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Abstract We consider a government that aims at reducing the debt-to-(gross domestic
product) (GDP) ratio of a country. The government observes the level of the debt-to-
GDP ratio and an indicator of the state of the economy, but does not directly observe
the development of the underlying macroeconomic conditions. The government’s cri-
terion is to minimise the sum of the total expected costs of holding debt and of debt
reduction policies. We model this problem as a singular stochastic control problem
under partial observation. The contribution of the paper is twofold. Firstly, we provide
a general formulation of the model in which the level of the debt-to-GDP ratio and
the value of the macroeconomic indicator evolve as a diffusion and a jump-diffusion,
respectively, with coefficients depending on the regimes of the economy. The latter are
described through a finite-state continuous-time Markov chain. We reduce the orig-
inal problem via filtering techniques to an equivalent one with full information (the
so-called separated problem), and we provide a general verification result in terms of
a related optimal stopping problem under full information. Secondly, we specialise to
a case study in which the economy faces only two regimes and the macroeconomic
indicator has a suitable diffusive dynamics. In this setting, we provide the optimal
debt reduction policy. This is given in terms of the continuous free boundary arising
in an auxiliary fully two-dimensional optimal stopping problem.

G. Callegaro
Department of Mathematics, University of Padova, via Trieste 63, 35121 Padova, Italy
E-mail: gcallega@math.unipd.it

C. Ceci

Department of Economics, University “G. D’ Annunzio” of Chieti-Pescara, Viale Pindaro 42, 65127 Pescara,
Italy

E-mail: claudia.ceci @unich.it

G. Ferrari

Center for Mathematical Economics (IMW), Bielefeld University, Universititsstrasse 25, 33615 Bielefeld,
Germany

E-mail: giorgio.ferrari @uni-bielefeld.de



Please note that this supplementary PDF file visualizes just the linguistic edits. It is meant for your information only, and not for making corrections.

2 Giorgia Callegaro et al.

Keywords Singular stochastic control - Partial observation - Optimal stopping - Free
boundary - Debt-to-GDP ratio

Mathematics Subject Classification (2010) 93E20 - 60G35 - 93E11 - 60G40 -
60J60 - 91B64

JEL Classification C61 - H63 - E32

1 Introduction

The question of optimally managing the debt-to-GDP ratio (also called “debt ratio)
of a country has become particularly important in the last years. Indeed, concurrently
with the financial crisis started in 2007, debt-to-GDP ratios exploded from an average
of 53% to circa 80% in developed countries. Clearly, the debt management policy of
a government highly depends on the underlying macroeconomic conditions; indeed,
these affect for example the growth rate of the GDP which in turn determines the
growth rate of the debt-to-GDP ratio of a country. However, in practice, it is typically
neither possible to measure in real time the growth rate of the GDP, nor can one
directly observe the underlying business cycles. On August 24, 2018, during a speech
at “Changing Market Structure and Implications for Monetary Policy” — a symposium
sponsored by the Federal Reserve Bank of Kansas City in Jackson Hole, Wyoming —,
the chairman of the Federal Reserve Jerome H. Powell said:

... In conventional models of the economy, major economic quantities such as
inflation, unemployment and the growth rate of the gross domestic product fluctuate
around values that are considered “normal” or “natural” or “desired”. The FOMC
(Federal Open Market Committee) has chosen a 2 percent inflation objective as one
of these desired values. The other values are not directly observed, nor can they be
chosen by anyone ...

Following an idea that dates back to Hamilton [38], we assume in this paper that
the GDP growth rate of a country is modulated by a continuous-time Markov chain that
is not directly observable. The Markov chain has Q > 2 states modelling the different
business cycles of the economy, so that a shift in the macroeconomic conditions induces
a change in the value of the growth rate of the GDP. The government can observe only
the current levels of the debt-to-GDP ratio and of a macroeconomic indicator. The
latter might be e.g. one of the so-called “Big Four” which are usually considered
proxies of the industrial production index, hence of the business conditions. These
indicators constitute the Conference Board’s Index of Coincident Indicators; they
are employment in non-agricultural businesses, industrial production, real personal
income less transfers, and real manufacturing and trade sales. We refer to e.g. Stock
and Watson [60], where the authors present a wide range of economic indicators and
examine the forecasting performance of various of them in the recession of 2001.

Motivated by the recent aforementioned debt crisis, we consider a government
that has the priority to return debt to less dangerous levels, to move away from the
dark corners (O. Blanchard, former chief economist of the International Monetary
Fund (2014)) e.g. through fiscal policies or imposing austerity policies in the form
of spending cuts. In our model, we thus preclude the possibility for the government
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to increase the level of the debt ratio and we neglect any possible potential benefit
resulting from holding debt, even if we acknowledge that a policy of debt reduction
might not be always the most sensible approach, as also observed by Ostry et al. [55]
(see also the discussion in Remark 2.6 below). We further assume that the loss resulting
from holding debt can be measured through a convex and nondecreasing cost function,
and that the debt ratio is instantaneously affected by any reduction. The latter need
not necessarily be performed at rates, but also lump sum actions are allowed, and the
cumulative amount of the debt ratio’s decrease is the government’s control variable.
Any decrease of the debt ratio results in proportional costs, and the government aims
at choosing a debt-reduction policy that minimises the total expected loss of holding
debt, plus the total expected costs of interventions on the debt ratio. In line with recent
papers on stochastic control methods for optimal debt management (see Cadenillas
and Huamdn-Aguilar [8,9], Ferrari [31] and Ferrari and Rodosthenous [32]), we model
the previous problem as a singular stochastic control problem. However, differently
to all previous works, our problem is formulated in a partial observation setting, thus
leading to a completely different mathematical analysis. In our model, the observations
consist of the debt ratio and the macroeconomic indicator. The debt ratio is a linearly
controlled geometric Brownian motion, and its drift is given in terms of the GDP
growth rate, which is modulated by the unobservable continuous-time Markov chain
Z. The macroeconomic indicator is a real-valued jump-diffusion which is correlated to
the debt ratio process, and which has drift and both intensity and jump sizes depending
onZ.

Our contributions. Our study of the optimal debt reduction problem is performed
thought three main steps.

First of all, via advanced filtering techniques with mixed-type observations, we
reduce the original problem to an equivalent problem under full information, the
so-called separated problem. This is a classical procedure used to handle optimal
stochastic control problems under partial information (see e.g. Fleming and Pardoux
[33], Bensoussan [4, Chap. 7.1] and Ceci and Gerardi [12]) The filtering problem
consists in characterising the conditional distribution of the unobservable Markov
chain Z atany time ¢, given observations up to time ¢. The case of diffusion observations
has been widely studied in the literature, and textbook treatments can be found in
Elliott et al. [29, Chap. 8], Kallianpur [44, Chap. 8] and Liptser and Shiryaev [49,
Chap. 8]. There are also known results for pure-jump observations (see e.g. Brémaud
[7, Chap. IV], Ceci and Gerardi [13,14], Kliemann et al. [47] and references therein).
More recently, filtering problems with mixed-type information which involve pure-
jump processes and diffusions have been studied by Ceci and Colaneri [15,16], among
others.

Notice that also the economic and financial literature has experienced papers on
models under partial observation where a reduction to a complete information setting is
performed via filtering techniques and the problem is split into the so-called “two-step
procedure”. We refer e.g. to the literature on portfolio selection in the seminal papers
by Detemple [25] and Gennotte [36] (in a continuous-time setting, with diffusive
observations leading to a Gaussian filter process); to Veronesi [62] for an equilibrium
model with uncertain dividend drift in the field of market over- and under-reaction to
information; to the more recent work by Luo [51], where different uncertainty models
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are analysed in a Gaussian setting with the aim of studying strategic consumption—
portfolio rules when dealing with precautionary savings. Generally, the economic
and financial literature refers to well-known results in filtering theory, in the case of
diffusive observation processes such as additive Gaussian white noise (e.g. Detemple
[25], Gennotte [36] and Luo [51]) or in the case of pure-jump observations (see
Bauerle and Rieder [3] and Ceci [11], among others). A few papers consider mixed-
type information (see e.g. Callegaro et al. [10] and Frey and Schmidt [34], among
others). In our paper, we deal with a more general setting with a two-dimensional
observation process allowing jumps, for which known results cannot be invoked.

Usually, two filtering approaches are followed: the so-called reference probability
approach (see the seminal paper by Zakai [65] and the more recent papers Frey and
Runggaldier [35], Ceci and Colaneri [16] and Colaneri et al. [18], among others)
and the innovation approach (see e.g. Brémaud [7, Chap. IV.1], Ceci and Colaneri
[15], Eksi and Ku [27] and Frey and Schmidt [34]). Due to the general structure of
our observations’ dynamics, the innovation approach is more suitable to handle our
filtering problem, and this leads to the so-called Kushner—Stratonovich equation. In
particular, it turns out that the dynamics of our filter and of the observation process
are coupled, thus making the proof of uniqueness of the solution to the Kushner—
Stratonovich system more delicate. After providing such a result, we are then able to
show that the original problem under partial observation and the separated problem
are equivalent, that is, they share the same value and the same optimal control.

Secondly, we exploit the convex structure of the separated problem and provide a
general probabilistic verification theorem. This result — which is in line with findings
in Baldursson and Karatzas [2], De Angelis et al. [20] and Ferrari [31], among others
— relates the optimal control process to the solution to an auxiliary optimal stopping
problem. Moreover, it proves that the value function of the separated problem is the
integral — with respect to the controlled state variable — of the value function of the
optimal stopping problem. The stopping problem thus gives the optimal timing at
which debt should be marginally reduced.

Finally, by specifying a setting in which the continuous-time Markov chain faces
only two regimes (a fast growth or slow growth phase) and the macroeconomic in-
dicator is a suitable diffusion process, we are able to characterise the optimal debt
reduction policy. In this framework, the filter process is a two-dimensional process
(7w, 1 — m1)i>0, where m; is the conditional probability at time ¢ that the economy
enjoys the fast growth phase. We prove that the optimal control prescribes to keep at
any time the debt ratio below an endogenously determined curve that is a function of
the government’s belief about the current state of the economy. Such a debt ceiling
is the free boundary of the fully two-dimensional optimal stopping problem that is
related to the separated problem (in the sense of the previously discussed verification
theorem). By using almost exclusively probabilistic arguments, we are able to show
that the value function of the auxiliary optimal stopping problem is a C'-function of
its arguments, and thus enjoys the so-called smooth-fit property. Moreover, the free
boundary is a continuous, bounded and increasing function of the filter process. This
last monotonicity property has also a clear economic interpretation: the more the gov-
ernment believes that the economy enjoys a regime of fast growth, the less strict the
optimal debt reduction policy should be.
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As a remarkable byproduct of the regularity of the value function of the optimal
stopping problem, we also obtain that the value function of the singular stochastic
control problem is a classical solution to its associated Hamilton—Jacobi—Bellman
(HJB) equation. The latter takes the form of a variational inequality involving an
elliptic second-order partial differential equation (PDE). It is worth noticing that the
C?-regularity of the value function implies the validity of a second-order principle of
smooth fit, usually observed in one-dimensional problems.

We believe that the study of the auxiliary fully two-dimensional optimal stopping
problem is a valuable contribution to the literature on its own. Indeed, while the
literature on one-dimensional optimal stopping problems is very rich, the problem of
characterising the optimal stopping rule in multi-dimensional settings has been so far
rarely explored in the literature (see the recent work by Christensen et al. [17], De
Angelis etal. [20] as well as Johnson and Peskir [43] among the very few papers dealing
with multi-dimensional stopping problems). This discrepancy is due to the fact that a
standard guess-and-verify approach, based on the construction of an explicit solution
to the variational inequality arising in the considered optimal stopping problem, is
no longer applicable in multi-dimensional settings where the variational inequality
involves a PDE rather than an ordinary differential equation.

Related literature. As already noticed above, our paper is placed among those
recent works addressing the problem of optimal debt management via continuous-
time stochastic control techniques. In particular, Cadenillas and Huaman-Aguilar [8,
9] model an optimal debt reduction problem as a one-dimensional control problem
with singular and bounded-velocity controls, respectively. In the work by Ferrari and
Rodosthenous [32], the government is allowed to increase and decrease the current
level of the debt ratio, and the interest rate on debt is modulated by a continuous-time
observable Markov chain. The mathematical formulation leads to a one-dimensional
bounded-variation stochastic control problem with regime switching. In the model
by Ferrari [31], when optimally reducing the debt ratio, the government takes into
consideration the evolution of the inflation rate of the country. The latter evolves
as an uncontrolled diffusion process and affects the growth rate of the debt ratio,
which is a process of bounded variation. In this setting, the debt reduction problem
is formulated as a two-dimensional singular stochastic control problem whose HIB
equation involves a second-order linear parabolic partial differential equation. All the
previous papers are formulated in a full information setting, while ours is under partial
observation.

The literature on singular stochastic control problems under partial observation is
also still quite limited. Theoretical results on the PDE characterisation of the value
function of a two-dimensional optimal correction problem under partial observation
are obtained by Menaldi and Robin [53], whereas a general maximum principle for
a not necessarily Markovian singular stochastic control problem under partial infor-
mation has more recently been derived by @ksendal and Sulem [54]. We also refer
to De Angelis [19] and Decamps and Villeneuve [23] who provide a thorough study
of the optimal dividend strategy in models in which the surplus process evolves as a
drifted Brownian motion with unknown drift that can take only two constant values,
with given probabilities.
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Outline of the paper. The rest of the paper is organised as follows. In Sect. 2, we
introduce the setting and formulate the problem. The reduction of the problem under
partial observation to the separated problem is performed in Sect. 3; in particular,
the filtering results are presented in Sect. 3.1. The probabilistic verification theorem
connecting the separated problem to one of optimal stopping is then proved in Sect. 3.3.
In Sect. 4, we consider a case study in which the economy faces only two regimes.
Its solution, presented in Sects. 4.2 and 4.3, hinges on the study of a two-dimensional
optimal stopping problem that is performed in Sect. 4.1. Finally, Appendix A collects
the proofs of some technical filtering results.

