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Abstract: In densely populated areas, essential sources of ecosystem services are represented by green
infrastructure, which includes trees outside forests (TOF) that, regardless of their cover extension,
are found on agricultural or urban land. This research aims to assess landscape preference for
TOF along an urban-rural-natural gradient in relation to different levels of landscape heterogeneity.
Analyses are based on the integration of a visual choice experiment (360 respondents) with a GIS-based
landscape analysis at regional scale in a Mediterranean region in Central Italy. Main findings revealed
that correlation between landscape preference and heterogeneity varies along the urban–rural–natural
gradient and on the basis of the spatial configuration of the surrounding landscape. The additional
value of TOF to landscape preference is closely and positively linked to the degree of landscape
anthropization. Conversely, TOF contribution to landscape preference resulted negative in natural
landscapes where they can be perceived as a disturbance of the wilderness. Considering the influence
that landscape preference plays on cultural ecosystem services provisioning and, in turn, on decision
making processes, our results can support landscape policy and planning in fostering or hampering
TOF diffusion depending on the different territorial contexts. These findings endorse the importance
of multi-functional approaches in future-oriented strategies, which should mediate between the
human preference for TOF, their ecological role and the provision of other services.

Keywords: green infrastructures; visual choice experiment; landscape metrics; landscape pattern

1. Introduction

Trees outside forests (TOF) generate many benefits from environmental, social and economic
perspectives, hence they have received much attention in recent years. Trees outside forests are
defined as all trees and shrubs that cannot be included in the “forests” nor in the “other wooded
lands” categories of the FAO forest classification. Therefore, all trees growing in agricultural, urban or
natural landscapes covering less than 0.5 ha and less than 20 m in width, are considered as TOF [1].
They include several tree formations, from single trees to systematically managed trees in agroforestry
systems [2]. In several land mosaics worldwide, people use them for many purposes, including food
provisioning, income, and biological diversity [1], or indirectly benefit from their role in landscape
connectivity [3].

A striking case is the Mediterranean region, where most natural landscapes have been replaced
by cultural landscapes deriving from the reorganization of land use and cover in order to adapt
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to changing social needs [4]. The cultural Mediterranean landscape is, therefore, one of the most
typical settings for TOF because it is shaped by a complex heterogeneous mosaic of tree formations
intermixed with agricultural land and settlements. For example, in Italy, TOF substantially contribute
to landscape diversification and this role has been emphasized by recent land-use change dynamics [5].
Moreover, among the TOF forming the cornerstone of the ecological network of one the most intensively
cultivated and urbanized regions in Europe, the Po Plain, there are hedgerows [6], and small woodland
patches [7].

The presence of TOF contributes to the landscape view, from several perspectives. It is therefore
challenging and important for policy makers trying to assess whether they are drivers of landscape
preference. Since TOF generally grow in the human-nature interface, as in the urban fringe, they are
directly exposed to human pressures [5] and human-induced landscape dynamics [8]. Nevertheless,
an incomplete understanding of potential TOF-related services still often precludes their inclusion in
global and national forest resource management and monitoring systems [9]. Consequently, the effective
implementation of dedicated conservation and improvement actions often remains an unresolved
issue [9].

One way to study landscape preference is to perform a visual choice experiment where respondents
are asked to rank different pictures. This is commonly done using photographs, modified by a computer,
controlling their content and hence the evaluation by a respondent under different scenarios [10].
This perception-based experiment has proved to be able to capture landscape preferences and offer a
high level of reliability [11]. Moreover, removing or replacing objects through combining a geographic
information system (GIS) and photographs makes it possible to infer which are the drivers of landscape
preference [12]. Crossing urban and peri-urban boundaries, landscape preference for TOF patches
could be associated to their key role on landscape structure [5], often being the main antagonists
to landscape homogenization and scenic monotony. Landscape metrics, such as fragmentation and
shape, are known to be statistically significantly correlated with preference, even more so than the
characteristics of respondents [10]. Many integrated studies have been conducted through the analysis
of correlations between landscape preference and landscape metrics [13–18].

