickness Z j,i = T j,i − T j−1,i , j = 1, . . . , M153

can be equal to zero. In this case, the corresponding layer is unobserved at location154

si . When Mi < M , the sequence at si is an incomplete sequence, and Co
i is a sub-155

sequence of C. The complete data will be denoted X = {(C, Zi ), i = 1, . . . , n} and156

Xo = {(Co
i , Zo

i ), i = 1, . . . , n} will denote the observed data. In the following, O(·)157

will denote the mapping such that Xo = O(X). Figure 1 illustrates a parent sequence158

and four different possible observed sequences.159

3 Statistical Setting160

3.1 Stochastic Model161

The stochastic model requires a univariate model for the marginal distribution of the162

thicknesses and a spatial model to account for the lateral continuity of the layers. Thick-163

nesses are modeled using positive zero inflated random variables in order to account164

for the many 0s resulting from incomplete observed sequences. Among many possible165

models, latent truncated Gaussian models (Allcroft and Glasbey 2003; Baxevani and166

Lennartsson 2015; Benoit et al. 2018a), also referred to as Tobit models (Liu et al.167

2019) in econometrics, are flexible models that easily allow geostatistical modeling.168

Spatial dependence among the thicknesses belonging to a same layer is introduced by169

means of a truncated Gaussian random field. More precisely, for j = 1, . . . , M , let170

W j (s), s ∈ S be a standardized Gaussian random field that, for simplicity, will be sup-171

posed stationary with covariance function cov[W j (s), W j (s
′)] = ρ j (s−s′; ξ j ), where172

ρ j is a parametric correlation function and ξ j the vector of associated parameters. The173

thickness field {Z j (s), s ∈ S} is defined as174

123

Journal: 11004 Article No.: 9875 TYPESET DISK LE CP Disp.:2020/6/8 Pages: 29 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Math Geosci

Z j (s) = ϕ j

(

W j (s) − τ j

)

if W j (s) > τ j , (1)175

and Z j (s) = 0 otherwise, where τ j is a threshold and ϕ j (·) is a continuous one-to-one176

mapping from R+ to R+. The probability of positive thickness Pr(Z j (s) > 0) will be177

denoted by p j . With this construction, null thickness has a positive probability, since178

Pr(Z j (s) = 0) = 1 − p j = �(τ j ) > 0, where �(·) is the cumulative probability179

function of the standard Gaussian random variable. Parameters of the stochastic model180

can be expressed equivalently in terms of τ j or p j and in the sequel the second setting181

is chosen. One particular case that will be used later is to set ϕ j (x) = µ j xβ j , x > 0182

with β j , µ j > 0. When β j = 1, one gets183

E
[

Z j (s)
]

= µ j

(

φ(τ j )

1 − �(τ j )
− τ j

)

, (2)184

and185

Var[Z j (s)] = µ2
j

[

1 +
φ(τ j )

1 − �(τ j )

(

τ j −
φ(τ j )

1 − �(τ j )

)]

, (3)186

where φ(·) is the density function of the standard Gaussian random variable. When187

β j is not an integer, the moments of Z j (s) involve hypergeometric functions and are188

not reported here. From Eqs. (2) and (3), it is clear that the expectation and standard189

deviation of the thickness of layer j are both proportional to the parameter µ j . The190

covariance function ρ j must be smooth enough in order to generate regular thicknesses.191

For example, choosing that ρ j is twice differentiable at the origin leads to a mean-192

squared differentiable random field W j and, as a consequence, to a mean-squared193

differentiable random field for the thicknesses since ϕ j is continuous and locally finite194

boundaries of the non null thickness sets. The depth surfaces {T j (s), s ∈ S} are then195

obtained by adding up the thickness fields. Starting from a fixed and known ground-196

floor T0 = {T0(s), s ∈ S} one sets197

T j (s) = T j−1(s) + Z j (s) = T0(s) +

j
∑

i=1

Zi (s), j = 1, . . . , M.198

Finally, the random fields W j are assumed to be independent, since they relate to199

independent depositional processes.200

3.2 Complete Likelihood201

Since layers are assumed to be independent, the complete likelihood factorizes into a202

product of M likelihoods203

L(θ; X) =

M
∏

j=1

L j (θ j ; Z j,1, . . . , Z j,n), (4)204
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where θ j = (p j , µ j , β j , ξ j ), j = 1, . . . , M and θ = (θ1, . . . , θM ).205

In the sequel φk(·,µ,�) and �k(·,µ,�) denote the density and the cumulative206

distribution function of a k-multivariate Gaussian random variable with mean vector207

µ and covariance matrix �. Let us consider now a layer j ∈ {1, . . . , M}. For conve-208

nience, thicknesses and the corresponding locations are reordered such that the first209

n j thicknesses Z j,1, . . . , Z j,n j
correspond to the positive values and the remaining210

ℓ j = n − n j ones are 0. The complete-data likelihood of the single layer j is211

L j (θ j ; Z j,1, . . . , Z j,n)= f j (Z j,1, . . . , Z j,n j
; θ j )F j (0, . . . , 0, |Z j,1, . . . , Z j,n j

; θ j ).212

(5)213

The density f j (Z j,1, . . . , Z j,n j
; θ j ) is given by214

f (Z j,1, . . . , Z j,n j
; θ) = φn j

(W j,1, . . . , W j,n j
; 0, � j )

n j
∏

i=1

J
ϕ−1

j
(Z j,i ), (6)215

where � j = �n j ,n j
= [ρ(si − sk; ξ j )]i,k=1,...,n j

, W j,i = ϕ−1
j

(

Z j,i

)

+ τ j , i =216

1, . . . , n j , and J
ϕ−1

j
(Z j,i ) is the Jacobian of ϕ−1

j computed at Z j,i . The conditional217

probability F j (0, . . . , 0|Z j,1, . . . , Z j,n j
; θ) is given by218

F j (0, . . . , 0|Z j,1, . . . , Z j,n j
; θ) = �l j

(τ j , . . . , τ j ; m j , V j ), (7)219

where the mean vector m j and covariance matrix V j can be easily derived using the220

Kriging equations (Cressie 1993; Chilès and Delfiner 2012)221

m j = �ℓ j ,n j
�−1

n j ,n j
Wn j

; V j = �ℓ j ,ℓ j
− �ℓ j ,n j

�−1
n j ,n j

�n j ,ℓ j
, (8)222

with Wn j
= (W j,1, . . . , W j,n j

)′ and the matrices �ℓ j ,n j
and �ℓ j ,ℓ j

being defined in223

similar ways as �n j ,n j
. To summarize, the complete data likelihood in (4) becomes224