2 Setting and problem formulation
2.1 The setting

Consider the complete filtered probability space (€2, F, [F, P) capturing all the uncer-
tainty of our setting. Here, F := (F;),>o denotes the full information filtration. We
suppose that it satisfies the usual hypotheses of completeness and right-continuity.

We denote by Z a continuous-time finite-state Markov chain describing the differ-
ent states of the economy. For Q > 2, let S := {1, 2, ..., O} be the state space of Z
and (X;;)1<i,j<p its generator matrix. Here A;;, 7 # j, gives the intensity of a transi-
tion from state i to state j and is such that A;; > O fori # j and ZJ.Q:L#I- Aij = —Ajj.
For any time ¢t > 0, Z; is JF;-measurable.

In the absence of any intervention by the government, we assume that the (uncon-
trolled) debt-to-GDP ratio evolves as

dX? = (r — g(Z))Xdt + o X2dW;,  XJ=x € (0, 00), (2.1

where W is a standard F-Brownian motion on (€2, F) independent of Z, r > 0 and
o > 0are constants and g : S — R. The constant r is the real interest rate on debt, o
is the debt’s volatility and g(i) € R is the rate of the GDP growth when the economy
isin state i € S.

It is clear that (2.1) admits a unique strong solution, and when needed, we denote
it by X*0 for any x > 0. The current level of the debt-to-GDP ratio is known to the
government at any time ¢, and X*0 is therefore the first component of the so-called
observation process.

The government also observes a macroeconomic stochastic indicator 7, e.g. one of
the so-called “Big Four”, which we interpret as a proxy of the business conditions. We
assume that 7 is a jump-diffusion process solving the stochastic differential equation

dny = bi(ns, Zp)dt + o1(n)dW, + o2(n)d B, + c(n—, Z;-)d Ny,

(2.2)
no=gq €Z

where o1 > 0, 0o > 0 and by, ¢ are measurable functions of their arguments and
T C Ris the state space of . Here, B is an [F-standard Brownian motion independent
of W and Z. Moreover, N is an F-adapted point process, without common jump
times with Z, independent of W and B. The predictable intensity of N is denoted
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by (N (Z:-))+>0 and depends on the current state of the economy, with Wy =o0
being a measurable function. From now on, we make the following assumptions
that ensure strong existence and uniqueness of the solution to (2.2) (by a standard
localising argument, one can indeed argue as e.g. in the proof of Xi and Zhu [64,
Theorem 2.1], performed in a setting more general than ours by employing Ikeda and
Watanabe [40, Theorem IV.9.1]).

Assumption 2.1 The functionsb; : Zx S — R,01:Z — (0,00),02 : Z — (0, 00)
andc :Z x S — R are such that forany i € S,

(1) (continuity) by (-, i), o1(-), 02(-) and c¢(-, i) are continuous;

(i) (local Lipschitz conditions) for any R > 0, there exists a constant Lg > 0
such that if |¢| < R, |¢'| < R, q,q’ € Z, then

1b1(g, 1) = bi(q’, DI + |o1(q) — 01(g")| + l02(q) — 02(g")| + le(g, i) — c(q’, D)
< Lrlg—4'l;
(iii) (growth conditions) there exists a constant C > 0 such that
b1(q, DI + 101 + lo2(g)* + le(q, )P < €A+ 1gI*).

The dynamics proposed in (2.2) is of jump-diffusive type and allows size and
intensity of the jumps to be affected by the state of the economy. It is therefore flexible
enough to describe a large class of stochastic factors which may exhibit jumps.

The observation filtration H = (H;),> is defined as

H:=FX v,

where FX° and F” denote the natural filtrations generated by X and 7, respectively,
as usual augmented by P-null sets. Clearly, (X°, 1) is adapted to both H and F, and

HCF.

The above inclusion means that the government cannot directly observe the state Z of
the economy, but that this has to be inferred through the observation of (X°, ). We
are therefore working in a partial information setting.

2.2 The optimal debt reduction problem

The government can reduce the level of the debt-to-GDP ratio by intervening on the
primary budget balance (i.e., the overall difference between government revenues and
spending), for example through austerity policies in the form of spending cuts. When
doing so, the debt ratio dynamics becomes

dX; = (r —g(Z))X/dt + o X}dW; —dv;,  X{_=x>0. (2.3)

The process v is the control that the government chooses based on the information at
its disposal. More precisely, v; defines the cumulative reduction of the debt-to-GDP
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ratio made by the government up to time ¢, and v is therefore a nondecreasing process
belonging to the set

Mx,y.q) = {v: Q2 xRy = Ry : (v(w) :=v(w, 1)), is nondecreasing,

t>0
right-continuous, H-adapted and such that
X} > O0foreveryr >0, Xj_ = x,

P[Zy =i]=yi.i € S,n0=qas.},

for any given and fixed initial value x € (0, co) of X", initial value ¢ € Z of 5, and
Y€ Y. Here

0
V= {Xz(yl,...,yQ):yie[O,l],i:l,...Q,Zyizl}
i=1

is the probability simplex on R, representing the space of initial distributions of the
process Z. From now on, we set vg_ = 0 a.s. for any v € M (x, V. q)-

Remark 2.2 Notice that in the definition of the set M above, as well as in (2.4)
and in (2.5) below, we have stressed the dependency on the initial data (x, y, g) just
for notational convenience, not to indicate any Markovian nature of the considered
problem, which is in fact not given.

For any (x, Y, q) € (0,00) x Y xZandv € M(x, Y q), there exists a unique
solution to (2.3), denoted by X;"", that is given by

X,V 1,0 ! dUS X,V
X=X x = W , =0, X0 =x,
0 5

where
X0 — o =8 Z)ds—30% W, 5

Here and in the rest of this paper, we use the notation fé (H)dvg = f[o t]( dvy
for the Lebesgue—Stieltjes integral with respect to the random measure dv. induced
by the nondecreasing process v on [0, 00).

Remark 2.3 The dynamics (2.3) might be justified in the following way. Suppose that
the public debt (in real terms) D and the GDP Y follow the classical dynamics

th = rD,dt — dstv - DO_ =d > 0,
dYt:g(Zt)Ytdt+UYtth, Y0:y>0,

where &, is the cumulative real budget balance up to time ¢ and W is a Brownian
motion. An easy application of Itd’s formula and a change of measure then gives that
the ratio X := D/Y evolves as in (2.3), upon setting v. := fo d&g/Ysand x :=d/y.
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The government aims at reducing the level of the debt ratio. Having a level of
X, = x at time ¢t > 0 when the state of the economy is Z; = i, the government
incurs an instantaneous cost (loss) (x, i). This may be interpreted as an opportunity
cost resulting from private investments’ crowding out, less room for financing public
investments, and from a tendency to suffer low subsequent growth (see the technical
report [30] and the work by Woo and Kumar [63], among others). The cost function
h: R xS +— Ry fulfils the following requirements (see also Cadenillas and Huamén-
Aguilar [8] and Ferrari [31]).

Assumption 2.4 (i) For any i € S, the mapping x — h(x,i) is strictly convex,
continuously differentiable and nondecreasing on R.. Moreover, h(0, i) = 0.
(i1) For any given x € (0, 00) and i € S, one has

o oo
E[/ e P h(x, i)dt] + ]E[f e P X On, (X0, i)dt} < .
0 0

Remark 2.5 1) As an example, the power function given by h(x, i) = ¥;x"*! for
(x,7) € [0,00) x S, ¥; > 0, n; > 1 satisfies Assumption 2.4 (for a suitable p > 0
taking care of requirement (ii) above). Inspired by the careful discussion of Cadenillas
and Huaman-Aguilar in [8, Sect. 2], n; is a subjective regime-dependent parameter
capturing the government’s aversion/intolerance towards the debt ratio. On the other
hand, the parameter ¢; can be thought of as a measure (in monetary terms) of the
importance of debt: the better the debt’s characteristics (for example, a larger portion
of debt is domestic rather than external, cf. Japan), the lower the parameter ; (relative
to marginal cost of intervention, see below). A power cost function as the one above
is in line with the usual quadratic loss function adopted in the economic literature (see
the influential paper by Tabellini [61], among many others).

2) Notice that the integrability conditions in Assumption 2.4 (ii) ensure that the
expected cost and marginal cost of having debt and not intervening on it are finite
for any possible regime of the economy. In particular, the finiteness of the second
expectation in Assumption 2.4 (ii) guarantees that the stopping functional considered
in Sect. 3.3 below is finite.

Whenever the government intervenes in order to reduce the debt-to-GDP ratio, it
incurs a proportional cost. This might be seen as a measure of the social and finan-
cial consequences deriving from a debt-reduction policy, and the associated regime-
dependent marginal cost k(Z;) allows to express it in monetary terms (we refer e.g.
to Lukkezen and Suyker [50] for an empirical evaluation of those costs). We assume
that k(-) > 0 is a measurable finite function.

Given an intertemporal discount rate p > 0, for any given and fixed triple
(x,y,9) € (0,00) x YV x Z, the government thus aims to minimise the expected

total cost functional
o0
jx’y,q(l)) = E[/ e_mh(Xf’U, Z[)dt +/
= 0 0

for v € M(x,y,q). The government’s problem under partial observation can be
therefore defined as

Voo(x, Y, q) := inf Tx,v.q (W), (x,y,9) € (0,00) x Y xT. (2.5)
= veM(x,y,q) = -

e ¢]

e_’”dvt:| (2.4)



Please note that this supplementary PDF file visualizes just the linguistic edits. It is meant for your information only, and not for making corrections.

10 Giorgia Callegaro et al.

Remark 2.6 1) We provide here some comments on our formulation of the optimal
debt reduction problem. In line with the recent literature [8,9,31,32] on stochastic
control models for debt management, the cost/loss function / appearing in the gov-
ernment’s objective functional is nondecreasing and null when the debt level is zero.
While the latter requirement can be made without loss of generality, the former im-
plicitly means that the government believes that disadvantages arising from debt far
outweigh the advantages, and therefore neglects any potential social and financial ben-
efit arising from having debt (cf. Holmstrom and Tirole [39]). One could think that this
assumption is more appropriate for those countries that have faced severe debt crises
during the last financial crisis and whose governments trust that high government debt
has a negative effect on the long-term economic growth, makes the economy less
resilient to macroeconomic shocks (e.g. sovereign default risks and liquidity shocks)
and poses limits to the adoption of counter-cyclical fiscal policies (see e.g. the book
by Blanchard [5, Chap. 22], the technical report [30] and Won and Kumar [63] for
empirical studies).

However, itis also worth noticing that the general results of Sect. 3 of this paper still
hold if we take x +— h(x, i) convex and bounded from below and remove the condition
of being nondecreasing on R (thus allowing potential benefits arising from debt).
On the other hand, the monotonicity of %(-, i) has an important role in our analysis of
Sects. 3.3 and 4 (see Propositions 4.4 and 4.6).

2) In our model, we do not allow policies that might lead to an increase of the
debt like e.g. investments in infrastructure, healthcare, education and research, and we
neglect any possible social and financial benefit that those economic measures might
induce (see Ostry et al. [55]). From a mathematical point of view, allowing policies
of debt increase would lead to a singular stochastic control problem with controls
of bounded variation, where the two nondecreasing processes giving the minimal
decomposition of any admissible control represent the cumulative amount of the debt’s
increase and decrease. In this case, one might also allow in the government’s objective
functional the total expected social and financial benefits arising from a policy of debt
expansion. We refer to Ferrari and Rodosthenous [32] where a similar setting has been
considered in a problem of debt management under complete observation.

The function V}, is well defined and finite. Indeed, it is nonnegative due to the
nonnegativity of z; moreover, since the admissible policy “instantaneously reduce at
initial time the debt ratio to 0 is a priori suboptimal and has cost x, we have V}o < x.

We should like to stress once more that any v € M(x, y, q) is H-adapted, and
therefore (2.5) is a stochastic control problem under partial observation. In particular,
itis a singular stochastic control problem under partial observation, that is, an optimal
control problem in which the random measures induced by the nondecreasing control
processes on [0, 0o0) might be singular with respect to Lebesgue measure, and in which
one component Z of the state variable is not directly observable by the controller.

In its current formulation, the optimal debt reduction problem is not Markovian
and the dynamic programming approach via an HIB equation is not applicable. In the
next section, by using techniques from filtering theory, we introduce an equivalent
problem under complete information, the so-called separated problem. This enjoys a
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Markovian structure, and its solution is characterised in Sect. 3.3 through a Markovian
optimal stopping problem.

3 Reduction to an equivalent problem under complete information

In this section, we derive the separated problem. To this end, we first study the filtering
problem arising in our model. As already discussed in the introduction, results on
such a filtering problem cannot be directly obtained from existing literature due to the
structure of our dynamics.

3.1 The filtering problem

The filtering problem consists in finding the best mean-squared estimate of f (Z;), for
any ¢ and any measurable function f, on the basis of the information available up to
time 7. In our setting, that information flow is given by the filtration H. The estimate
can be described through the filter process (7;),>¢ which provides the conditional
distribution of Z; given H, for any time ¢ (see for instance Liptser and Shiryaev [49,
Chap. 8]). For any probability measure ; on S = {1, ..., Q} and any function f on S,
we write u(f) = fS fdu = ZZQ:1 f@)p(i}). It is known that there exists a cadlag
(right-continuous with left limits) process taking values in the space of probability
measures on S = {1, ..., Q} such that for any measurable function f on S,

7 (f) = ELf(Z)IH:]; 3.1

see for further details Kurtz and Ocone [48, Lemma 1.1]. Moreover, since Z takes
only a finite number of values, the filter is completely described by the vector

i (fi) =PlZ: =ilH:], i €S,

where f;(z) = 1{;—;, i € S. With a slight abuse of notation, we denote in the
following by 7 (i) the process 7 (f;), so that for all measurable functions f, (3.1) gives

Y
w(f) =Y fOm Q).

i=1

Setting B(Z;) :=r — g(Z;) and B(i) :=r — g(i), i € S, notice that g is clearly a
bounded function. Then we define two processes / and / 1 such that for any t > 0,

t
L= W, —/0 o=\ (s (B) — B(Z,))ds,

t
1= B [ (nlatn ) - ot 20)ds. (32)
0
where

alg, i) :=02(q) ' (bi(q, i) — o ' B()o1(q)),  (g,i) €L x S. (3.3)

Henceforth, we work under the following Novikov condition.
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Assumption 3.1

1 rt .
E[e? Jo "‘2(’78’29‘13] <oo foranyt > 0.