Preference for landscape features has been commonly assessed in a single type of landscape,
either natural, semi-natural, agricultural or urban [19]. However, landscape-related characteristics in
which they are set may also play a fundamental role in modifying the preference for single features.
In particular, along an urban–rural–natural gradient of landscape types, the level of human influence
will change, and this may give relatively different importance to TOF, and consequently different
landscape preference [20]. Moreover, landscape preferences can vary between different groups of
people based on e.g., their age and social or cultural background [21].

This study aims to assess how TOF contribute to landscape preference by combining a visual choice
experiment with a GIS-based landscape analysis. Specifically, landscape preference was evaluated
along an urban–rural–natural gradient in relation to the effect of varying TOF cover on landscape
fragmentation, complexity and diversity. Our hypothesis is that landscape preference for TOF varies
along the urban–rural–natural gradient as well as on the spatial pattern of the landscape in which they
are located. Accordingly, the study sheds light on TOF as drivers of landscape preference offering a
tangible support to future strategies and plans, fostering their conservation and implementation as
part of the green infrastructure network.

2. Materials and Methods

2.1. Land-Use Interpretation

The study was conducted in Molise Region, Central Italy, a Mediterranean region that covers
4461 km2 [22] between the Adriatic Sea and the Apennine mountains (Figure 1). The presence of
mountains, hills, lowlands and coastal areas in this region fosters the depopulation of marginal districts
due to the migration towards areas with better development opportunities. Ecological implications of



Forests 2020, 11, 728 3 of 16

this demographic and social phenomenon include forest expansion in mountain areas and agricultural
intensification and urban expansion in lowlands and along the coast, mostly around the three biggest
cities [23,24]. TOF cover 1.7% of the regional territory (7730 ha), having an average patch size of 0.14 ha
at 2008 [25]. About 60 tree species were recorded in TOF of the Molise Region, dominated by Quercus
pubescens and Quercus cerris, together covering 34% in terms of abundance, followed by Ulmus minor
(13%), Acer campestre (8%) and Salix alba (6%). Other species individually contribute to less than 5% in
terms of abundance [26].Forests 2020, 11, x FOR PEER REVIEW 4 of 16 
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Figure 1. The six selected viewsheds representative of the urban–rural–natural landscape gradient and
their geographical location in the study area.

In order to produce a landscape photo sequence covering the whole urban–rural–natural gradient,
a land use interpretation was performed. A sample of 15 oblique photographs, five for each urban,
rural and natural landscape domain, was taken along an altitudinal gradient and from representative
viewpoints in the Molise region. Photos were taken on sunny days during September 2018. Using a
25 m digital elevation model (DEM), and knowing camera position, orientation, and field of view, we
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assigned real-world locations to each of the photograph pixels, producing 15 viewsheds, of which we
interpreted land-use types. Through the photointerpretation of color aerial orthophotos from 2015
(nominal geometric resolution: 0.5 m), five land-use types have been distinguished and mapped with
a minimum mapping unit of 500 m2 in order to discriminate TOF: (1) artificial surfaces; (2) arable
land, permanent crops and heterogeneous agricultural areas; (3) meadows and pastures; (4) forests;
(5) shrublands. These maps were used to calculate three landscape metrics using the “Patch Analyst”
tool in the ESRI ArcGIS® software package. Patch density (PD), land-use class density (CD) and
Shannon’s diversity index (SDI) (see [27] for further details on these metrics) were calculated for each
viewshed, and then normalized to a 0–1 interval by the min-max method of ranging [28]. Finally,
a test for checking the absence of correlation between metrics was performed (Spearman ρ < |0.8|).
These metrics were chosen because of their proved correlation with landscape preference [29] as well
as their ability to describe landscape structure irrespective of the area extent [30]. The average of these
normalized metrics’ values was calculated and assumed as an index of landscape heterogeneity (H
indexv) (see Table A1 in Appendix A). Finally, three pairs of photographs, and their related viewsheds,
were selected from those showing the lowest and highest H indexv within each landscape domain
(urban, rural and natural) (Figure 1). In this way, an urban–rural–natural landscape gradient was
recreated as follows:

L1 Homogeneous urban landscape: the landscape with the lowest heterogeneity among those with
the main land use represented by artificial surfaces;

L2 Heterogeneous urban landscape: the landscape with the highest heterogeneity among those with
the main land use represented by artificial surfaces;

L3 Homogeneous rural landscape: the landscape with the lowest heterogeneity among those with the
main land use represented by arable land, permanent crops and heterogeneous agricultural areas;

L4 Heterogeneous rural landscape: the landscape with the highest heterogeneity among those
with the main land use represented by arable land, permanent crops and heterogeneous
agricultural areas;

L5 Heterogeneous forest landscape: the landscape with the highest heterogeneity among those with
the main land use represented by forests;

L6 Homogeneous forest landscape: the landscape with the lowest heterogeneity level among those
with the main land use represented by forests.

2.2. Visual Choice Experiment

The six selected photos were then modified using a raster graphic editor in order to obtain
six triplets of photos each with three different levels of TOF cover (Figure 2). First editing aimed
to (i) remove all TOF present in original photos, (ii) harmonize exposure and saturation values,
and (iii) eliminate clouds as plausible misleading stimuli on observer perception [31]. Accordingly,
the first photo of each triplet referred to the absence of TOF (No TOF). In the second photo of each
triplet, TOF was added until covering 1.7% of the viewshed area (Med TOF), which corresponded to
the current TOF coverage in Molise region [26]. Finally, the third photo of each triplet was modified by
adding TOF elements until reaching a relatively high TOF cover of 3.4% of the viewshed area (High
TOF), equal to twice the average value of TOF cover in Molise region. TOF were added within 1.5 km
from the snapshot point, as the maximum visual threshold for clearly discerning individual elements
such as trees [17].

Edited photos were exhibited in a visual choice experiment to 360 respondents, equally distributed
by age, (i.e., “young”, “adults” or “elderly”, respectively between 18 and 35, between 36 and 55, and
over 55 years), gender, place of origin (i.e., “inhabitants” or “visitors”) and residential site (i.e., “in
town” if their home was within an urban or peri-urban district or “out of town” if their home was
in a rural area). Respondents were randomly intercepted in public locations of the Molise Region
such as town squares, holiday farms, environmental museums, archaeological sites, ski resorts etc.,
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between December 2018 and March 2019. The first part of interviews included personal information on
profession, educational level and marital status. Each respondent was then asked to rank the photos
contained in each triplet according to their individual preference. The three photos were simultaneously
shown on A2 sheets in order to grant an optimal observation of the landscapes portrayed, facilitating
their comparison. Hence, the three photos of each triplet were ranked from 1 to 3 following an
increasing aesthetic preference (i.e., 1 for the least preferred, 2 for the intermediate and 3 for the most
preferred photo). At the end of the experiment, respondents were asked to rank a sequence composed
of the six photos with the Med TOF cover level, assigning an increasing value from 1 to 6 according to
increasing aesthetic preference. These values were finally multiplied by the preference values of each
photo within the triplet in order to calculate an overall preference score for each of the 18 photos.
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Figure 2. The six triplets of photos edited with a raster graphic editor, showing six different landscape
types of the urban–rural–natural gradient (from top to bottom) and three increasing trees outside
forests (TOF) covers (from left to right).

The responses were analyzed both on the overall sample and for each individual group of
respondents. In order to check the significant differences in preference from different groups of
respondents, a χ2 test was then performed.

2.3. Landscape Metrics and Landscape Preference Relationships

Corresponding to the photo editing, land-use maps of the six original photos were edited in a GIS
environment, thus reproducing the six triplets of viewsheds according to the three TOF cover levels.