L(θ; X) =

M
∏

j=1

L j (θ; Z j,1, . . . , Z j,n)225

=

M
∏

j=1

φn j
(W j,1, . . . , W j,n; 0, � j )226

×

n j
∏

i=1

J
ϕ−1

j
(Z j,i )�l j

(τ j , . . . , τ j ; m j , Vj). (9)227
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In the particular case ϕ j (x) = µ j xβ j that will be considered below, the Jacobian228

simplifies to229

J
ϕ−1

j
(Z j,i ) =

1

µ jβ j

(

Z j,i

µ j

)1−1/β j

. (10)230

3.3 Observed Likelihood231

In principle, the observed likelihood is related to the complete likelihood through232

L(θ; Xo) =

∫

{X:Xo=O(X)}

L X (θ; X)dX. (11)233

However, even for moderately long parent sequence and number of 0 thicknesses,234

the space {X : Xo = O(X)} is difficult to explore and the integral (11) becomes235

intractable. These difficulties are illustrated with two examples. At some site, let us236

consider an observed sequence (Co, To) and the corresponding thicknesses Zo. Here,237

the reference to the site is dropped for the sake of clearer notations. Recall that since238

the sequence Co must be compatible with the parent sequence C, Co is obtained by239

deleting some layers of C.240

Table 1 shows an example of a parent sequence C with three categories: Blue, Red241

and Green. The observed sequence Co is incomplete. Several augmented sequences242

Ca with corresponding depths Ta are possible. Since in the observed series the first243

Blue is followed by Red, the sub-sequence [Blue-Red] must correspond to the244

beginning of the parent sequence. Regarding the second occurrence of Blue, three245

cases can be distinguished: (i) it corresponds only to the third layer of C with 4th and246

5th layers having null thickness; (ii) it corresponds only to the fifth layer, in which247

case the 3rd and 4th layers have null thickness; (iii) it corresponds partly to the 3rd248

and partly to the 5th layers. Then, only the 4th layer has 0 thickness. In this last case,249

an intermediate, latent, transition at depth T̃ with T o
2 ≤ T̃ ≤ T o

3 must be introduced.250

These augmented series are all possible, but some will be more likely than others,251

depending on the parameters of the model. In “Appendix A” an even more complex252

example is provided. Only some of the possible configurations are shown. They are253

too numerous and complex to be completely listed, even for short parent sequences.254

In order to estimate the parameters of the model, a data augmentation algorithm255

(Tanner 1996, Ch. 5) can be exploited where the complete sequences that are com-256

patible with the observed ones are explored. A Bayesian approach will be adopted for257

the inference of the parameters and a Markov Chain Monte Carlo (MCMC) algorithm258

will be designed in Sect. 4. But first, a simulation in which all parameters are known259

and all sequences are complete is shown.260

3.4 Simulation261

Unconditional simulation is straightforward when the transformation ϕ j and the262

parameters θ j , j = 1, . . . , M , are known. All that is required is to simulate M263
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Table 2 Parameters for the

simulation example
Black Red Blue Green

µ, β 1 1 1 1

p 0.3 0.8 0.3 0.8

α 20 20 10 10

Fig. 2 Simulation experiment: a parent sequence of length 15, with 4 lithofacies

{Black-Red-Blue-Green}; b cross-section of a two-dimensional simulation along the diagonal

of S = [0, 100] × [0, 100]. See Table 2 for the parameters; c locations of the twelve boreholes

random fields W j , j = 1 . . . , M and then to apply (1) in order to transform the264

Gaussian process into a thickness surface. Figure 2 illustrates a cross-section of265

a two-dimensional simulation over S = [0, 100] × [0, 100] with four lithofacies266

{Black-Red-Blue-Green} and ϕ j (x) = µ j x , that is β j = 1 for all categories.267

The parent sequence has 15 layers (see Fig. 2a) and stochastic models for layers with268

the same lithofacies have identical parameters. Thicknesses have been simulated using269

Gaussian random fields with a Matérn covariance function270

ρ(h; ν, α, σ 2) =
σ 2

2ν−1Ŵ(ν)

(

||h||

α

)ν

Kν

(

||h||

α

)

, h ∈ R
2, (12)271

where ν > 0 is a smoothness parameter, α > 0 a range parameter and σ 2 the sill. Ŵ272

is the gamma function and Kν is the modified Bessel function of the second kind of273

order ν. Here, the smoothness parameter has been set to ν = 3/2 and σ 2 = 1, which274

leads to the simplified expression ρ j (h;α j ) = (1 + ||h||/α j ) exp(−||h||/α j ), where275

α j is a range parameter. The set of the parameters in the simulation experiment is276

shown in Table 2.277

welve synthetic boreholes have been located in S. Three of them are placed along278

the diagonal at coordinates (25, 25), (50,50) and (75, 75). Nine others are randomly279

located (see Fig. 2c). For each category, the observed frequencies along these twelve280

boreholes are (0.58, 0.83, 0.28, 0.80). Notice that Black is highly over-represented.281

The average thicknesses computed along the boreholes are (0.31, 1.31, 0.62, 1.25)282

for each of the four categories, whilst the theoretical expectations of each category283

computed as per (2) are respectively (1.8, 1.1, 1.8, 1.1). Note here that Black and284

Blue are very unlikely to be directly stacked above each other, while it is often the285

case for Red and Green.286
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Conditional simulation is relatively easy to implement when the parameters are287

known and when complete sequences of thicknesses are available, including all null288

thicknesses. Care must be taken when simulating values from the Gaussian distribution289

that are below the thresholds τ j , but otherwise the algorithm, shown in Algorithm 1, is290

rather straightforward. Simulations of the truncated Gaussian values are done by call-291

ing the function rmvnorm of the R package mvtnorm (Genz et al. 2019). The reader292

is referred to Chilès and Delfiner (2012) for a general exposition on unconditional293

simulations and conditional simulations using Kriging techniques.294

Algorithm 1 Conditional simulation when all sequences and all parameters are known

Require: Data with complete sequences; transform functions ϕ j , j = 1, . . . , M

Require: All parameters

1: for j = 1 to M do

2: Compute the vector Wn j
= (W j,1, . . . , W j,n j

) where W j,k = ϕ−1
j

(Z j,k ) corresponding to Z j,k >

0, k = 1, . . . , n j

3: Compute m j and V j according to (8)

4: Draw a vector of length ℓ j from a truncated multivariate Gaussian distribution,

Wl j
∼ T N ℓ j

(m j , V j ; −∞, τ j ), for which each component must be below τ j .