Under Assumption 3.1, by classical results from filtering theory (see e.g. [49,
Chap. 7]), the innovation processes I and I' are Brownian motions with respect to
the filtration H. Moreover, given the assumed independence of B and W, they turn
out to be independent.

The integer-valued random measure associated to the jumps of 7 is defined as

m(dt,dq) == Y 8san(ds,dg), (3.4)
s:Ang#0
where 8(4,,q4,) denotes the Dirac measure at the point (a1, a2) € Ry x R. Notice that
the H-adapted random measure m is such that

t t
/ c(Ms—, Zs)eny_,z,)20)d Ny = / f gm(ds,dq), t>0.
0 0 JR
To proceed further we need the following useful definitions.

Definition 3.2 For any filtration G, we denote by P(G) the predictable o-field on
the product space (0, co) x 2. Moreover, let B(R) be the Borel o-algebra on R. Any
mapping H : (0, 00) x 2 x R — R which is P(G) x B(R)-measurable is called a
G-predictable process indexed by R.

Letting
F'i=0c{m((0,s]x A): 0 <5 <1,A € BR)}, (3.5)
we denote by I := (F/");>0 the filtration which is generated by the random measure
m(dt, dq). It is right-continuous by [7, Theorem T25 in Appendix A2].

Definition 3.3 Given any filtration G with " C G, the G-dual predictable projection
of m, denoted by m?© (dt, dq), is the unique positive G-predictable random measure
such that for any nonnegative G-predictable process ® indexed by R,

E[/oo/ <I>(s,q)m(ds,dq)i| =E[/Oo/ CD(s,q)mp’G(ds,dq):|. (3.6)
0 R 0 R

To prove that a given positive G-predictable random measure is the G-dual pre-
dictable projection of m, it suffices to verify (3.6) for any process which has the form
(1, q) = C/1 4(q) with C a nonnegative G-predictable process and A € B(R). For
further details, we refer to the books by Brémaud [7, Sect. VIIL.4] and Jacod [41,
Sect. III.1].

We now aim at deriving an equation for the evolution of the filter (the filter-
ing equation). To this end, we use the so-called innovation approach (see Brémaud
[7, Chap. IV.1], Liptser and Shiryaev [49, Chaps. 7.4 and 10.1.5] and Ceci and
Colaneri [15], among others), which in our setting requires the introduction of the
H-compensated jump measure of 7,

m™ (dt,dq) = m(dt,dq) — mP"(dt, dq). (3.7)

The triplet (1, I', m™) also represents a building block for the construction of H-mar-
tingales as shown in Proposition 3.5 below. We start by determining the form of m?-H,
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Proposition 3.4 The H-dual predictable projection of m is given by

Q

mP R (dt,dg) =" 7 (O D)L .iy20) e i) (dg)dt. (3.8)
i=1

where 8, denotes the Dirac measure at the point a € R.

Proof 1) We first prove that the F-dual predictable projection of m is given by

mPE(dt, dq) == AN(Ze ) e, 70 y208cni— 2,y (dg)dt. (3.9)

Let A € B(R) and introduce

M(A) = m((O, t] x A) = Z ]l{AnSeA\{O}}a t > 0. (3.10)

s<t

Then NV (A) is the point process counting the number of jumps of 1 up to time ¢ with
jump size in the set A. Since (2.2) implies that Any = c(n5—, Zs ) Lcy,_, z,)20) AN;
fors > 0and N is a point process with F-predictable intensity given by (A" (Z,_));>0,
we obtain for each nonnegative F-predictable process C that

t t
E[ /0 csd/\/s(Aﬂ:E[ /0 csn{c(m,zs)eA\{onst}

t
= E|:/ CSIl{C(m_,st_)gA\{o}})»N(Zs)dsi|.
0

So for any A € B(R), ()\N(Zt—)]l{c(n,_‘Z,_)eA\{O}})tEO provides the F-predictable
intensity of the counting process N (A). Recalling (3.10) and Definition 3.3, this
implies that m”F (dt, dg) in (3.9) coincides with the F-dual predictable projection of
m, since (3.6) holds with the choice G = F and ®(¢, g) = C;14(q).

2) As in Ceci [11, Proposition 2.3], we can now derive the H-dual predictable
projection of m?F by projecting m?-F onto the observation flow H. More precisely,
the H-predictable intensity of the point process N (A), A € B(R), is given by

0
7 (N OY Ot pemionien seavon) = D m- O OLieapeaoy, VA € B(R)-I

i=1

This implies that m?” ’H(d t, dq) is given by (3.8), since (3.6) is satisfied with the choice
G=H, &, q) = Clalg). =

An essential tool to prove that the original problem under partial information
is equivalent to the separated one is the characterisation of the filter as the unique
solution to the filtering equation (see El Karoui et al. [28], Mazliak [52] and Ceci and
Gerardi [12]). In order to derive the filtering equation solved by m, we first give a
representation theorem for H-martingales. The proof of the following technical result
is given in Appendix A.
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Proposition 3.5 Under Assumptions 2.1 and 3.1, every H-local martingale M admits
the decomposition

t t t
M, =M0-|—/ (psdls—l—/ Yydl] +/ /w(s,q)m”(ds,dq),
0 0 0 JR

where ¢ and \r are H-predictable processes and w is an H-predictable process indexed
by R such that a.s.

t t t
/ <pS2ds < 00, / lﬂszds < 00, / / |w(s,q)|mP’H(ds,dq) < 00, t>0.
0 0 0 JR
We are now in the position to prove the following fundamental result, whose proof

is postponed to Appendix A.

Theorem 3.6 Recall (3.7), let y € Y be the initial distribution of Z and let As-
sumptions 2.1 and 3.1 hold. Then the filter (7,);>0 := (7;(i); i € S);>0 solves the
Kushner—Stratonovich system

r 9 ¢ 0
m(z‘)=yi+/0 Zx,m(j)dwfo ns(i)o_1<ﬂ(i)—Zﬂ(j)ns(j))dls
j=1 Jj=1

t 0
+ /0 s (i)(a(ns, i)=Y s, j)s (j)>d1;

j=1
t
+/ / (W] (s, q) — ms—(i))m™ (ds, dq) (3.11)
0 JR
foranyi € S. Here, B(i) =r — g(i) and

N (D)5 (DL e(,—.i)£0)8e(,—.1) (dq)
A2, 7o (DN (D et, . jyroydecn, .y (dq))

denotes the Radon—Nikodym derivative of)\N(i)ns_(i)]l{C(,,Sﬂ,-)#o}(sc(,]sﬂi)(dq) with
respect t0 32 w5 (DAY (e, jy018etn,, (dq).

wy (s, q) = (3.12)

Let us introduce the sequence of jump times and jump sizes of the process 7,
denoted by (7, £,)n>1 and recursively defined, with T := 0, as

t
Tyt = inf {t >T,: / c(Ms—, Zs_)dN; # 0}7
Tn

¢n =1, — N1,— = (1,—> Z1,—), N =1

We use the standard convention that inf # = 4-oco. Then the integer-valued measure
associated to the jumps of 7 (cf. (3.4)) can also be written as

m(dt,dq) = Za(rn,{,l)(ds, dg) iz, <+ o0)- (3.13)
n>1

The filtering system (3.11) has a natural recursive structure in terms of the sequence
(T)n>1, as shown in the next proposition.
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Proposition 3.7 Between two consecutive jump times, i.e., for t € [T, Ty+1), the
filtering system (3.11) reads as

¢, 0
(i) = mr, (i) + / (Zxﬁnsu) — m(i)(xN(iﬂ{c(m_,f#o}
n j=1
0
= > NG (j)]l{cms,j);ém))ds
j=1
, 0
—i—‘/]: O'_lﬂs(i)<ﬁ(i) - Zﬁ(])ns(])>dls
n j:[
; 0
+ fT m(i)(a(m,i)—Za(ns,j)ﬂs(j)>dlsl (3.14)
n j:]

foranyi € S. At a jump time T, of n, (,)i>0 = (70 (i); i € S)i>0 jumps as well, and
its value is given by

W Orr,— D, =crr, i)
Y2 AN ()r, - (D gy =ctny )

w7, (D) = i€S8. (3.15)

Proof First, recalling that m”™ (dt, dq) = m(dt,dq) — mPH(dt, dg) and

Q

mPH(dt, dg) =" 7 (DN (D etr,_ jy08e(n. ) (dq)d,
j=1

we obtain that

t
//(wf(s,q)—ns_(i))m”’H(ds,dq)
0 JR

t 0
= /O m(i)(xNa)]l{c(m,i#m —ZANu)ns(mm,j)¢0}>ds,

j=1

which from (3.11) implies that m;(i) solves (3.14) for any ¢ € [T}, T,,+1). Finally,
(3.15) follows by (3.12) and

AN @, — (D)1 H£018¢ ;
11,0 = W] (T ) = o Ot 0o, &)
> i1 W= (DAY (DL ey, - #0)8cng, ) (Gn)

O

We want to stress that (3.15) shows that the vector 7, is completely deter-
mined by the observed data n and the knowledge of 7, for t € [T,_1, T,), since
wr,— @) = limy g, 7,(i), i € S.
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Example 3.8 1)Inthe casec(q,i) =c # Oforanyi € S and g € Z, the sequences of
jump times of n and N coincide and the filtering system (3.11) reduces to (fori € §)

r 9 ¢ 0
i) = yi + fo S ki ()ds + /0 ﬂs(i)ff_l<ﬂ(i)—Zﬂ(j)ns(j)>dls
j=1

j=1

t 0
+ /0 m(z’)(a(ns,w—Za(ns,jm(j))dﬁ

j=1
fO AN () . e N
+ / ( —m(z))(dzvs— - () mds).
0 \Y2 7w (HAV()) ;

2) Inthe case @(q, i) = a(i) and c(g, i) = Oforanyi € S and g € Z, the filtering
system (3.11) does not depend explicitly on the process n. In particular, one has

r 9 t Q
(i) = yi + fo D kjims()ds + /0 mo (o~ (BG) = Y G ())ds
Jj=1 j=I1

Q
+ /0 tm(z‘)(a(i) - a(pm(p)dL. ies.

j=1

where we have set o (i) := cr{l (b1(@) —o! B(i)o1). In Sect. 4, we provide the explicit
solution to the optimal debt reduction problem within this setting. With reference to
(2.2) and (3.3), this setting corresponds e.g. to the purely diffusive arithmetic case
c(q,i) =0,b1(q,i) =b1(i)and o1(g) = 01 > 0,02(q) = 02 > Oforany i € S and
q € I, or to the purely diffusive geometric case c(q,i) = 0, b1(g,i) = b1(i)q and
o1(q) = 019, 02(q) = oaq foranyi € Sandg € T.

3.2 The separated problem

Thanks to the introduction of the filter, (2.1)—(2.3) can now be rewritten in terms of
observable processes. In particular, we have that

dXx? = m,(8)X%dt + o X'd1,,

(3.16)
X8 =x>0,
dn; = ﬂt(bl(nt, '))dt +o1(n)dly +U2(77t)d1;1 +/ ¢m(dt, dg),
R (3.17)
n=qeci,
dXx’ = XVdt +oX’dl, — dv;,
Ut 7 (B) ' OX, dl; Vy (3.18)
Xo_ =X > O.

Notice that for any v € M(x, Vs q), the process X" turns out to be H-adapted and
depends on the vector (77,);>0 = (7;(I); i € S);>0 With Ty = Y€ V.
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Definition 3.9 We say that a process (I, 7j:)s>0 with values in Y x Z is a strong
solution to (3.11) and (3.17) if it satisfies those equations pathwise. We say that strong
uniqueness for the system (3.11) and (3.17) holds if for any strong solution (77, 7;)r>0
to (3.11) and (3.17), one has ¥, = r, and 7j; = n, a.s. forall ¢ > 0.

Proposition 3.10 Let Assumptions 2.1 and 3.1 hold and suppose that a(-, i) is locally
Lipschitz for any i € S and there exists M > 0 such that |x(q, )| < M(1 + |q|) for
any q € T and any i € S. Then the system (3.11) and (3.17) admits a unique strong
solution.

The proof of Proposition 3.10 is postponed to Appendix A. Notice that under
Assumption 2.1, the requirement on « of Proposition 3.10 is verified e.g. whenever
02(q) > o for some o > 0 and for any ¢ € Z, or if b1 /o and o1/07 are locally
Lipschitz in ¢ € 7 and have sublinear growth. As a byproduct of Proposition 3.10,
we also have strong uniqueness of the solution to (3.18). In the following, when there
is a need to stress the dependence with respect to the initial value x > 0, we denote
the solution to (3.16) and (3.18) by X*-0 and X*-", respectively. Since

E [ (h(X;"", )] = E[Elh(X]"", ZOIH,]],

an application of the Fubini—Tonelli theorem allows to-write-writing

[e¢) o
E [/ e "h(X;Y, Z,)dt] =E(x.y.q) [/ e P (h(X], ~))dt] ,
0 - 0

where E(,y 4) denotes the expectation conditioned on X(‘)’, =x>0,7,= Y€ Y,
and 9 = g € Z. Also, because 7 (k) is the H-optional projection of the process k (Z)
(cf. [48, Lemma 1.1]) and any admissible control v is increasing and H-adapted, an
application of Dellacherie and Meyer [24, Theorem VI1.57, in particular (VI.57.1)]

yields
o o
E [A e_ptK(Zt)dUt:| = E(x’z’q) [/O €_ptT[t (K())dl)ti| .