5: Set W j = (Wn j
, Wℓ j

)

6: Simulate a Gaussian random field F j conditionally on W j

7: Transform the field F j into the thicknesses according to (1)

8: end for

4 Bayesian Inference with a Markov Chain Monte Carlo Algorithm295

4.1 Sampling All Possible Configurations296

In order to sample within all possible configurations of the augmented sequence at a297

given site si that are compatible with the parent sequence, the Markov Chain Monte298

Carlo (MCMC) algorithm must be able to delete a layer, to add a new layer or to299

displace the limit between two layers of the same category. Recall that the limit between300

two different categories are hard conditioning data that cannot be changed. These301

elementary moves, illustrated in Fig. 3, are now detailed.302

Split: A state is split into two successive states of the same category. A split is only303

possible if it is compatible within the parent sequence. For example, in Fig. 3, the304

Blue layer at the bottom can be split into two layers since the parent sequence305

contains a second Blue layer. In Table 5 the situation in panel 4 can be obtained306

by splitting the state Red, either in panel 2 or in panel 3. When a state is split, a307

new transition depth, denoted ti in Table 5, must be introduced. The thickness is308

split in two thicknesses accordingly.309

Merge: This move is the opposite move of Split. Two successive states in the310

same category are merged together. The corresponding depth is removed and the311

resulting thickness is the sum of the two merged thicknesses.312
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Fig. 3 Elementary moves in an incomplete observed sequence. Note that the layer Green is unobserved.

From left to right: Split, Merge and Displace

Displace: Here, the augmented sequence is not changed, but the intermediate value313

between two successive states of the same category is changed. The corresponding314

thicknesses are then updated.315

It is easy to verify that, starting from any initial configuration that is compatible316

with the parent sequence, any other configuration can be reached by combining finite317

numbers of Split, Merge and Displace. Hence, if these moves are used as building318

blocks of a MCMC algorithm, the resulting Markov Chain will be ergodic. At each319

borehole, one of the three moves is proposed with probabilities (pS, pM , pD) with320

pS + pM + pD = 1. If the move is possible, it is accepted according to Metropolis-321

Hasting acceptance ratio described in Sect. 4.3.322

4.2 Choosing the Priors323

Priors must be defined for all parameters of the model. For the parameters of the324

transform functions ϕ j , 1 − p j = �(τ j ) and β j , uninformative flat priors have been325

chosen on the intervals (0, 1) and (0.25, 4), respectively. Regarding the covariance326

function, the Matérn covariance function in (12) has been chosen for its great flexibility327

thanks to three parameters: ξ = (ν, α, σ ), for smoothness, range and sill, respectively.328

However, it is known that the joint estimation of these parameters is difficult in a329

Bayesian context, in particular if the number of data is small. Zhang (2004) showed330

that for a Matérn covariance function the only quantity that can be estimated consis-331

tently under in-fill asymptotics is σ 2α−2ν . As a consequence, since the parameter µ2
332

behaves as the marginal variance of the random field, using uninformative flat priors333

for (µ, α, ν) is expected to provide poor posterior distributions for these parameters.334

This was indeed confirmed on preliminary MCMC runs (results not reported here).335

It was thus decided to fix the smoothness parameter ν among the values (1/2, 3/2,336

5/2) that would provide the highest likelihood. The above values correspond to covari-337

ance functions being the product of an exponential and a polynomial of order p with338

p = 0, 1, 2 respectively, namely ρ(r; 1/2, α, 1) = exp(−r/α), ρ(r; 3/2, α, 1) =339

(1 + r/α) exp(−r/α) and ρ(r; 5/2, α, 1) = (1 + r/α + r2/(3α2)) exp(−r/α).340
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Simpson et al. (2017) proposed an approach for building priors that are based on341

penalizing the complexity to a base model. For example, a random effect with positive342

variance is an extension (a more complex version) of random effect with null variance.343

Similarly, a random field with a finite range is an extension (a more complex version)344

of a random field with an infinite range. Indeed, if the range is infinite, the random345

field is perfectly correlated and its spatial variance is null. Penalized Complexity (PC)346

priors are then defined as the only priors that: (i) use the Kullback–Leibler divergence347

as a measure between the extended and the base models; (ii) have a penalization that348

increases with the distance at a constant rate.349

Fuglstad et al. (2019) derived the PC priors for a Matérn covariance with parameters350

σ, α and ν, when ν is fixed. They showed that the joint PC prior corresponding to a351

base model with infinite range and zero variance when d = 2 is352

π(σ, α) = λαα−2 exp (−λα/α) λσ exp (−λσ σ) , (13)353

where λα = − ln(ǫα)α0 and λσ = − ln(ǫσ )/σ0, and the values of λα and λσ are such354

that P(α < α0) = ǫα and P(σ > σ0) = ǫσ . By choosing small probabilities ǫα and355

ǫσ , the range is lower-bounded above α0 and the standard deviation is upper bounded356

at σ0 with probability 1 − ǫα and 1 − ǫσ , respectively. PC priors described in (13)357

will be used throughout, where µ plays the role of the standard deviation as shown in358

Eq. (3) in Sect. 3.1.359

4.3 General Description of the Algorithm360

Each parameter in each category is updated iteratively in a Metropolis-within-Gibbs361

algorithm (Gelfand 2000). A new value is proposed according to symmetric transition362

kernels, for which it is equally likely to move from a current value yc to a new value yn
363

than the opposite. Let θc and θn be the current and the proposed vector of parameters364

θ , respectively. Let further π(·) be the prior density of θ . The acceptance ratio is then365

A(θc, θn) =
L(θn; X)π(θn)

L(θc; X)π(θc)
. (14)366

When sampling the configurations thanks to one of the possible moves Split, Merge367

and Displace, a new configuration Xn is proposed, Xc being the current one. In this368

case, the acceptance ratio is369

A(Xc, Xn) =
L(θ; Xn)

L(θ; Xc)
. (15)370

The proposals are accepted if the acceptance ratios A(·, ·) are larger than one. Oth-371

erwise, they are accepted with a probability equal to the ratio. The proposal in the372

Metropolis-Hasting step are random walk proposals aiming at an acceptance rate373

above 0.5. For sampling new configurations at each borehole in turn, a possible move374

is drawn according to the probabilities pS = pM = pD = 1/3. Then, it is checked375
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whether such a move is feasible within this borehole. If several moves are possi-376

ble, one is selected uniformly among all possible moves in that borehole, and a new377

configuration is proposed. The whole procedure is summarized in Algorithm 2.378

Algorithm 2 MCMC procedure

Require: Data; parent sequence; transform functions ϕ j , j = 1, . . . , M

Require: Initial values and priors for all parameters

Require: Number of iterations, N

1: for i = 1 to N do

2: for each parameter η ∈ {p, µ, β, α} do

3: for j = 1 to M do

4: Propose new η j according to transition kernel

5: Compute acceptance ratio, A using (14)