Hence, the cost functional of (2.4) can be rewritten in terms of observable quantities as

o0 o
Try.q(V) = Be,y.0) [ /0 e (h(XY, ))dt + /0 e 'my (K(-))dv,} :
Notice that the latter expression does not depend on the unobservable process Z any
more, and this allows us to introduce a control problem with complete information, the
separated problem, in which the new state variable is given by the triplet (X", , ).
For this problem, we introduce the set A(x, y, ¢) of admissible controls, given in
terms of the observable processes in (3.11), (3.17) and (3.18) as

Ax,y, q) = {v:Q xRy - Ry (v(®) = v(w, 1)), is nondecreasing,

>0’
right-continuous, H-adapted and such that

X;"" = 0foreveryt >0, Xy’ =x,

Ty=y.M0=¢q a.s.}
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for every initial value x € (0, co) of X*V defined in (3.18), any initial value y €
of the process (7,);>0 = (77;(i); i € S);>0 solving (3.11) and any initial Value_q el
of n. In the following, we set vp_ = 0 a.s. for any v € A(x, y, q).

Givenv € A(x, y, q), the triplet (X;"", 7, n:)s>0 solves (3.18), (3.11) and (3.17)
and the jump measure associated to  has H-predictable dual projection given by (3.8).
Hence, the process (X f’”, 7,, N)s=0 is an H-Markov process and we therefore define
the Markovian separated problem as

o0
V(x,y,q) = infue A y.g) ]E(my,q)[/ e P (h(X},)dt
- - 0

o
—i—/ e Pl (K(-))dv,] (3.19)
0
dX;V = m(B)X; dt + o X Vdl —dv,, Xy =x >0,
(zr, n) solution to (3.11) and (3.17).

This is now a singular stochastic problem under complete information, since all the
processes involved are H-adapted.

The next proposition immediately follows from the construction of the separated
problem and the strong uniqueness of the solutions to (3.11), (3.17) and (3.18).

Proposition 3.11 Assume strong uniqueness for the system of (3.11) and (3.17), and
let (x, Y, q) € (0,00) x Y x T be the initial values of the process (X, Z, n) in the
problem (2.5) under partial observation. Then

Vpo(x, y,q9) = V(x,y,q).

Moreover, A(x, y,q) = M(x,y,q) and v* is an optimal control for the separated

problem (3.19) if and only if it is optimal for the original problem (2.5) under partial
observation.

Remark 3.12 Notice that in the setting of Example 3.8, 2), the pair (X*", ) solv-
ing (3.18) and (3.11) is an H-Markov process for any given control v € A(x, y, ),
(x,y,9) € (0,00) x Y x Z. As a consequence, since the cost functional and the set
of admissible controls do not depend explicitly on the process 7, the value function
of the separated problem (3.19) does not depend on the variable g. We consider this
setting in Sect. 4.

3.3 A probabilistic verification theorem via reduction to optimal stopping

In this section, we relate the separated problem to a Markovian optimal stopping
problem and show that the solution to the latter is directly related to the optimal control
of the former. The following analysis is fully probabilistic and based on a change-of-
variable formula for Lebesgue—Stieltjes integrals that has already been employed in
singular control problems (see e.g. Baldursson and Karatzas [2] and Ferrari [31]). The
result of this section is then employed in Sect. 4 where in a case study, we determine
the optimal debt reduction policy by solving an auxiliary optimal stopping problem.
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With regard to (3.19), notice that we can write m;(k(-)) = ZZQ:1 7, (i)k (i) as
well as 7, (h(X;"", ) = Zlel 7 (i)h(X;", i) as. for any ¢ > 0. For any (x, 7r) in
(0, 00) x Y, set

0 Q
h.m) =) wOhGei),  ®@) =Y wie),

i=1 i=1

and given z € (0, 00), we introduce the optimal stopping problem

T
Ui(z) == esrs>i{1fIE|: / e PO X0 (X320 7 )ds
= t

+e TR @)X

”H,}, t>0, (3.20)

where the optimisation is taken over all H-stopping times T > .

Under Assumption 2.4, the expectation in (3.20) is finite for any H-stopping time
T > t,for any ¢+ > 0. Observing that k (i) < oo for any i € §, in order to take care of
the event {t = oo}, we use in (3.20) the convention

e PTX0 = ligloiélf e X"  on{r = o0} (3.21)

Denote by U (z) a cadlag modification of U (z) (which under our assumptions ex-
ists due to the results in Karatzas and Shreve [46, Appendix D]), and observe that
0<Ui(z) < Tc\@t)X,l’O for any ¢ > 0, a.s. Also, define the stopping time

/(2) ==inf{s > 1 : Uy(2) 2 R(x)X]C), 2 €(0,00), (3.22)
with the usual convention inf ) = oco. Then by [46, Theorem D.12], 7;*(z) is an optimal
stopping time for (3.20). In particular, t*(z) := 15‘ (z) is optimal for the problem

T —_~
Uo(z) == in%]E |;/ e“”X,l’O hx(Xf’O, w,)dr + e"”Tc‘(lt)Xi’o} )
> 0

Notice that since Ay (-, ) is a.s. increasing, z — t*(z) is a.s. decreasing. This mono-
tonicity of 7*(-) will be important in the sequel as we need to consider its gener-
alised inverse. Moreover, since the triplet (X%9, 7, ) is a homogeneous H-Markov
process, there exists a measurable function U : (0,00) x )V x Z — R such that
Ui(2) = U(Xf’o, n,,n) forany t > 0, a.s. Hence Uy(z) = U(z, y, g), and for any
(x,v,9) € (0,00) x Y x I, we define -

V(x,X, q) = /: Ul(z,y, q)dz. (3.23)
Moreover, we introduce the nondecreasing right-continuous process
vy = sup{o € [0, x] : TF(x —a) <1}, t>0,v5_ =0, (3.24)
and then also the process

t
* . 1,0 j—x -
v, ._‘/0 Xgdvg,  t>0,y,_=0.

Notice that v* is the right-continuous inverse of T*(-).
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Theorem 3.13 Let V be as in (3.23) and V as in the definition (3.19). Then V =V,
and v* is the (unique) optimal control for (3.19).

Proof 1) Letx > 0, Y€ Y and g € 7 be given and fixed. For v € A(x, Y, q), we

introduce the process v such that v, := f(; %, t > 0, and define its inverse (see e.g.
N

Revuz and Yor [59, Sect. 0.4]) by
V(z) ;== inf{t > 0:x -V, <z}, 0<z<x.

Notice that the process (t"(z)) <<x has decreasing left-continuous sample paths, and
hence it admits right limits

V() :=inf{t >0:x -V, <z}, z<x. (3.25)

Moreover, the set of points z € R at which 7”(z)(w) # rfr(z)(a)) is a.s. countable for
a.e. w € Q. The random time 7" (z) is actually an H-stopping time because it is the
entry time into an open set of the right-continuous process v, and H is right-continuous.
Moreover, since 14‘7_ (z) is the first entry time of the right-continuous process V into a
closed set, it is an H-stopping time as well for any z < x.

Proceeding then as in Ferrari [31, Step 1 of the proof of Theorem 3.1], by employing
the change-of-variable formula in [59, Proposition 0.4.9], one finds that

X
Vix, Y, q) = / U(z, Y, C])dZ < jx,y,q(v)-
0 Y
Hence, since v was arbitrary, we find that

Ve, y. ) <V, y. @), (x,y,9) € (0,00 x Y x T (3.26)

2) To complete the proof, we have to show the reverse inequality. Let x € (0, 00),
y € Yandgq € Zbeinitial values of X*-V, r and n. We first notice that v* € A(x, Y q)-

Indeed, v* is nondecreasing, right-continuous and such that X; Vo x ll’o(x -v5) >0
a.s. for all + > 0, since v} < x a.s. by definition. Moreover, for any 0 < z < x, we
can write by (3.24) and (3.25) that

,* B
T, ()<t &= V/zx—z < 1@ =t

Then recalling that rf (z) = 77 () P-a.s. for almost every z < x, we pick v = v*
(equivalently, v = v*) and following [31, Step 2 in the proof of Theorem 3.1], we
obtain V(x, y, q) = Jx,y.q(v*) = V(x, y, q), where the last inequality is due to the
admissibility of v*. Hence, by (3.26), we have V = V and v* is optimal. In fact, by
strict convexity of Jy y 4(-), v* is the unique optimal control in the class of controls
belonging to A(x, y, ¢) and such that J; y 4(v) < oo. ]
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Remark 3.14 For any given (x, Vs q) € (0, 00) x Y x Z, define the Markovian optimal
stopping problem

T ,
v(x, y, q) = ;EEE[/O e P XTI (XFO0, x Dydr + epfﬁ(lﬁ)x;“o},

where 72 denotes the filter process starting at time zero from y € ). Then, since

X*0 = xx"Oby (3.16) and Up(z) = U(z, ¥, q) for some measurable function U, one
can easily see that v(x, y, q) = xU (x, v, g¢). Moreover, the previous considerations

together with (3.22) (evaluated at # = 0) ensure that the stopping time
Ty, @) = inffr = 0: X0 2 0l = R@ X0

is optimal for v(x, y, ¢), where g = no.

4 The solution in a case study with O = 2 economic regimes

In this section, we build on the general filtering analysis developed in the previous
sections and on the result of Theorem 3.13, and provide the form of the optimal debt
reduction policy in a case study defined through the following standing assumption.

Assumption 4.1 1) Z takes values in S = {1, 2}, and with reference to (2.3), we
assume g7 := g(2) < g(1) =: g1.
2) For any g € Z and i € {1, 2}, one has c(q,i) = 0, and for « as in (3.3), we
assume a(q, i) = a(i).
3) h(x,i) = h(x) for all (x,i) € (0,00) x {1, 2}, with & : R — R such that
(1) x — h(x) is strictly convex, twice continuously differentiable and nonde-
creasing on Ry with 2(0) = 0 and lim o0 £(x) = 00;
(ii) there exist y > 1,0 < K, < K and K1, K, > 0 such that

Kolx™|" — K < h(x) < K(1+|x]),
' (x)] < Ki(1 4 [x" 1),
()] < Ka(1+ x| V727,
4 k@) =1fori € {l1,2}.

Notice that under Assumption 4.1, 2), the macroeconomic indicator 7 has a suit-
able diffusive dynamics whose coefficients by, o1, o9 are such that the function « is
independent of g. As discussed in Example 3.8, 2), this is the case of a geometric or
arithmetic diffusive dynamics for 5. In this setting, the Kushner—Stratonovich system
(3.11) reduces to

dm, (1) = (A — (1 + Aa)m (1)) dt
+m ()(1 - n,(l))(ﬁl —F

o

dl, + (a; — az)dltl) @.1)

and 7;(2) = 1 — m;(1). Here, A1 := A2 > 0 and Ay := Ap1 > 0.
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Setting 7; := m;(1), ¢ > 0, (3.19) then reads as

V(x,y) =infyeAcx,y) E(x,y)[/oo e PTh(X))dt + /OO e_ptdv,],
dx;"" =B+ 7} (g2 — gl));)(;‘*y*”dz + on’y’de —dv,
dr} = (A2 — (M1 + A2)7} )dt
+m) (1 - ﬂ)(%d& + (o) — az)d1,1>,

4.2)

with initial conditions X;*"" = x > 0, mp = y € (0, 1), and where g; = r — ;
denotes the rate of economic growth in the state i, i = 1, 2. Note that we switch here
from arguments (i) to subscripts ;.

It is worth noticing that there is no need to involve the process 1 in the Marko-
vian formulation (4.2). This is due to the fact that the couple (X", ) solving the
two stochastic differential equations above is a strong Markov process and the cost
functional and the set of admissible controls A(x, y, ¢) do not depend explicitly on 7;
hence we simply write A(x, y) instead of A(x, y, q) (cf. (4.2) above). For this reason,
the value function of (4.2) does not depend on the initial value g of the process 7.
However, the memory of the macroeconomic indicator process 1 appears in the filter
7 through the constant term «; — & in its dynamics.

Since (4.1) admits a unique strong solution, Proposition 3.11 implies the following
result.

Proposition 4.2 Under Assumption 4.1, solving (4.2) is equivalent to solving the
original problem (2.5). That is,

Voo(x,y) = V(x,y)  forany given and fixed (x, y) € (0, 00) x (0, 1),

and a control is optimal for the separated problem (4.2) if and only if it is optimal for
the original problem (2.5) under partial observation.

In the following analysis, we need (for technical reasons due to the infinite horizon
of our problem) to take a sufficiently large discount factor. Namely, defining

1 1
Po :=(ﬁ2 + 502) % ()//32 + 507y - 1)) V(2B +07) v (2407 — (A1 + 12))

V (4B + 602) v (4,62(2 V) 42022V )RV y) — 1)),

2
with 2 := %((5"';—2‘;’2) + (a1 — a2)?), we assume the following.
Assumption 4.3 One has p > pf.

Due to the growth condition on 4, let us notice that Assumption 4.3 in particular
ensures that p > Y8, + %azy(y — 1) so that the (trivial) admissible control v = 0
has a finite total expected cost.
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4.1 The related optimal stopping problem

Motivated by the results of the previous sections (in particular Theorem 3.13), we
now aim at solving (4.2) through the study of an auxiliary optimal stopping problem
whose value function can be interpreted as the marginal value of the optimal debt
reduction problem (cf. (3.23) and Theorem 3.13). Therefore, we can think informally
of the solution to that optimal stopping problem as the optimal time at which the
government should marginally reduce the debt ratio. The optimal stopping problem
involves a two-dimensional diffusive process, and in the sequel, we provide an almost
exclusively probabilistic analysis.