6: Generate U ∼ U [0, 1]; accept new η j if (U ≤ A)

7: end for

8: end for

9: for Borehole k = 1 to n do

10: Draw a move ∈ {Spli t, Merge, Displace} according to the probabilities (pS , pM , pD)

11: Check for feasibility within borehole k

12: if (move is feasible) then

13: Draw uniformly one among all possible moves

14: Compute acceptance ratio, A using (15)

15: Generate U ∼ U [0, 1]; accept the move if (U ≤ A)

16: end if

17: end for

18: end for

5 A Synthetic Data Example379

The MCMC algorithm described above is first validated on the synthetic data-set380

described in Sect. 3.4 and illustrated in Fig. 2. It was coded in R using standard381

functions and our own code for the Split, Merge and Displace movements. Most of the382

running time is spent in computing the simultaneous probabilities of being below 0 in383

(7). This is done by calling the function pmvnorm of the R package mvtnorm (Genz384

et al. 2019; Genz and Bretz 2009). Uniform priors are used for the parameters p j and385

β j , respectively on (0, 1) and (0.25, 4), while PC priors are used for the parameters386

µ j and α j , as described in details in Sect. 4.2. Here, the setting was ǫα = ǫµ = 0.01,387

with α0 = 3 and µ0 = 10. Algorithm 2 is run for 30,000 iterations, after a burn-in388

period of 2,500 iterations. Values of parameters are then sampled every 50 iterations.389

The proposals in the Metropolis-Hasting steps follow a uniform random walk with390

increments in [− 0.4, 0.4] for µ j and β j , in [− 0.15, 0.15] for p j and in [− 3, 3] for the391

range α j . With these choices, the observed acceptance ratio lies between 0.43 and 0.57,392

depending on the parameters. This dataset being quite constrained, the acceptation ratio393

for exploring new configurations is only 6.78 10−5.394
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Fig. 4 Complete log-likelihood

as a function of iterations. The

log-likelihood values are

depicted every 50 iterations

Fig. 5 Posterior histograms of the frequencies p j . Thick continuous line: true value of the parameter.

Dashed thick line: posterior median. Dashed thin lines: posterior 0.05 and 0.95 quantiles

5.1 Estimation of the Parameters395

Figure 4 shows the complete log-likelihood as a function of the iterations. The mixing396

of the Markov chain is satisfactory and MCMC achieves convergence quite quickly.397

Figure 5 shows the posterior distribution of the frequency of each category. With the398

exception of the Black category, which was over-represented as already mentioned,399

the parameters p j are very well estimated. Figure 6 shows the posterior cross-plot of the400

parameters β j (resp. α j ) versus µ j . One can see that there is some amount of negative401

correlation between β j and µ j , while there is some positive correlation between α j402

and µ j . These findings are quite consistent with the parametric form of the function403

ϕ(x) = µxβ on the one hand, and with the result obtained in Zhang (2004) regarding404

the simultaneous estimation of the range and variance of a Matérn random field on405

the other hand. One can observe that the posterior median is quite close to the true406

value and always within the 90% posterior credibility interval, at the exception of the407

range parameter for the Black category. For this category, it should be remembered408

that the observed frequency was over-represented (0.58, as compared to 0.3) and that409
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Fig. 6 Left: posterior cross-plot of β j versus µ j . Right: posterior cross-plot of α j versus µ j . Thick

continuous line: true value of the parameter; dashed thick line: posterior medians; dashed thin lines: posterior

0.05 and 0.95 quantiles

the average thickness was 0.31 as compared to the theoretical expectation equal to410

1.8. The maximum likelihood for the parameters (p j , µ j , β j ) is thus completely off411

the real values (0.3, 1, 1) as can also be seen on Fig. 6, where µ j is under-estimated412

and β j is over-estimated (Fig. 6). Nonetheless, given the good performances in the413

other categories, these results are quite promising considering that there are only 2 to414

5 layers per category and that there are only 12 synthetic boreholes.415

5.2 Reconstruction of the Sequences416

The observed sequence is not complete on most boreholes. Augmented sequences417

are created during the MCMC iterations. Since they can change along the iterations,418

the MCMC algorithm allows us to explore different consistent reconstructions. Fig-419

ure 7 shows the thickness of the 15 layers as a function of iterations for the first420

six synthetic boreholes. Each layer is color-coded according to its category. Sim-421

ilar plots were obtained for the other boreholes, but they are not shown here for422

the sake of concision. Firstly, it should be noted that the thicknesses do not vary423

often and that the variability of the thicknesses is quite different among the layers424

and among the boreholes. Red layers show constant thickness because, in the par-425

ent sequence, Red layers are separated by 4, respectively 6 layers (see Fig. 2). As a426

consequence, the conditioning makes it impossible to Merge or Split any Red lay-427

ers. The relative low number of moves is due to the lateral correlations implied by428

the smoothness parameter being equal to 3/2 and the range parameter being approx-429

imately equal to 1/3 of the size of the domain. On boreholes ♯1 and ♯6, there is no430

Black layer at all. The variations are not numerous and they concern mostly the431

6-layer sequence [Green-Blue-Green-Blue-Green-Blue] that allows some432

exchanges of depth through successive moves. In particular, in boreholes ♯1 and ♯3433

the actual sequence is [Green-Blue-Green-Blue], so that some of the Green434

thickness can be exchanged between layers. Note that the total amount of Green435

thickness remains always constant. On boreholes ♯2 to ♯5, some Black layers are436

visible. The parent sequence is [Black-Blue-Black], but on borehole ♯4 one of437

the observed thickness of Blue is 0. As a consequence, the observed Black thick-438
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Fig. 7 Thickness of different layers in synthetic boreholes ♯1 to ♯6 as a function of iterations. Layers are

represented according to the color of the category they belong to

ness can be shared between the two layers, or it can be attributed to one layer only,439

the other one being zero.440

Figure 8 shows the thickness of layers ♯6 to ♯11 as a function of iterations for441

each borehole intersecting the layer. It is the dual representation of Fig. 7. Some lay-442

ers have constant thickness across all boreholes, as it is the case for the Red layer443

♯7, which intersects 9 out of the 12 boreholes. On the three others, the condition-444

ing does not make it possible to Merge or Split the layer. In layers ♯10 and ♯12, the445

situation is quite the opposite. Since the total thickness must remain constant, varia-446

tions on layers ♯10 and ♯12 are complementary for Green. These layers are part of447

the [Green-Blue-Green-Blue] sequence from layer 10 to layer 13 already men-448

tioned. This representation offers a complementary view of the variations of this layer.449

5.3 Conditional Simulations450

Two ingredients are necessary in order to perform a simulation conditional on the451

observed data. First, one needs all observed sequences to be coherently completed452

in accordance with the parent sequence. Second, the simulation requires parameters453

for µ, β, p and α. These must be jointly sampled from the posterior distribution in454

a coherent way. Independent and identically distributed sets of augmented sequences455

and estimated parameters are accessible by sampling from independently MCMC runs456

after the burn-in period. Alternatively, one can sample from the same MCMC run if457

the number of iterations between two samples is large enough. The exact number458
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Fig. 8 Thickness of layers ♯6 to ♯12 as a function of iterations. Each borehole is represented with a different

color

Fig. 9 Two conditional simulations. The completed sequences and the posterior parameters correspond to

the most likely configuration of the MCMC run

depends on the mixing properties of the MCMC algorithm. In practice, allowing a459

number of iterations larger than the burn-in period is a safe enough option. The set460

of parameters, together with the completed sequences corresponding to the highest461

likelihoods recorded, have been selected for conditional simulations. They are depicted462

in Fig. 9. Both simulations honor perfectly the data at the boreholes (dashed vertical463
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Fig. 10 The study area of the real data example and the stratigraphy

lines), but they show significantly different behaviors away from the conditioning464

data.465

6 A Case Study: Deposition of Materials on an Aquifer466

6.1 Study Area and Dataset Description467

The study area (Fig. 10) is in the central part of the Venetian Plain (Italy), on the468

Brenta megafan (principally on the right bank of the actual Brenta River) of the North-469

ern Padua district. In such an area, several rivers (Bacchiglione, Brenta, Astico and470

Timonchio) are responsible for the deposition of a significant portion of the material,471

hundreds of meters thick, which forms the subsoil of the Venetian Plain. Along the472

piedmont belt of the plain, fans from adjacent rivers laterally penetrate gravelly allu-473

vial fans. The result is entirely gravelly subsoil throughout the thickness of the high474

Venetian Plain. Because deeper fans often invade further areas of the high plain from475

the undifferentiated gravel cover, the terminal parts of the fans extend downstream for476

various distances, producing an alluvial cover that is no longer uniformly gravelly, but477

is instead composed by alternating layers of gravel and silty clay of swampy, lagoon478

or marine origin (Fabbri et al. 2016).479

The data-set contains 24 boreholes drilled in a 5 km×6 km region, with a minimum480

distance between boreholes of 0.23 km (Fig. 11, top-left panel). Since the maximum481
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Fig. 11 Location of the 24 boreholes analyzed in the Veneto dataset (top left); diameter is proportional to

the number of thicknesses recorded (from 2 to 4); thick blue line: cross-section for conditional simulation.

Then, from top to bottom and from left to right: total likelihood, p, µ, β and α as a function of iterations

for category L. Continuous lines: posterior medians. Dashed lines: initial values

Table 3 Empirical estimates of presence, average thickness and initial values for τ and µ

L S G A Overall

Number of records 22 18 12 3 55

Proportion of presence, p j (0) 0.46 0.75 0.25 0.13 0.38

Average thickness (in m), T̄ j 0.73 2.25 3.89 1.10 1.94

Initial value, τ j (0) 0.10 -0.67 0.67 1.15 –

initial value, µ j (0) 0.96 2.06 6.52 2.21 –

depth of the boreholes is highly variable, a depth window between the surface (from482

35 m to 40 m above sea level) and 25 m above sea level is selected. There are four483

categories L(imo) (Silt), S(abbia) (Sand), G(hiaia) (Gravel), A(rgilla) (Clay) and the484

parent sequence, containing six layers, is: [L-S-G-L-A-G]. Notice that, since there485

is only one layer for S and A, the associated thicknesses on the boreholes are known486

without ambiguity when present, which is not necessarily the case for the thicknesses487

associated to L and G. From two to four layers are observed on each borehole. One488

borehole contains an observed sequence of length 4 and five boreholes contain an489

observed sequence of length 3. The empirical estimates of the presence and the average490

thicknesses are shown in Table 3. The most observed categories are S followed by L491

as measured by the proportion of presence (for L, ρ j (0) = 22/(2 × 24) = 0.46. The492

less observed category is A, with three records only.493

6.2 Model Setting494

The empirical estimates are transformed into initial values for τ j and µ j , by setting495

initial values for β j to β j (0) = 1. Thus, for each category j496
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µ j (0) =
T̄ j p j (0)

φ(τ j (0))
, with τ j (0) = �−1(1 − p j (0)).497

Preliminary tests (not reported here) showed that the likelihood computed with a498

Matérn covariance function is almost always significantly larger with a smoothness499

parameter ν = 1/2 than with ν = 3/2 or ν = 5/2. Therefore, the parameter ν is set to500

1/2, corresponding to an exponential covariance function, even though this covariance501

function corresponds to continuous but non differentiable random surfaces. This point502

will be further discussed in Sect. 7. Initial values for the range are set to 1 km.503

In this dataset, sequences are highly incomplete. As a consequence, the MCMC504

algorithm needs to have good mixing properties in order to explore the many possible505

augmented sequences that are compatible with the observations. Proposals follow a506

random walk with flat uninformative priors similar to that of Sect. 4 for p j and β j .507

PC priors were used for µ j and α j , with ǫα = ǫµ = 0.01 and (α0, µ0) = (0.25, 10).508

Algorithm 2 is run for 30,000 iterations, after a burn-in period of 2,500 iterations.509

The values of the parameters are then sampled every 50 iterations, so that m = 600510

posterior samples are collected. The proposals in the Metropolis-Hasting steps follow511

a uniform random walk with increments in [− 0.4, 0.4] for µ j and β j , in [− 0.15, 0.15]512

for p j and in [− 0.2, 0.2] for the range α j . With these choices, the acceptance ratio for513

the parameters was around 0.8. Although it is higher than recommended, it does not514

appear to have a negative impact on the estimation procedure. Instead the acceptance515

ratio of new thickness configurations was equal to 0.22 due to the incompleteness of516

this data set. Figure 11 shows the values of the parameters p, µ, β and α as a function517

of iterations after burn-in, for category L. It is quite clear that the chain is stationary518

with good mixing. Notice the difference between the initial values and the posterior519

medians. Similar results have been obtained for the other categories.520

6.3 Results521

6.3.1 Analysis of Thicknesses522

When data belonging to the categories L and G are observed on the boreholes, the523

recorded thickness might belong to a single layer or to two layers. For these categories,524

the posterior thickness distribution might therefore look different from the observed525

one. Figure 12 (left) shows how thicknesses of the first layer L in borehole #1 vary526

along iterations thanks to the Split, Merge and Displace moves of the MCMC. On this527

borehole, the observed sequence is [L-A-G]. The measured thickness for L is equal528

to 0.4. Since the parent sequence is [L-S–G-L-A-G] this thickness could correspond529

to the first layer only (case I), to the fourth layer only (case II), or it could be shared530

between the two layers (case III). Figure 12 (right) represents the posterior histogram531

of the thickness in the first layer. Case I corresponds to 0.4, case II to 0 and case III to532

any value in the interval (0, 0.4). Frequencies computed along the iterations reveal that533

case III is the most likely case, with an estimated probability of 0.47. The probabilities534

of case I and case II are equal to 0.42 and 0.11, respectively. A similar analysis can be535

performed easily on other boreholes and categories.536
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Fig. 12 Thickness of the first layer L in borehole # 1. Left: as a function of iterations. Right: posterior

histogram

Fig. 13 Thickness cumulative distributions (TCD). In gray: MCMC samples of the posterior theoretical