4.1.1 Formulation and preliminary results

Recall that (I;, I,l)tzo is a two-dimensional standard H-Brownian motion, and in-
troduce the two-dimensional diffusion process (X, ) := (X;, 7;);>0 solving the
stochastic differential equations (SDEs)

dX, = X (B2 + (g2 — g )dt + o X,d 1y,

82— 81 4.3)

dm; = ()»2 -+ )\2)7Tt)dt + (1 — 7Tt)< dl; + (o1 — Olz)dlll>
with initial conditions )?0 = x,mg = y forany (x, y) € O := (0, 00) x (0, 1). Recall
that B, = r — g3.

Since the process 7 is bounded, classical results on SDEs ensure that (4.3) admits
a unique strong solution that, when needed, we denote by (?X’y, 7Y) to stress its
dependence on the initial datum (x, y) € O. In particular, one easily obtains

)’Z;c,y — xe(ﬁz—%02)1+61r+(g2—g1)f(f ﬂ.évdS’ t>0. (4.4)

Moreover, it can be shown that Feller’s test of explosion (see e.g. Karatzas and Shreve
[45, Chap. 5.5]) gives 1 = P[n,y € (0,1),Vt = 0] for all y € (0, 1). In fact, the
boundary points 0 and 1 are classified as “entrance-not-exit”, hence are unattainable
for the process 7. In other words, the diffusion 7 can start from 0 and 1, but it cannot
reach any of those two points when starting from y € (0, 1) (we refer to Borodin and
Salminen [6, Sect. I1.6] for further details on boundary classification).

With regard to Remark 3.14, we study here the fully two-dimensional Markovian
optimal stopping problem with value function

T
v(x,y) = ir;gE(x,y)[/(; e P X, h (X,)dt + e_'”X,:I

vinf T (@), () €0, (4.5)

In (4.5), the optimisation is taken over all H-stopping times, and E (. y) denotes the
expectation under the probability measure P, y)[ -] :=P[-[Xo = x, mo = y].
Because 7 is positive, go — g1 < 0 and p > B, by Assumption 4.3, (4.4) gives

liminfe "X, =0 P(x,y)-a.s.,
1100
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which implies via the convention (3.21) that e~"* X; = 0 on {t = oo} for any
H-stopping time t.

Clearly, v > 0 since X is positive and £ is increasing on R. Also, v < x on O,
and we can therefore define the continuation region and the stopping region as

C:={x,y) € O:v(x,y) <x}, S:={x,y) € O:v(x,y) =x}. 4.6)

Notice that integrating by parts the term e~* X 1, taking expectations and exploiting
that IE[fOT e " XydI;] = 0 for any H-stopping time t (because p > B> + %0’2 by
Assumption 4.3), we can equivalently rewrite (4.5) as

v(x, y) i=x o+ inf By [ /0 R, (1R = (p = P2 — (g2 gl)m))dt}

4.7
for any (x, y) € O. From (4.7), it is readily seen that
{.) €O @)= (p—B2— (82— g1)y) <0} SC,
which implies
Sc{@. e :h @~ (p—p—(g2—g1)y) =0} 4.8)

Moreover, since p satisfies Assumption 4.3 and 0 < 7; < 1 for any (x, y) € O, one
has that

o0
E(x,y>[ / e P X (h'(X) + p+ B2l + |82 — &1 |)dr] < oo, (4.9)
0

and the family of random variables
T o~ —~~
{/ e X, (h’(Xt) — (p — B2 — (g2 — gﬂn,))dt : 7 is an H-stopping time}
0

is therefore H-uniformly integrable under P .
Preliminary properties of v are given in the next proposition.

Proposition 4.4 The following hold:
(i) x — v(x, y) is increasing for any y € (0, 1).
1) y — v(x, y) is decreasing for any x € (0, 00).
(>iii) (x, y) — v(x, y) is continuous in Q.

Proof (i) Recall (4.5). By the strict convexity and monotonicity of & and (4.4), it
follows that x > :7\()(, y)(7) is increasing for any H-stopping time 7 and any y € (0, 1).
Hence the claim is proved.

(ii) This is due to the fact that y +— j\(x’y)(t) is decreasing for any stopping
time T and x € (0, 00). Indeed, the mapping y +> X, is a.s. decreasing for any
t > 0 because y > 7} is a.s. increasing by the comparison theorem of Yamada and
Watanabe (see e.g. Karatzas and Shreve [45, Proposition 5.2.18]) and g» — g1 < O,
and x +> xh’(x) is increasing.
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(iii) Since (x, y) > (X, 7)) is a.s. continuous for any ¢ > 0, it is not hard to
verify that (x, y) — f(x, y) (1) is continuous for any given T > 0. Hence v is upper
semicontinuous. We now show that it is also lower semicontinuous.

Let (x,y) € O and let (x,, y,)nen € O be any sequence converging to (x, y).
Without loss of generality, we may take (x,, y,) € (x —§,x + ) x (y — 8, y + ) for
a suitable § > 0. Letting t/' := 1/'(xp,, y») be e-optimal for v(x,, y,), but suboptimal
for v(x, y), we can then write

n

Te o~ | o~ o~ | o~
v(x, y) — v(Xn, yu) < E[/ e "X (X)) — Xf”””h’(X;‘"’y"))dt]
0

+ ]E[e*pre" (j(\)rfg‘ _ Yxna)’n)] +e.

174
Notice now that a.s.
n

TS P _~ —~ —~~ 7.
/ e PUXYR (XYY — X (X |di
0

oo
S/ e—pt(X;C,yh/(X;c,y)+X;c+8,y78h/(X;c+8,y76))dt’
0

where we have used that x > X* is increasing, y +> X5 s decreasing and
x — xh'(x) is positive and increasing. The random variable on the right-hand side
above is independent of n and integrable due to (4.9). Also, using integration by parts
and performing standard estimates, we can write that a.s.

Te

e*ﬂtél (X\:;Iy _ X\xz»y»l)
| o SX,y Sx+68,y—48
< |x — x| +/ e P (p+ B2l + g2 — g1D(Xs Y + X7 )ds,
0

and the last integral above is independent of n and has finite expectation due to (4.9).
Then taking limits as n 1 oo, invoking the dominated convergence theorem thanks to
the previous estimates and using that (x, y) (?f’y , nty ) is a.s. continuous for any
t > 0, we find (after rearranging terms) that

liminf v(x,, yn) > v(x, y) — e.
ntoo

We thus conclude that v is lower semicontinuous at (x, y) by arbitrariness of €. Since
(x,y) € O was arbitrary as well, v is lower semicontinuous on O. O

Due to Proposition 4.4 (iii), the stopping region is closed whereas the continuation
region is open. Moreover, thanks to (4.9) and the I)PF(X, y)-a.s. continuity of the paths
of the process (fg e~* X, (W'(X;) = (p = B2 = (82 = 81)m)ds)i=0, We can apply
Karatzas and Shreve [46, Theorem D.12] to obtain that the first entry time of (X, )
into S is optimal for (4.5), that is,

™(x,y) :=inf{t > 0: (5(\;, m) €S} Puoyp-as, (x,y) €0, (4.10)
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attains the infimum in (4.5) (with the usual convegtion inf ¥ = o0). Also, standard
arguments based on the strong Markov property of (X, i) (see e.g. Peskir and Shiryaev
[56, Theorem 1.2.4]) allow one to show that IP(, ,)-a.s., the process § := (S;);>0 with

t
S =e Pu(X,, m) + / e P Xsh'(X,)dt
0

is an H-submartingale, and the stopped process (S;ar+)s>0 is an H-martingale. The
latter two conditions are usually referred to as the subharmonic characterisation of
the value function v.

We now rule out the possibility of an empty stopping region.

Lemma 4.5 The stopping region of (4.6) is not empty.

Proof We argue by contradiction and suppose that S = @J. Hence for any (x, y) € O,
we can write

o
x>v(x,y) = E(X’y)[/ e_thth’(X,)dti|
0
o0 ~ K
> KOXVE(I,),)[/ e’OtX;/dl‘:| - —,
0 P

where the inequality xA’(x) > h(x), due to convexity of /, and the growth condition
assumed on £ (cf. Assumption 4.1) have been used. Now by taking x sufficiently large,
we reach a contradiction since y > 1 by assumption. Hence S # (. O

Proposition 4.6 Foranyy € (0, 1), let

x(y) :=inf{x > 0:v(x,y) > x} “4.11)
with the convention inf § = oo. Then.:
(i) We have
C={x,y)eO0:x<x()}, S={x,»e0:x=x(} (4.12)

(ii) y — x(y) is increasing and left-continuous.
(iii) There exist 0 < x, < x* < oo such that for any y € [0, 1],

)N — Bo) v x. < F(y) < X
Proof (i) To show (4.12), it suffices to show that if (x{, y) € S, then (x2, y) € S for

any x = Xxj. L(?t Tt = rg‘(xz , ¥) be an e-optimal stopping time for v(x2, y). Then
exploiting X;*” = fC—fol’y > X, a.s. and monotonicity of /’, (4.7) yields

0>v(x2,y) —x2

.E£
> E[/ e_p'sz’y(h’(sz’y) —(p—B— (82— gl)n}’))dt] —e
0

X2 PN iy
> ZEU e ﬂ’xi‘l’y(h’(Xf‘%—(p—ﬂz—(gz—gl)nﬁ))dt} —e
0

> 2 (v(x1,y) —x1) —e = —¢.
x1
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Therefore, by arbitrariness of ¢, we conclude that (x3, y) € S as well, and therefore
that X in (4.11) splits C and S as in (4.12).

(ii) Let (x, y1) € C. Since y + v(x, y) is decreasing by Proposition 4.4 (ii), it
follows that (x, yp) € C for any y; > yj. This in turn implies that y + X(y) is
increasing. The monotonicity of y + X(y) together with the fact that S is closed then
gives the claimed left-continuity by standard arguments.

(iii) Let ©F = x exp((B2 — %02 + (g2 — g1))t + o I;) and introduce the one-
dimensional optimal stopping problem

T
vR(x) = ir;%E[/O e—P’@)fh’(@;‘)erre—Pf@ﬁ}, x> 0.

Because g — g1 < 0, 4/ is increasing and ;" < 1 a.s. forallt > Oand y € (0, 1), it
is not hard to see that v(x, y) > v*(x) for any (x, y) € O.

By arguments similar to those employed to prove (i), one can show that there exists
x* such that {x € (0, 00) : v*(x) > x} = {x € (0, 00) : x > x*}. In fact, by arguing
as in the proof of Lemma 4.5, the latter set is not empty. Then we have the inclusions

{x€(0,00):x >x"} C{(x,y) €O vlx,y) > x}={(x,y) € O:x 2X(y)},
which in turn show that x(y) < x* for all y € (0, 1). Hence also x(y) < x* for all

y € [0, 1], setting X(0+) := limy o X(y) by monotonicity and X (1) := limys1 X(y)
by left-continuity. As for the lower bound of X, notice that (4.8) implies

XM= W) p—Br— (&2 —gy) = ¢,  ye©D), (4.13)

where (h')~1(-) is the inverse of the strictly increasing function 4’ : [0, 00) — (0, c0)
(notice that p — B2 — (g2 — g1)y = Osince p > B2, g2 — g1 < 0 and y > 0). Since
(h’)_1 is strictly increasing and —(g2 — g1)y > 0, we can conclude from (4.13) that
x(y) = (W)~!(p — Bo) for every y € [0, 1]. Moreover, setting

v = x<<,32 - %oz)t + JI,)

and introducing the one-dimensional optimal stopping problem

T

ve(x) == ingE[/ e PIUT R (W)dt —I—eprllff:|, x>0,
= 0

one has v(x, y) < v,(x) for any (x, y) € O. Following arguments as those employed

above and defining x, := inf{x > 0 : v,(x) > x} € (0, 00), the last inequality implies

that x(y) > x, forall y € [0, 1]. O



Please note that this supplementary PDF file visualizes just the linguistic edits. It is meant for your information only, and not for making corrections.

28 Giorgia Callegaro et al.

4.1.2 Smooth-fit property and continuity of the free boundary

We now aim at proving further regularity of v and the free boundary X.
The second-order linear elliptic differential operator

a1 92 9
L:= - — 4 -0+ (= M+ 12)y)—
(B2 + (g2 gl)y)xax +50°x + (2= + 2)Y)ay
1 2, (82— 5 , 8?
+§<(a1—az) +T y =y e 4.14)

acting on any function f € C%(0), is the infinitesimal generator of the process ()? , 7).
The nondegeneracy of the process (Y , m) and the smoothness of the coefficients in
(4.14) together with the subharmonic characterisation of v allow te-preve_proving
by standard arguments (see e.g. [56, Sect. 3.7.1]) and classical regularity results for
elliptic partial differential equations (see e.g. Gilbarg and Trudinger [37, Sect. 6.6.3])
the following result.

Lemma 4.7 The value function v of (4.5) belongs to C? separately in the interior of
C and in the interior of S (i.e., away from the boundary dC of C). Moreover, in the
interior of C, it satisfies

(L — p)v(x, y) = —xh'(x),
with L as in (4.14).