TCD according to (16); black continuous curve: pointwise posterior median TCD; black dashed curves:

pointwise posterior 0.05 and 0.95 posterior quantiles. Red dashed curve: TCD of the original data; blue

curve: TCD of the MCMC samples. Left: category L; right: category G

For a given category (for simplicity the index j is dropped), and for given parameters537

(p, µ, β), the theoretical thickness cumulative distribution (TCD) is538

P(Z ≤ z | p, µ, β) =

∫ τ+(z/µ)1/β

τ

φ(y)

p
dy =

�
(

τ + (z/µ)1/β
)

− �(τ)

p
, (16)539

with �(τ) = 1 − p. The parameters are sampled every 50 iterations of the MCMC,540

thereby mitigating the correlation between successive samples. At each recorded iter-541

ation k = 1, . . . , m, the posterior samples p(k), µ(k) and β(k) make it possible to542

compute a posterior theoretical TCD according to (16). Those are represented in gray543

on Fig. 13 for categories L and G. The ensemble of m posterior TCDs allows us544

to compute pointwise median and the pointwise quantiles q0.05 and q0.95, which are545

represented with black continuous and dashed lines, respectively.546

Empirical posterior TCD can alternatively be computed from the thickness val-547

ues recorded along the sampled iterations k = 1, . . . , m. In principle, empirical and548

theoretical TCDs should match. Figure 13 shows the original and posterior TCDs,549

respectively in red and blue. Thanks to the Split, Merge and Displace movements, the550
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Fig. 14 For each category, posterior histogram of the spatial range and prior distribution (continuous line).

Blue vertical line: posterior median

posterior TCD is slightly smoother than the original one since values intermediate to551

the observed ones are simulated.552

Overall, the match between the empirical and the theoretical TCD is very satisfac-553

tory since the empirical curve is fully included in the envelope of the MCMC samples554

for category G and is mostly included in the envelope for category L.555

6.3.2 Spatial Analysis and Conditional Simulation556

Figure 14 shows the posterior histograms of the spatial range for the four categories,557

with the prior density also shown. This figure indicates that the prior has a heavy weight558

on the posterior distributions for each unit. However, when a category is well informed559

(L and G), the posterior distribution is more concentrated around the posterior median560

(indicated with a vertical blue line), equal to 1.03, 0.73 and 0.85 for categories L,561

S and G, respectively. On the contrary, category A has only three records. Since the562

likelihood contains very little information, the posterior distribution is very close to563

the prior one. The result of this analysis is that there is indeed a significant amount of564

spatial correlations in the random fields modeling the thickness of the layers for all565

categories but A.566
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Fig. 15 Two cross-sections along the line shown in Fig. 11 (top left). Notice that there are two different

layers for G in the bottom cross-section

Figure 15 shows two conditional simulations performed along the cross-section567

depicted in Fig. 11 (top left). This cross-section has been chosen because it is close to568

three conditioning boreholes (shown with black vertical lines on Fig. 15) with incom-569

plete observed sequences that allow different thickness configurations in category G.570

The color code is the following: red for L, blue for S, green for G and black for A.571

The gray color corresponds to undefined lithofacies below the last recorded layer. The572

first cross-section corresponds to iteration 8,900 after burn-in, for which the likelihood573

was the highest along the whole MCMC (log-likelihood is equal to −162.5). Here,574

the G thickness is entirely in layer # 6. The second cross-section corresponds to a575

configuration where the G thickness is now shared between the two layers. Different576

shades of green have been used to distinguish the two layers. This second configu-577

ration corresponds to the most likely configuration with shared thicknesses between578

the two G layers (log-likelihood is equal to −171.3). Notice that it is significantly579

less likely than the first configuration, indicating that the data is orders of magnitude580

less likely with the second configuration than with the first one. Notice also that the581

cross-sections are quite different when moving away from the conditioning boreholes.582

The parameters corresponding to these two configurations are reported in Table 4.583

7 Concluding Remarks584

In this paper a new rule-based approach for simulating depositional sequences of585

surfaces conditionally to lithofacies thickness data has been presented. A distinctive586

feature of this approach is that it takes into account in a coherent way the different587

amount of information along horizontal and vertical dimensions that are usually con-588
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Table 4 Parameters corresponding to the two configurations shown in Fig. 15

First configuration Second configuration

Log-likelihood =−162.5 Log-likelihood =−171.3

L S G A L S G A

p j 0.40 0.81 0.23 0.05 0.45 0.64 0.46 0.48

µ j 1.29 1.80 6.99 2.20 1.98 2.02 5.01 11.03

β j 1.54 1.59 1.01 0.50 1.42 1.41 1.39 1.76

α j 1.25 0.29 0.78 0.71 2.03 0.54 0.43 3.58

tained in borehole datasets: few cores and, consequently, few horizontal information589

but complete information along the depth.590

This is achieved by supposing that there exists a common lithological sequence of591

facies that is compatible with the observed data. Moreover the sequence is supposed592

to be known in advance. The facies thickness, which is non-negative, is modeled by593

means of a truncated and transformed stationary Gaussian field. In principle, other594

non-negative random fields could be considered, but this choice made it possible to595

exploit the flexibility of Gaussian random fields in the selection of the covariance596

functions with different degrees of smoothness. The evaluation of the likelihood is597

made possible thanks to the Gaussian framework for which well known methods and598

efficient computing tools are available.599

A data augmentation algorithm, coupled with a MCMC algorithm, is employed for600

learning the parameters of the stochastic model from borehole data. A very interesting601

feature of the proposed algorithm is that the exploration of all different configurations602

that are compatible with the available data is possible. Thanks to the MCMC approach603

and the Bayesian framework, it associates a likelihood to each of the possible real-604

izations corresponding to a set of parameters. From those, as shown in Sect. 6.3, one605

can assess an empirical probability for each different configuration, select the most606

likely configurations and compute many other statistics of interest to the user. The607

algorithm requires multiple (to the order of M ×n) evaluations of the joint probability608

of a Gaussian vector being below a given threshold. The current implementation in R609

uses the mvtnorm package (Genz et al. 2019) that handles vectors with a few dozens610

of coordinates rather easily. It starts to slow down quite significantly around 100 coor-611

dinates and is unable to cope with more than 1,000 coordinates. Further research is612

thus required if the number of boreholes goes from moderate to high or very high.613

One possible choice could be the approximation proposed in Martinetti and Geniaux614

(2017), but the impact of using a less precise approximation remains to be evaluated.615

A too small dataset entails difficulties in specifying the regularity and the range of616

the covariance function, as was shown with category A that has only three records. It617

was found in the present work that parameters were reasonably well estimated with618

15 records per category. On the other hand, as the data set gets larger and denser (e.g.619

when the horizontal distance between nearest neighbor boreholes becomes a small620

fraction of the range parameter) the likelihood will get more peaked around local621

maxima, thereby decreasing the mixing of the MCMC. In this case, exploring all622
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configurations coherent with the parent sequence is likely to become more difficult.623

Longer chains and multiple chains starting from very different initial configurations624

will probably be necessary.625

Several assumptions and restrictions have been made in this work, which can be626

lifted in order to generalize this work. The stationarity assumption, which has proved627

appropriate here, could be relaxed and the parameters could be easily modified to take628

covariates into account. Only a few half-integer values of the smoothness parameters629

have been considered, and the fitting of this parameter was done outside the MCMC630

machinery. In principle, the smoothness parameter could be different for different631

facies and it could be estimated in the Bayesian framework, just as any other parameter.632

Estimating simultaneously the three parameters of the Matérn covariance in a Bayesian633

context is known to be extremely difficult. When there are only few data, this was634

made possible thanks to the PC priors (Fuglstad et al. 2019). Currently, to the best635

of our knowledge, the simultaneous PC prior for (ν, α, σ 2) for Matérn covariance is636

unknown. Finding such PC priors is left for further research.637

Currently, independent MCMCs are launched, one for every possible value ν ∈638

{1/2, 3/2, 5/2}. The one with the highest likelihood and the best mixing is selected639

and ν is fixed at that value. When analyzing the data from the Venetian plain, it was640

found that ν = 1/2 was best, despite the fact that the associated thicknesses (and641

thus surfaces) are mean-square continuous but not differentiable. One could have642

imposed ν = 3/2, but at the cost of a very short spatial range implying almost no643

spatial correlation. Whether one should let the data speak or impose a model for the644

regularity is a debate. Here, a data-driven approach was chosen.645

Finally, the function that transforms the Gaussian values to thicknesses was chosen646

to be a power function, but any other positive function could be used.647

One information that is often available in real applications and on much more points648

than boreholes is the nature of the facies on the surface. It is possible to incorporate649

such information at the cost of small changes in the method. At a given location s650

where this information is available, one could consider that the facies of the upper651

layer, say facies j , is known and has a positive thickness. The conditioning data would652

therefore be that Wupper(x) > τ j . This conditioning can easily be handled within653

our MCMC procedure. At this location, there would be no conditioning for the other654

layers.655

The proposed approach depends on the existence and the knowledge of a com-656

mon lithological sequence of facies that is compatible with the observed data. If the657

sequence is unknown, it is possible to derive it from the data, possibly by impos-658

ing some restriction, such as minimum length. This problem has not been tackled659

here, since it has been considered beyond the scope of this work. However it is worth660

mentioning that the approach presented here can be modified to account for several661

different parent sequences with their associated prior probabilities.662
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Appendix A: A Longer Example of Incomplete Sequence667

See Table 5.668

Table 5 A longer and more complex example of a parent sequence C = [Blue-Red,

Blue-Green-Blue-Red-Green-Blue] with respect to a recorded sequence Co and To

Parent Recorded Compatible augmented sequences

C Co To Ca Ta Za Ca Ta Za Ca Ta Za

Blue Blue T o
1 Blue T o

1 T o
1 Blue T o

1 T o
1 Blue T o

1 T o
1

Red Red T o
2 Red T o

2 T o
2 − T o

1 Red T o
2 T o

2 − T o
1 T o

1 0

Blue Green T o
3 T o

2 0 T o
2 0 T o

1 0

Green Blue T o
4 Green T o

3 T o
3 − T o

2 T o
2 0 T o

1 0

Blue – – Blue T o
4 T o

4 − T o
3 T o

2 0 T o
1 0

Red – – T o
4 0 T o

2 0 Red T o
2 T o

2 − T o
1

Green – – T o
4 0 Green T o

3 T o
3 − T o

2 Green T o
3 T o

3 − T o
2

Blue – – T o
4 0 Blue T o

4 T o
4 − T o

3 Blue T o
4 T o

4 − T o
3

Blue T o
1 T o

1 Blue T o
1 T o

1 Blue T o
1 T o

1

Red T̃ T̃ − T o
1 Red T o

2 T o
2 − T o

1 T o
1 0

T̃ 0 T o
2 0 Red T o

2 T o
2 − T o

1

T̃ 0 Green T̃ T̃ − T o
2 Green T o

3 T o
3 − T o

2

T̃ 0 T̃ 0 Blue T̃ T̃ − T o
3

Red T o
2 T o

2 − T̃ T̃ 0 T̃ 0

Green T o
3 T o

3 − T o
2 Green T o

3 T o
3 − T̃ T̃ 0

Blue T o
4 T o

4 − T o
3 Blue T o

4 T o
4 − T o

3 Blue T o
4 T o

4 − T̃

Blue T̃ T̃ Blue T̃ T̃ Blue T̃ T̃

T̃ 0 T̃ 0 T̃ 0

T̃ 0 Blue T o
1 T o

1 − T̃ Blue
˜̃
T

˜̃
T − T̃

T̃ 0 T o
1 0

˜̃
T 0

Blue T o
1 T o

1 − T̃ T o
1 0 Blue T o

1 T o
1 −

˜̃
T

Red T o
2 T o

2 − T o
1 Red T o

2 T o
2 − T o

1 Red T o
2 T o

2 − T o
1

Green T o
3 T o

3 − T o
2 Green T o

3 T o
3 − T o

2 Green T o
3 T o

3 − T o
2

Blue T o
4 T o

4 − T o
3 Blue T o

4 T o
4 − T o

3 Blue T o
4 T o

4 − T o
3

Only nine compatible augmented sequences are reported

References669

Allard D, Froidevaux R, Biver P (2006) Conditional simulation of multi-type non stationary Markov object670

models respecting specified proportions. Math Geol 38(8):959–986671

Allard D, D’Or D, Froidevaux R (2011) An efficient maximum entropy approach for categorical variable672

prediction. Eur J Soil Sci 62(3):381–393673

123

Journal: 11004 Article No.: 9875 TYPESET DISK LE CP Disp.:2020/6/8 Pages: 29 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Math Geosci