We continue our analysis by proving that the value function of (4.5) belongs to the
class C1((0, 00) x (0, 1)). This will be obtained through probabilistic methods that
rely on the regularity (in the sense of diffusions) of the stopping set S for the process
()? , ) (see De Angelis and Peskir [22] where this methodology has recently been
developed in a general context; for other examples, refer to De Angelis et al. [21] as
well as to Johnson and Peskir [43]). Recall that the boundary points are regular for S
with respect to (5(\ , ) if (cf. Karatzas and Shreve [45, Definition 4.2.9])

T(Xo, o) i=1inf{r > 0: (X}, 7)) € S} =0 as.,  V(xo,yo) € 0C. (4.15)

The time T(x,, y,) is the first hitti}r}g time of ()?xo’yf’, mY)t0 S.
Notice that defining U; := In X/, one has

1
dU; = (ﬂz + (g2 — g7 — Eoz)dt +odl;

as well as E(x,y)[f(f(\,, )] = E(,,,y)[f(euf, 7¢)] for every bounded Borel function
f :R? — R, where u := In x. Due the nondegeneracy of the process (U, ) and the
smoothness and boundedness of its coefficients, the pair (U, ) has a continuous tran-
sition density p(-, -, -; u, y), (u, y) € Rx (0, 1), such thatforany (u’, y') € R x (0, 1)
and ¢ > 0 (see e.g. Aronson [1]),

M ((u—u)+ G -y)?
T eXp — A p

v

pt,u',y'u,y) (4.16)

m ((u—u)+ G —-y)?
7 exXp — A p N

v
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for some constants M > m > 0 and A > A > 0. It thus follows that the mapping
(u,y) — E(u,y)[f(eUf, m;)] is continuous, so that (U, ) is a strong Feller process.
Hence (X, ) is strong Feller as well, and we can therefore conclude that (4.15) holds
if and only if (see Dynkin [26, Chap. 13.1-2])

™ (xn, yn) = 0 a.s.  whenever C 2 (X, Yn)neN — (X0, Yo) € 3C,

where T* is as in (4.10).
The next proposition shows the validity of (4.15).

Proposition 4.8 The boundary points in 9C are regular for S with respect to (Y ,T0),
that is, (4.15) holds.

Proof Let (x,, y,) € 9C and set u, := Inx,. We set o (u,, y,) := T(e", y,) for any
given (u,, y,) € R x (0, 1) and equivalently rewrite (4.15) in terms of the process

(U, ), with U as defined above, as

G (o, yo) = inf{t > 0: U/ > Inx(7]")}

=0 as., for all (u,, y,) such that u, = InXx(y,).
Given that y — InX(y) is increasing like y — Xx(y), the region
Si={,y) eRx (0, 1) : u > InX(y))
enjoys the so-called cone property (see Karatzas and Shreve [45, Definition 4.2.18]).
In particular, we can always construct a cone C, with vertex in (u,, y,) and aperture
0 <¢ <m/2suchthat C, N (R x (0, 1)) € S and for any ¢, > 0, we have
PG (1o, yo) < 1] = PL(U., 1) € Col. 4.17)

Then using (4.16), one has

PIUY, 7)) € Cyl = f Bltor 1o, Yo: 11, y)du dy

Co
m A (—u)>+(—-y0)H)
> =t o dudy
Co, Io
—m / MO gyl gy = 0= 0. (4.18)
c,

using that the change of variables u’ := (u — u,)/+/T, and ¥’ := (y — ¥,)/+/T, maps
the cone C,, into itself. The number £ above depends on u,, y,, butis independent of 7.
From (4.17) and (4.18), we thus have P[6 (i,, y,) < t,] > £, and letting 7, |, 0 yields
PG (1o, yo) = 0] > £ > 0. However, {0 (1, y,) = 0} € Ho, and by the Blumenthal
0-1-0-1 law, we obtain P[0 (10, y,) = 0] = 1, which completes the proof. O

Theorem 4.9 One has that v € C1(O).
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Proof The value function belongs to C? in the interior of the continuation region due
to Lemma 4.7, and it is C*° in the interior of the stopping region where v(x, y) = x.
It thus only remains to prove that v is continuously differentiable across dC. In the
sequel, we prove that (i) the function w(x, y) := %(v(x, y) — x) has a continuous
derivative with respect to x across dC (and this clearly implies the continuity of vy
across 9C); (ii) the function v, is continuous across dC.

(i) Continuity of vy across 9C: For the subsequent arguments, it is useful to notice
that the function w admits the representation (recall (4.7))

W(x,y) = ingE[ / R (h/o?f”d —(o— B~ (82— glmy)ds} (4.19)
> 0

and to bear in mind that the optimal stopping time t* for v in (4.10) is also optimal
for w since v > x if and only if w > 0. We now prove that w, is continuous across
dC, thus implying continuity of vy across dC.

Take (x, y) € C and let ¢ > 0 be such that x — & > 0. Since x — w(x, y) is
increasing due to the monotonicity of /', it is clear that (x — ¢, y) € C as well. Denote
by T} (x, y) := t*(x — ¢, y) the optimal stopping time for w(x — ¢, y) and notice that
77 (x, y) is suboptimal for w(x, y) and t(x, y) — t*(x, y) a.s. as ¢ | 0. To simplify
the exposition, we write 7} := 7(x, y) and t* := t*(x, y) in the sequel. We then
have from (4.19) that

wWx, y) —W(x — ¢, 1 PN - ey
0< wx,y) —wx —e&,y) < —E|:'/ e thll’y(h/(Xf'y)—h/(Xf 8’)))dt:|
& & 0
o - v
:E[ / e_"”(X,l’y)zh”(X,‘?”)dt} (4.20)
0

forsome&, € (x—e, x), where we have used in the last step the mean value theorem and
the fact that X} — X7 *Y = ¢X "’ Letting & | 0, invoking dominated convergence
(thanks to the fact that p > (yB2 + %azy(y — 1)) V (28> + 0%) by Assumption 4.3)
and using that w € C'(C) (since v € C'(C)), we then find from (4.20) that

*

T
0 < Wy(x,y) < E[/ e"’(X,l’y)zh”(Xf’y)dt] 4.21)
0

Now let (x,, ¥,) be an arbitrary point belonging to dC. Taking limits (x, y) — (x,, o)
in (4.21), using dominated convergence and Proposition 4.8, we obtain

0< lim inf wy(x,y) < lim sup Wy(x,y) <0,
(x,)= (x0,¥0)€0C (X, )= (X0, v0)€3C

thus proving that w, is continuous across dC. This immediately implies the continuity
of vy across 3C, upon recalling that v(x, y) = x(w(x, y) + 1).

(ii) Continuity of vy across 0C: Take again (x, y) € Cande > Osuchthat y+¢ < 1.
Since y — v(x, y) is decreasing by Proposition 4.4 (ii), it is clear that (x, y +¢) € C
as well. Denote by 77 (x, y) := t*(x, y 4+ ¢) the optimal stopping time for v(x, y 4 ¢)
and notice that T} (x, y) is suboptimal for v(x, y) and 7*(x, y +¢&) — t*(x, y) a.s. as
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¢ | 0. To simplify the notation, we write 7 instead of 7} (x, y) in the sequel. From
Proposition 4.4 (ii) and (4.7), we then have
0> v(x,y+¢e) —vlx, y)

e

1 ¢ - ~y
z E[fo e PIX; T (h/(Xf’HE) —(p—B2— 7 (g — gl)))dt}

1 T; X 1 oX y
_—E[/O eprXl’y(h (Xt’y)_(p—,B2—7'[t' (gz—gl)))dli|

&
1 w vX,yte X, yt+e X X,y
:;E[/O e_'ot<(X,’y WX - X5 (X))

— (p = PR - >?;"y>)dz}
1 T: vX,yt+e +e& X,y
+ < E[fo e (g2 — g (X T = X7 n,y)dr}.

Now add and subtract on the right-hand side both IE[fOT"* e P XY (X )dr] and

(g2 — gDELf,* e P XY Y dr] and recall that g5 — g1 < 0, X;°¥ > 0 a.s. and
24 te 7} >0 as., for every t > 0. Then after rearranging terms and using the

integral mean value theorem for some L¢ € (XY XYY as., we obtain that

0> v(x,y+¢) —vx,y)
&

1 Te ~ ~ v P
>~ E[/O ePIXTE (X —h’(xj“y))dt]
1 & —pt (PR YHe XY\ (17, 9KY Y
+ B | T =R (W A ~ (= = (52— 1)

1 w ~y , ,
— 2 lg2 — g1l E[/O e PIXIITE ()T nty)dt:| (4.22)
1 T — ~ ~ ~
= - E[ /O e X = X (XL + h’(Xf’y))dt}

*

1 Te —~ !
-2 Igz—gllE[/ e_ptxf’yﬂ(nt”g—my)dt}
0

In the last inequality, we have used that p — B> — n,y (g2 — g1) = Osince p > B, by
Assumption 4.3, that g» — g1 < 0 and that X" < XY
Define now An; := %(ntyﬂ —n]'), t > 0, and notice that by using the second

equation in (4.3), we can write for any ¢ > 0 that

t
Arm) =1 —f (M + A2)Andds
0

o

t _
+/ Arl —m)*e = nz)(gz 8Ll + (a1 — az)dlsl).
0



Please note that this supplementary PDF file visualizes just the linguistic edits. It is meant for your information only, and not for making corrections.

32 Giorgia Callegaro et al.

With the help of Itd’s formula, it can easily be shown that
t Y y
Am] =exp < — (M + )t — 92/ (1—m™ - ns—‘)zds>

t
x exp<f (1—mlte - )( ELAL, + (a1 — a)dI] )) (4.23)
0

with 2 := %((5'2;# + (a1 — a2)?). Also, by (4.4) and simple algebra,

1 - e(g2—gn) fo Amids _
G GRRALID Gl G G . (4.24)
£ &

Using the definition of Arr,y and (4.24) in (4.22) and )?f’y+€ < )?fy one finds

v(x,y+¢) —vx,y)
&

T . ef@man g Amids _ ~ ~
> EU e (X570 + 1 (X, ’W’]
0 €

0=

*

7 R
— g2 — g1l ]E[/ e_thf'yAmydt}. (4.25)
0

We now aim at taking limits as ¢ | 0 in (4.25). To this end, notice that Ax; — Z;
a.s. for all + > 0 as ¢ | 0, where by Protter [58, Theorem V.7.39], (Z,y),zo is the
unique strong solution to

dZ} = —( + ) Z0dt + 20 (1 — 271; )( ELal, + (@1 — an)d, ) t>0,

with Zg = 1. Then, if we are allowed to invoke the dominated convergence theorem
when taking limits as ¢ |, 0 in (4.25), we obtain that

0>vy(x,y)

* t
Z(gz—gl)E[ f e‘p’Xi"y( f Z!ds)(Xf’yh”(Xi"y)+h/(Xf’y>)dr]
0 0

*

T
—1g2 — g1 E[/ epfxf*yztydr} (4.26)
0

upon recalling that v € C2(C). Therefore, letting (x,, y,) be an arbitrary point be-
longing to dC, by taking limits in (4.26) as (x, y) — (x,, ¥,) and using dominated
convergence and Proposition 4.8, we obtain that

0> lim sup vy(x,y) > lim inf vy(x,y) >0,
(x,7)— (X0, 70)€3C (x,3)= (x0,¥0)€C

thus proving that v, is continuous across 9C.
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To complete the proof, it only remains to show that the dominated convergence
theorem can be applied when taking limits as ¢ | 0 in (4.25). We show this in the two
following technical steps.

1) To prove that the dominated convergence theorem can be invoked when taking
& | 0 in the first expectation on the right-hand side of (4.25), we set

i ~ es(gz—gl)f(; Anids _ 1 mr s ~
Ag ::/ e X (XVR" (L)) + W' (X))dt
0 &

and show that the family of random variables {A; : ¢ € (0,1 — y)} is bounded in
L*(Q2, F,P), hence uniformly integrable.

Notice that by Assumption 4.1 (ii) and the fact that LY < X‘;cy a.s., one has a.s.
for any ¢ > 0 that

X (XR (L 4+ R (X)) < K(1+ (X])7V2)

for some constant K > 0 independent of ¢ so that by Jensen’s inequality,

VK2 oo 1 — of@2—gn) fy Ands\ 2 R
Ael < =5 f pe—’”< , ) (1+ X )dr.
0

Taking expectations and applying Holder’s inequality gives

, o0 1 — of@a—gD) g Axlds\4 73
E[|A.%]2 < K’E[/ e—P’( ) dti|
0

&

1

x E[/ e (14 (f(f’y)“VVS)mT 4.27)
0

for some other constant K’ > 0 independent of ¢ that in the sequel will vary from
line to line. The standard inequality 1 —e™ < u withu = e(g; — g2) fot Anjds >0
allows us to continue from (4.27) and write

1 oo t 4 %
E[|A. 1 < K/IE[ f e_"”< f Angds) dti|
0 0

1

% ~ 7
xE[ / e (1 +(Xf’y)4(yvz))dt:| ) (4.28)
0

We now treat the two expectations in (4.28) separately. First, by Jensen’s inequality,

t 4 1 t , 4 t
( f Ansyds> = <; / rAngds) < f (AmH)*ds. (4.29)
0 0 0
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Second, thanks to the nonnegativity of (Az¥)*, we can invoke the Fubini—Tonelli
theorem and using also (4.29), we obtain

00 t 4
IE|:/ e‘”(/ Ansyds) dt]
0 0
[e9] t
SE[ f e P / (Ansy)“dsdt}
0 0

o0
/ e P (P35> +3p%s% + 6ps + O)E[(AT)) ds. (4.30)
0

1
o
To evaluate the expectation in the last integral above, notice that applying It6’s formula

to the process & := (Ax;")* and using (4.23) gives for any ¢ > 0 that

A&’ = &' (= O +r2) + 12021 — )™ — 2))?)dr
82 — &1

+4g) (1 —m) " =) )( dl + (a1 — az)cu;)

2
with EOV =land 6% = %((gzg_—zgl) + (o1 — a2)?). Because (1 — nty—’_s — yr,y)2 <2as.

forallt > 0 and

2 yte pAY
£ = e~ 1A +120% fo (1—m3 ™" =) dthy7

where (M;);>0 is an exponential martingale, it is easy to see that
E[(Ar]))*] < e~ C1H214246% 5 4.31)