Allcroft DJ, Glasbey CA (2003) A latent Gaussian Markov random-field model for spatiotemporal rainfall674

disaggregation. J R Stat Soc Ser C Appl Stat 52(4):487–498675

Armstrong M, Galli A, Beucher H, Loc’h G, Renard D, Doligez B, Eschard R, Geffroy F (2011) Plurigaussian676

simulations in geosciences. Springer, Berlin677

Baxevani A, Lennartsson J (2015) A spatiotemporal precipitation generator based on a censored latent678

Gaussian field. Water Resour Res 51(6):4338–4358679

Benoit L, Allard D, Mariethoz G (2018a) Stochastic rainfall modeling at sub-kilometer scale. Water Resour680

Res 54(6):4108–4130681

Benoit N, Marcotte D, Boucher A, D’Or D, Bajc A, Rezaee H (2018b) Directional hydrostratigraphic units682

simulation using MCP algorithm. Stoch Environ Res Risk Assess 32(5):1435–1455683

Bertoncello A, Sun T, Li H, Mariethoz G, Caers J (2013) Conditioning surface-based geological models to684

well and thickness data. Math Geosci 45(7):873–893685

Beucher H, Galli A, Le Loc’h G, Ravenne C, Group H et al (1993) Including a regional trend in reservoir686

modelling using the truncated Gaussian method. In: Soares (ed) Geostat Tróia’92. Kluwer, pp 555–566687

Carle SF, Fogg GE (1996) Transition probability-based indicator geostatistics. Math Geol 28(4):453–476688

Chilès J-P, Delfiner P (2012) Geostatistics: modeling spatial uncertainty, 2nd edn. Wiley, New York689

Comunian A, Renard P, Straubhaar J (2012) 3D multiple-point statistics simulation using 2D training690

images. Comput Geosci 40:49–65691

Comunian A, Jha SK, Giambastiani BM, Mariethoz G, Kelly BF (2014) Training images from process-692

imitating methods. Math Geosci 46(2):241–260693

Cressie N (1993). Statistics for spatial data, revised edition. Wiley, New York694

Fabbri P, Piccinini L, Marcolongo E, Pola M, Conchetto E, Zangheri P (2016) Does a change of irrigation695

technique impact on groundwater resources? A case study in Northeastern Italy. Environ Sci Policy696

63:63–75697

Fuglstad G-A, Simpson D, Lindgren F, Rue H (2019) Constructing priors that penalize the complexity of698

Gaussian random fields. J Am Stat Assoc 114(525):445–452699

Galli A, Beucher H, Le Loc’h G, Doligez B, Group H (1994) The pros and cons of the truncated Gaussian700

method. Geostatistical simulations. Springer, Berlin, pp 217–233701

Gelfand AE (2000) Gibbs sampling. J Am Stat Assoc 95(452):1300–1304702

Genz A, Bretz F (2009) Computation of multivariate normal and t probabilities. Lecture notes in statistics,703

Springer, Heidelberg704

Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F, Hothorn T (2019) mvtnorm: multivariate normal and705

t distributions. R package version 1.0-11706

Le Blévec T, Dubrule O, John CM, Hampson GJ (2017) Modelling asymmetrical facies successions using707

pluri-Gaussian simulations. Geostatistics Valencia 2016. Springer, Berlin, pp 59–75708

Le Blévec T, Dubrule O, John CM, Hampson GJ (2018) Geostatistical modelling of cyclic and rhythmic709

facies architectures. Math Geosci 50(6):609–637710

Liu L, Shih Y-CT, Strawderman RL, Zhang D, Johnson BA, Chai H et al (2019) Statistical analysis of711

zero-inflated nonnegative continuous data: a review. Stat Sci 34(2):253–279712

Marcotte D, Allard D (2018) Gibbs sampling on large lattice with GMRF. Comput Geosci 111:190–199713

Mariethoz G, Caers J (2014) Multiple-point geostatistics: stochastic modeling with training images. Wiley,714

New York715

Martinetti D, Geniaux G (2017) Approximate likelihood estimation of spatial probit models. Region Sci716

Urban Econ 64:30–45717

Matheron G, Beucher H, De Fouquet C, Galli A, Guerillot D, Ravenne C et al (1987) Conditional simulation718

of the geometry of fluvio-deltaic reservoirs. In: SPE annual technical conference and exhibition.719

Society of Petroleum Engineers720

Pyrcz MJ, Sech RP, Covault JA, Willis BJ, Sylvester Z, Sun T, Garner D (2015) Stratigraphic rule-based721

reservoir modeling. Bull Can Pet Geol 63(4):287–303722

Sartore L, Fabbri P, Gaetan C (2016) spMC: an R-package for 3D lithological reconstructions based on723

spatial Markov chains. Comput Geosci 94:40–47724

Simpson D, Rue H, Riebler A, Martins TG, Sørbye SH et al (2017) Penalising model component complexity:725

a principled, practical approach to constructing priors. Stat Sci 32(1):1–28726

Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics.727

Math Geol 34(1):1–21728

Syversveen AR, Omre H (1997) Conditioning of marked point processes within a Bayesian framework.729

Scand J Stat 24(3):341–352730

123

Journal: 11004 Article No.: 9875 TYPESET DISK LE CP Disp.:2020/6/8 Pages: 29 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Math Geosci

Tanner MA (1996) Tools for statistical inference: methods for the exploration of posterior distributions and731

likelihood functions. Springer, Berlin732

Zhang H (2004) Inconsistent estimation and asymptotically equal interpolations in model-based geostatis-733

tics. J Am Stat Assoc 99(465):250–261734

123

Journal: 11004 Article No.: 9875 TYPESET DISK LE CP Disp.:2020/6/8 Pages: 29 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Journal: 11004

Article: 9875

Author Query Form

Please ensure you fill out your response to the queries raised below

and return this form along with your corrections

Dear Author

During the process of typesetting your article, the following queries have arisen. Please

check your typeset proof carefully against the queries listed below and mark the

necessary changes either directly on the proof/online grid or in the ‘Author’s response’

area provided below

Query Details required Author’s response

1. Please check and confirm if the

authors and their respective affilia-

tions have been correctly identified.

2. Please confirm if the corresponding

author is correctly identified.

A
u

th
o

r
 P

r
o

o
f