Using the latter estimate in (4.30) together with Assumption 4.3, we deduce that

%) t 4
sup E[f e"”(/ Anﬁds) dt:| < 0. (4.32)
£e(0,1—y) 0 0

For the second expectation in (4.28), Assumption 4.3 and standard estimates using
(4.4) plus the fact that (g» — g1) fot wlds <0 guarantee that it is finite. Moreover, it
is independent of €. Combining this with (4.32), we thus find from (4.28) that

sup ]E[|A5|2]% < 00.
ee(0,1—-y)

This implies that the family of random variables {A, : ¢ € (0, 1 — y)} is bounded in
LQ(Q, F, P), hence uniformly integrable.
2) Consider the second expectation on the right-hand side of (4.25) and set

*

T ~ !
e = / e PIX7 Y A dt.
0

(]

We aim at proving that the family of random variables {E; : ¢ € (0, 1 —y)}is bounded
in L2(SZ, F, P), hence uniformly integrable.
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By Jensen’s inequality and then Holder’s inequality, one finds that
. ) o 1 00 3
E[|E.*]2 < KIE[ / e_p’(Xf’})4dti| ]E|: / e—P’(An;V)“dz] (4.33)
0 0

for some K > 0 independent of €. The first expectation on the right-hand side of
(4.33) is finite thanks to Assumption 4.3 and standard estimates using (4.4) plus the
fact that (g2 — g1) fot n{ds < 0. Moreover, it is independent of ¢. For the second one,
interchanging expectation and d¢-integral by the Fubini—Tonelli theorem and using
(4.31), we obtain

1

o ) 4 iy 1
E[ / e P(Am)) dtj| < i
0 (p+ A1+ Ay —2402)3

by Assumption 4.3. We thus conclude by (4.33) that sup,¢, 1y E[|E€|2]% < 00,
which completes the proof. O

The previous theorem in particular implies the so-called smooth-fit property, a
well-known optimality principle in optimal stopping theory. Moreover, by standard
arguments based on the strong Markov property of ()? , ) (see Peskir and Shiryaev
[56, Chap. IIT]), it follows from the results collected so far that the couple (v, X) solves
the free-boundary problem

L - p)v(x,y) = —xh'(x) on C,

v(x,y) =x onS,
vx(x7Y)=1 atx:f(y)aye((x 1)7
vy(x,y) =0 atx =x(y),y € (0, 1),

with v € C2(C).
An important consequence of Theorem 4.9 is the following result.

Proposition 4.10 The mapping y — x(y) is continuous on [0, 1].
Proof Let T > 0 and define the probability measure Q on (2, H7) by

dQ _ e—%azt—&-olt

t €0, 7.
dP |y,

Under the new measure Q, the process Z = I,—ot,t € [0, T],is astandard Brownian
motion, and the dynamics of (X, &) read

dX, = X, (B + 02+ (g2 — gy )dt + o Xd1;,

dm; = ()\2 — (A1 + A2)7 + (82 — g7 (1 — ”t))df (4.34)
+ (- m)(@diﬁ + (o1 — az)dl,‘),
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with initial conditions 5(\0 =x,m9 =Y, (x,y) € O.Now forany t and (x, y), we have

AT . N
Eq.y) [ /0 PR (W) = (p = B2 — (82 - gl)m)>a’t}

=EQ

AT
oy I:/O e*(ﬂ*ﬂz)H(gz*gl)f(; wyds H(X,, ﬂt)dt] (4.35)

with ﬁ(x, y) = (p — B2 — (g2 — g1)y — I/ (x)). We cannot directly take the limit
T 4 oo in (4.35) since the measure change QQ depends on T. However, we notice that
the right-hand side of (4.35) only depends on the law of (X, i) under Q. Therefore,

we can define a new probability space (€2, F, P) equipped with a two-dimensional
Brownian motion (B, B>) and a filtration F := (F,) 10 and let (X, ) be the unique

strong solution to (4.34), driven by (El , Ez). In this setting, we can then define the
stopping problems

AT o
Vi, y; T) = SHPE(x,y)[/ e (PP fy ’“‘“H(Xt,ﬁz)dt],
>0 0

T T — o~ —
V(x,y) :=supE,y) [ / e~ PR TS (X ﬁ»dt], (4.36)
0

>0

where E(x,y) is the expectation under P conditionally on X0, 7o) = (x, y). By
arguing as in the proof of De Angelis [19, Proposition 4.2], one can show that

lim V(x,y;T)=V(x,y) and lim V(x,y;T) = V(x,y),
T 100 T 100

where we have set

AT

Vi, T) = sup]E(x,y)[/ e"”??t(h’(??f) —(p—B— (82— gl)m))dt},
>0 0
-~ T -~ -~
Vi, y) = supll*z(x,y)[ | e m (0@ - (o~ o a2 - glm))dr]
>0 0
Since now

AT . PN
i'i% E((%,y) |:/0 e—(P—ﬂz)t-i-(gz—gl)fo ”‘d‘vH(Xt, JT;)dt:|

_ AT . P
= supB y) [ f e~ (PP s yTds (X ft)dr},
>0 0

the quivalence in law of the processes ()A( , T, T, 1 l) under Q and (7, T, El, Ez)
under P on [0, T] plus (4.35) allow us to write

Vix,y) = %%‘&V(x’ yi 1) = lim Vi, y;T) = V(x,y).
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In light of this last equality, it is then not difficult to see that v as in (4.7) is such that
v(x,y) :=x — V(x,y) forany (x, y) € O. Since

{(x,y) € O:v(x,y) = x}={(x,y) € O: V(x,y) <0},

x(-) is the optimal stopping boundary for the problem with value V as well.

To prove the continuity of X( - ), we now aim at applying Peskir [57, Theorem 10]
for (4.36). Notlce that V, < 0 on O since x > h(x) i is strictly convex. Moreover,
recalling 6% = 3 () —ap)? 4 82=g1)° (gz g]) ], we have 9, m < 0on O again thanks

to the strict convexity of h. Also Vy is continuous across the boundary due to the
C!-property shown in Theorem 4.9 for v = x — V; hence, the horizontal smooth-fit
property holds. We can therefore apply [57, Theorem 10 ] (upon noticing that in [57],
x is the horizontal axis and y the vertical one, while in our paper, x is the vertical
axis and y the horizontal one) and conclude that X cannot have discontinuities of the
first kind at any point y € [0, 1). Finally, X is also continuous at y = 1 since it is
left-continuous by Proposition 4.6 (ii). O

4.2 The optimal control for the problem (4.2)

In this section, we provide the form of the optimal debt reduction policy. It is given
in terms of the free boundary studied in the previous section.
For X as in (4.11), introduce under IP(, y) the nondecreasing process

7 = (x = inf (RGre e rmoh e fimdn)) yo,r 20, (437)

0<s<t

with Uj_ = 0 and then the process
t
= f e~ (Prmotis—oli—(ga=g) [y mdugpx 4 >0 yx = 0. (4.38)
0

Notice that since V; < x a.s. for all 7 > 0 and 7 — V] is nondecreasing, it follows
from (4.38) that v* is admissible. Moreover, ¢ — v} is continuous (with the exception
of a possible initial jump at time 0), due to the continuity of y — X(y), t — I,
t— mand t — fé weds.

Theorem 4.11 Let V(x,y) := fo %v(z, v)dz, (x,y) € [0,00) x [0, 1]. Then one
has V. =V on [0, o0) x [0, 1], and v* as in (4.38) is optimal for (4.2).

Proof Recall U = Uy as in (3.20) and notice that in our Markovian setting, one
actually has %U (z,y) = U(z2). By the proof of Theorem 3.13, it suffices to show that the
right-continuous inverse of the stopping time t*(z, y) = inf{r > 0: X>¥ > X(x))}
(which is optimal for v(z, y), cf. (4.10)) coincides (up to a null set) with v*. For that,
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recall (3.25) from the proof of Theorem 3.13, fix (x, y) € (0, 00) x (0, 1), take t > 0
arbitrary and notice that by (4.10), we have IP(; yy-a.s. the equivalences

™(z,y) <t = Xy > X(7g) for some @ € [0, t]
= 7> P30 0—0l—(@—g) ud% (7r) for some 6 € [0, 1]
— (x — inf ()_c(ns)e*(ﬂzf%"2)‘*(82*@)f(; ”‘*d”*“l‘v)) vO>x—z
0<s<t
SV >x—2

1) (7)<t

Hence rf (z) = *(z, y) a.s. and v* is the right-continuous inverse of t*(-, y). As v*
is admissible, the claim follows by arguing as in the proof of Theorem 3.13, part2). O

Notice that (4.38) and the equation for X*>¥ in the formulation of (4.2) yield

* 1 2 ' 2)ds
X;\f,y,v _ e(ﬁ27j(r +(g2—g1) Jy T ds+o (x — g:‘)’

which with regard to (4.37) shows that
0< X" <x(x)), t>0,Pas.

Moreover, it is easy to see that we can express v* of (4.37) as

xy,0  —  y

—x X5 —x(7m5) —x

V= sup | ——5— ) VO, T5_=0.
O<u<t X

These equations allow us to make some remarks about the optimal debt management
policy of our problem.

(i) If at the initial time O, the level x of the debt ratio is above X(y), then an
immediate lump sum reduction of x — x(y) is optimal.

(i1) At any time ¢ > 0, it is optimal to keep the debt ratio level below the belief-
dependent ceiling x.

(iii) If the level of the debt ratio at time 7 is strictly below X (), there is no
need for interventions. The government should intervene to reduce its debt only at
those (random) times ¢ at which the debt ratio attempts to rise above x(7;). These
interventions are then minimal, in the sense that (X*7*"", 7%, v*) solves a Skorokhod
reflection problem at the free boundary X.

(iv) Recall that the debt ceiling X is an increasing function of the government’s
belief that the economy is enjoying a phase of fast growth. Then, with regard to the
previous description of the optimal debt reduction rule, we have that the more the
government believes that the economy is in good shape, the less strict the optimal debt
reduction policy should be.
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4.3 Regularity of the value function of (4.2) and related HIB equation

Combining the results collected so far, we are now able to prove that the value function
V of the control problem (4.2) is a twice continuously differentiable function. As a
byproduct, V is a classical solution to the corresponding Hamilton—Jacobi—Bellman
(HJB) equation.

From Theorem 4.11, we know that we have V(x,y) = (;C %v(z, y)dz for all
(x,y) € O := [0, 00) x [0, 1]. Hence thanks to Theorem 4.9 and the dominated con-
vergence theorem, we immediately obtain the following result.

Lemma 4.12 One has that V. .€ C1(©O) N C(O). Moreover, Vy, € C(O) as well as
Viy € C(O).

To take care of the second derivative Vy, we follow ideas used in De Angelis
[19]. In particular, we determine the second weak derivative of V (recall that V) is
continuous by Theorem 4.9) and then show that it is a continuous function. This is
accomplished in the next proposition.

Proposition 4.13 Let 62 := 1 (a1 — @2)? + £28) We have V,, € C(O) with

Vyy (x,y)

1 1 _
= —m((ﬁz + (g2 —81)y — 502) (v(x AX(3).y) = v(0+, y))

1
+h(x AX(Y)) + Eorz(x AT())ve(x AX(), y))

(2 — (M +A2)y) [0

- .v)d
21—y Jy  EVE
P XAF(Y) |
R = —-v(z, y)dz. 4.39
67y2(1 —y>2/o PR (439

Proof Notice that Vy(x, y) = f(;c %vy (z, y)dz and therefore Vy(x, -) is a continuous
function for all x > 0 by Theorem 4.9 (notice indeed that by the bounds in (4.26)
and the multiplicative dependence of XY with respect to z, %vy (z, y) is integrable at

zero). Hence its weak derivative with respect to y is a function g € LIIOC(O) such that
for any test function ¢ € C2°((0, 1)), one has

1 1
/0 Vy (. )¢/ (dy = — /0 g(r. Ve ()dy.

‘We now want to evaluate g and show that it coincides with the right-hand side of (4.39).
Denote by m(x) for x > 0 the generalised right-continuous inverse of x(y) for
y € [0, 1], that is, m(x) := inf{y € [0, 1] : X(y) > x}. Then noticing that vy, = 0 on
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the set {(x, y) € O : x > x(y)} and using Fubini’s theorem, we can write

1 1 x/\f(y)l
/ Vy(x,y)w’(y)dyZ/ / V(@ )dze'(v)dy
0 0 Jo <
xq 1
_ / ! / vy (2, 1)@/ (V)dydz
0 ZJm(z)
x 1
2/0 z(vy(z, D) = vy (2, m(2))9(m(2)
1
_ / ( )vyy<z,y)<p<y>dy>dz

x 1 1
= —/ —/ vyy (2, Y)@(y)dydz, (4.40)
0 2Jm@)

where we have used vy (z, m(z)) = Oforallz € (0, x) and x > 0 as well as (1) = 0.
By Lemma 4.7 (cf. also (4.14)), for any y > m(z) with z € (0, x) and x > 0, we have

1
vyy(z, ¥) = m(ﬂv(z, y) — ()»2 — (A + XZ)Y)Uy(Z, y) — zh'(2)

1
- EO'ZZZUxx(Z, y) — (B2 + (82 — 81)y)zvx (2, y)>.

Inserting this into the last integral term on the right-hand side of (4.40), using again
Fubini’s theorem and then integrating the derivatives with respect to x, we find

1
/O Vy(x, )¢’ (y)dy

X 1 1
__ / ! f Uy (2 () dydz
0 2 Jm(z)

1 — XAX(Y)
(*— (A +22)y) 1
= /0 221 -2 Jo E”y(Zv Vdzo(y)dy

1 0 XAX(y) 1
| —v(z, y)d d
/0 521 —y)zfo Zv(z ydze(y)dy

1
+ /0 (h(x AT(Y) + (B2 + (g2 — g1)Y) (v(x AX(Y),y) — v(0+, y))

—

+ 507 (x AX())vx(x AX(). y)

o(y)
62y2(1 — y)?

2
1
Eaz(v(x AX(y),y) — v(0+, y))) dy, 4.41)
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where we have also used that 2(0) = 0. Finally, setting
g(x,y)
+ (,32 + (82— g1y — %02) (v(x AX(y),y) — v(0+, y))
+ %Uz(x A Y(y))vx (x AX(Y), y))

(A2 — (A1 +A2)y) [*NOD)

- .v)d
oy Jy  eYE
P XAFG) |
- A A.. A - 9 d 9
02y2(1 —y>2/o PRl

we see that (4.41) reads fol Vy(x, y)¢'(y)dy = — fol g(x, y)eo(y)dy so that g can be
identified with the second weak derivative of V with respect to y. Notice that g is
continuous by the continuity of x, v, vy, & and the fact that f(f AF() %v(z, y)dz and
Jo Y Ly (2, y)dz are finite due to (4.4), (4.5) and (4.26). The proof is complete. O

Thanks to Lemma 4.12 and Proposition 4.13, we have that V € C2(O)N C(O).
As a byproduct of this, by the dynamic programming principle and standard methods
based on an application of Dynkin’s formula, we obtain the next result.

Proposition 4.14 Recall the second-order differential operator 1L defined in (4.14).
The value function V of (4.2) is a classical solution to the HIB equation

min{(L — p)V(x,y) + h(x), 1 = Vi (x, )} =0, (x,y) €0,

with boundary condition V (0, y) = 0 for any y € [0, 1].
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A Filtering results

Proof of Proposition 3.5 Since the innovation processes (I, I') from (3.2) and the
random measure m(dt, dq) from (3.4) are H-adapted, we have VA ARV C H.
In general, the inclusion could be strict. Now consider the exponential F-martingale
with Ly = 1 solving

B(Z:)

(e

dL; = _Lt< dW; + a(n;, Zt)dBt>7 t>0.

Let T > 0 and define the probability measure Q on (€2, F7) by

dQ

—| =1L, tel0, T].
dP]_—t t €l ]

Notice that Assumption 3.1 ensures that L is indeed an F-martingale. By Girsanov’s
theorem, the processes

t t
07 . IB(ZX) B .
W, =W, + ——ds, B;:=B;+ a(ng, Zg)ds, t >0, (A.1)
0 o 0

are independent (Q, F)-Brownian m(ztions~0n [0, T]. We now prove that we have

FY \L]FB v F™ = M. The inclusion FY v FB v F" C H follows from the fact that W
and B turn out to be H-adapted since they can be written as

~ "5 (B) ~ 1 !
W, = 1,+/ ds, B =1 +/ ms(a(ng, ))ds, t=0. (A.2)
0 o 0

To prove the converse, observe that under Q, the processes X 0 and n solve on [0, T']
the stochastic differential equations

dX" = X%0dW,,  X)==x>0,

dn; = o1(n))dW; + o2(1,)d By + /R gm(dt, dg), nmo=qeI.  (A3)

Clearly, X 0is IFW—adapted. Recalling (3.13), the solution to (A.3) can be constructed
iteratively. More precisely, for ¢ € [0, T7), the process 7 solves

dne = o1(n)dW, + 02(n)dB;, no=q €7,

and between two consecutive jump times, i.e., for t € [T, T,41), n > 1, one has

dn; = o1()dW, + o2(n)d B, 01, = n1,— + n.

By Assumption 2.1, this sequence of stochastic differential equations has a unique
strong solution on any interval [7},, T,+1), and th~is in turn gives the unique strong
solution 7 to (A.3). Moreover, 7 turns out to be F WV B vE” -adapted.
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By Jacod and Shiryaev [42, Corollary I11.4.3.1], every (Q, H)-local martingale M
admits the decomposition

t

t t
M,=Mo+/ asdws+/ wsst+/ /il?(s,q)m”(dt,dq), (€10, T,
0 0 0 JR

where ¢ and J are H-predictable processes and w is an H-predictable process indexed
by R such that for all # > 0

t t t
/ Prds < oo, / Ylds < oo, / / |W(s, ¢)|mP P (ds, dg) < 0o,  Q-as.
0 0 0 JR

Now let M be a (PP, H))-local martingale. Then M:= ML 'isa (Q, H)-local mar-
tingale, where

~ d
Lt = E[L[|H[] = d% Hls re [Oa T]

Taking into account (A.2), we have that L solves

7 (B)
o

dZt=—Zt( d1t+nt(a(nt,-))d1£>, Lo=1,

and by applying the product formula to M = ML, we easily obtain that under P for
any t € [0, T,

dM, = M,_dL, + L,dM, + d(M°, L°),

ntéﬁ)>d1t + (Zﬂ;t - Mtﬂt(ﬂf(ﬂt, ')))dltl

= (Zt{ﬁt - Mt
+/ W(t, q)L;m™ (dt, dq).
R

To conclude, we thus only need to set

~ 7 (B) ~ ~ ~ ~
@=Ly — M,tT, Y= Ly — MﬂTt(Ol(Ut, ')), w(t, q) = w(, q)Ls,
and invoke the arbitrariness of 7 > 0. O

Proof of Theorem 3.6 In order to derive the filtering equation solved by the process
()i=0 = (m:(i); i € S)t>0, we apply the innovation approach (see for instance Bré-
maud [7, Chap. IV]). We write R for the H-optional projection of an F-progressively
measurable process R such that E[|R;|] < oo, Vi > 0. We recall that if (E[R;|H;]):>0
admits an optional version, then I/Q\, = E[R;|H;], t = 0. In this proof, we use two
well-known facts:

(i) For every F-martingale m, m; = E[m;|H;], t > 0, and m is an H-martingale.

(i1) For any F-progressively measurable and integrable process W, we have that

—

7 t
/ V.ds — / V.ds
0 0
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is an H-martingale.

The first step of the innovation method consists in writing the process 1(z,—;,
i € S,t>0,as asemimartingale. Denoting by L? the Markov generator of the state
process Z, we have that

L*fi() =Y mifi(i), i.j€S,
keS

where fi(j) := 1{j=;. Hence for any i € S, we can write

t
Liz=iy = fi(Z1) = fi(Zo) +/O L fi(Zo)ds + my (i),

where (m;(i));>0 is an F-martingale. By taking the H-optional projection and using
(i) and (ii) above, we obtain that

t
m) =i+ [ 3 hamods + M) (Ad)

0 kes

where M (i) is an H-martingale null at zero. Proposition 3.5 ensures the existence of
processes ¥ (i) and ¢(i) that are H-predictable and w; which is H-predictable and
indexed by R such that

1 t t
M; (i) =/ llfs(i)dler/ s (Hd 1] +f /wi(s,tI)m”(ds,dCI)' (A.5)
0 0 o Jr

To obtain (3.11), it only remains to prove that

0
TROESNOLE <ﬁ(i) - Zﬂ(j)m(j)>,

Jj=1

0
o5 (i) = m(i)(a(ns, i)=Y o, j)m(j)),
j=1
w; (s, q) = wl (s, q) — w5 (i)

with w7 given in (3.12). Following the proof of Ceci and Colaneri [15, Theorem 3.1],
we can derive the structure of the processes ¥ (i), ¢ (i) by exploiting the equalities

F(DOW =)W, f(Z)B=n=()B, Vies,

where W and B are the H-adapted processes defined in (A.1). To derive the expression
of w;, we consider a bounded process I" of the form I'; = fot Jr v (s.@)m(ds, dq)
with an H-predictable process y indexed by R. Since I' is H-adapted, the equality

f(ZT =@, Vies, (A.6)
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holds. By applying the product rule and taking into account that there are no common
jumps between Z and N, we obtain

d(fi(Zt)Ft) = fi(Z-)dTy + Ty—dfi(Z))

=T\L” fi(Z)dt +/ [i(Ziy @, @ymPF (dt, dg) + d My,
R

where mP ¥ (dt, dq) is givenin (3.9) and M is an F-martingale. By taking the optional
projection onto H and denoting by M*™ a local H-martingale, we have that
d(fi(Z)T) = Tim(L” f)dr
+ AN(i)n,_(i)y(t, c(ns—, i))]l{c(mﬂi)#o}dl + d/\/ltH. (A7)
On the other hand, the product rule and (A.4) and (A.5) yield
d(m(DT;) = m—()dT; + Ti—dm, (i) + d(m (i), T);

= Iym(L? fi)dt + Ti—d M, (i) +/RV(l,q)wi(t,q)m(dt,d61)-
Recalling that mPH(ds, dq) is given in (3.8), we find
d(m(DTy) = Tomry (L% fi)dt +/Ry(r,q)w,»(z,q)m!’ﬂ(dz,dq) +dME, (A8)

where again ME is a local H-martingale. Gathering (A.6)—(A.8), we obtain that for
ae.t >0,

W (@- @y (1, e, D) Let—ir20)
Q
- AN, . . .
= > m DR D (s Oty D) Vet o) (- ) + w1 -, ) ).
j=l
Choose now y of the form y (¢, g) = C;14(q)1{;<7,), With any bounded H-pre-

dictable positive process C and A € B(R). Observe that |[';| < f(;AT" CsdNg < Dn
with a positive constant D so that I" is bounded. Then we have on {t < T} the equality

wa(i,dq) Z/A(ﬂt—(i)+wi(ta4))vt(dQ)» VA € B(R),

where we have set

0
vi (i, dq) == AN (D (D Lietr,i20)8ctn .0 (@dq),  vi(dq) =Y _ w(i,dg).
i=1
Thus on {t < T,},
dvi(i,dq)
v (dq)
Finally, since the counting process N is nonexplosive (as it has bounded intensity

and therefore finite expectation; see [7, Sect. 1]), T,, 1 oo a.s. for n 1 o0, and this
yields (3.12). O

wy (1, q) = wi(t,q) — (i) = , Vies.
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Proof of Proposition 3.10 By Proposition 3.7, (3.11) and (3.17) are equivalent to a
system of recursive equations between consecutive jump times, i.e., fort € [T, T;,41),
n=0,1,...,

t t
m(i)=7m(i)+/ b”(zs,m,i)dwf o7 (. )dl,
Tu

Ty
t
+/ o (m,,Ddl}, ies,

t

t
N = N7, +/ b”(ﬂ_s,ns)ds+/
T,

Ty

t
o1 (ny)dls + / ox(n)d 1!,
Ty

where we have set

Q Q
b (y,q.i) = Z)\jiyj = Vi (AN(i)]l{aq,i);eO} - Z)\N(]’)yj]l{c(q,j);£0}>»
j=1 j=1

0
b'(y.q) ==Y yibi(g. ),
j=1

0
of (y.i) =0y (ﬂ(i) — Zﬁ(j)yj),

j=1
(9]

o (y.1) = yi (a(q, )= alq. j)y,-),
j=1

with the update at time 7;, given by

)\'N (i)nTn_ (i)]l{é‘nZC(nTn—si)}
Y7 AN (G- (D ig=ctar, - )

Recall that by assumption, the function (g, i) in (3.3) is locally Lipschitz with respect
to ¢ and satisfies a (global) sublinear growth condition withrespecttog € Z, uniformly
ini € S. We develop the proof of uniqueness first by considering two special cases
related to the jump amplitude function c, namely ¢ # 0 and ¢ = 0. In both cases, the
proof relies on classical results.

If ¢ # 0, we have

0 0
by, g, )= Xjivj — Vi ()\N(i) - ZANum),

j=1 j=1

T, (i) = iels, nT, = N7,— +%n. (A9)

and it is easy to verify that between two consecutive jump times, the pair (7, n) solves
a (Q + 1)-dimensional stochastic differential equation with coefficients satisfying lo-
cal Lipschitz and (global) sublinear growth conditions with respectto (y, g) € Y x R,
uniformly in i € S. As a consequence, strong uniqueness holds between two consec-
utive jump times, i.e., fort € [T, T,4+1),n = 0, 1, ... Moreover, since the update at
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the jump time 7}, (see (A.9)) depends on the process (z,, n;) for t € [T,_1, T,), we
have strong uniqueness of the solution to the system (3.11) and (3.17) for all # > 0.
If c =0, (3.11) and (3.17) reduce to

dm (i) = b™ (z,, s, )dt + o (z,, )dI, + o (z,,i)dl!, ieS,t>0,

dne = b, n)dt + o1 (n)dl; + o2 (n)dl), 120,
where in particular b™ (X’ q,i) = Z,’Q:1 Ajiyj.Itis easy to check that also in this case,
strong uniqueness follows by the local Lipschitz-property of the coefficients and by
their (global) sublinear growth condition.

In the general case where ¢ is R-valued, the jump amplitude can assume any
possible real value. In particular, ¢ can be such that » and N have not only common
jumps: N might jump at a time at which c(n,—, Z;,_) = 0, so that n does not jump at
that time. The treatment of this case is more delicate and must be performed separately.
Indeed, uniqueness cannot be proved by using the arguments employed in the previous
two cases because of the presence of 1.(,,i)»0) in the coefficient b which makes
it impossible to prove the Lipschitz-continuity of »” with respect to g. However,
one can prove uniqueness by relying on the filtered martingale problem associated
to the infinitesimal generator of the triplet (Z, X°, n). We refer to the seminal paper
by Kurtz and Ocone [48], where the notion of filtered martingale problem has been
introduced and applied to prove uniqueness of the filtering equation in the case of
Gaussian additive white noise, and to the more recent work by Ceci and Colaneri [15,
Theorem 3.3 and Appendix B], where uniqueness for a general jump-diffusion state-
observations dynamics has been considered. We can prove analogously to [15, proof of
Proposition B.1] that the boundedness of the jump intensity of n and Assumption 2.1
imply uniqueness for the filtered martingale problem associated to the infinitesimal
generator of the triplet (Z, X°, ), which in turn implies strong uniqueness of the
filtering equation by applying [15, Theorem 3.3]. O
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