Forests 2020, 11, 728 6 of 16

TOF patches edited in photos were replicated in the corresponding viewsheds, faithfully reflecting their
spatial configuration, both for distribution (i.e., azimuth and distance from the observer) and geometry
(i.e., shape and area). A landscape analysis of each viewshed was then conducted, computing sixteen
landscape metrics commonly used to describe landscape fragmentation, complexity and diversity
(see Table A2 in Appendix A). Landscape metrics were calculated through the “Patch Analyst” tool in
the ESRI ArcGIS® software package. Only seven metrics, showing a Spearman ρ < |0.8| between one
another, were retained in order to characterize and compare the six different landscapes in relation
to the three TOF cover levels. These seven metrics were then normalized to 0–1 range using the
min-max method [28]. Normalized metrics were used to calculate three landscape metrics: landscape
fragmentation given by the average of mean patch size (MPS), patch size coefficient of variation
(PSCoV) and total edge (TE); landscape complexity given by the average of area weighted mean shape
index (AWMSI) and mean patch fractal dimension (MPFD); landscape diversity given by the average
of class density (CD) and Shannon’s diversity index (SDI). Correlations among the overall preference
scores and the three related landscape metrics were then assessed through Pearson’s r correlation
analysis. Finally, the statistical significance of the correlations obtained was verified through the t
distribution method. We found statistical significance at 0.001 level for all Pearson’s product moment
correlation coefficients.

3. Results

3.1. Visual Choice Experiment

The distributions of preferences were relatively more balanced between different levels of TOF
cover in rural and natural landscapes than in the urban ones (Table 1). The results reveal that urban and
rural landscapes without TOF are least preferred by most respondents, while those with the highest
level of TOF cover are preferred. Conversely, in natural landscapes, most respondents indicate as less
preferred those having the highest TOF cover. In fact, preferred natural landscapes are heterogeneous
with Med TOF cover and homogeneous without TOF. Slight statistically significant differences appear
with respect to the preferences expressed among the different groups of respondents (for further details,
see Figure A1 in Appendix A).

Table 1. Preference distribution of the overall sample of respondents recorded in the visual
choice experiment.

Domain Landscape
ID

TOF Cover
Preference Distributions (%)

Least Preferred
Landscape

Intermediate
Preferred Landscape

Most Preferred
Landscape

URBAN

L1
No TOF 94.4% 3.3% 2.2%

Med TOF 7.8% 81.4% 10.8%
High TOF 4.7% 8.3% 86.9%

L2
No TOF 91.9% 4.4% 3.6%

Med TOF 9.2% 67.2% 23.6%
High TOF 5.8% 21.4% 72.8%

RURAL

L3
No TOF 69.2% 13.6% 17.2%

Med TOF 11.9% 55.0% 33.1%
High TOF 25.8% 24.4% 49.7%

L4
No TOF 73.6% 15.6% 10.8%

Med TOF 8.6% 47.5% 43.9%
High TOF 24.7% 30.0% 45.3%

NATURAL

L5
No TOF 39.2% 26.7% 34.2%

Med TOF 12.2% 39.4% 48.3%
High TOF 55.6% 26.9% 17.5%

L6
No TOF 26.7% 10.8% 62.5%

Med TOF 17.5% 65.3% 17.2%
High TOF 62.8% 16.9% 20.3%
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3.2. Trees Outside Forests (TOF) Influence on Landscape Structure

The values of landscape metrics with high TOF cover are always higher than medium TOF cover
and TOF absence (Table 2). Accordingly, these metrics’ trends show that a higher TOF cover is directly
correlated with a higher level of fragmentation, complexity and diversity of the landscape mosaics.
Moreover, differences related to TOF cover are more emphasized in homogeneous than heterogeneous
landscapes. In these landscapes (i.e., L1, L3 and L6), MPS, PSCoV and TE show the widest absolute
variations in relation to changing TOF cover. In a homogeneous urban landscape (L1), PSCoV and TE
increase by 22% and 13% respectively passing from Med TOF to High TOF. At the same time, MPS
decreases by 33%. Furthermore, passing from Med TOF to No TOF in L1, PSCoV and TE decrease by
20% and 13%, respectively, and MPS increases by 50%. In homogeneous rural landscape (L3), PSCoV
and TE increase by 33% and 19%, respectively, and MPS decreases by 38% for High TOF. While, PSCoV
and TE decrease by 41% and 16%, respectively, and MPS increases by 100% passing from Med TOF to
No TOF in L3. Lastly, in the homogeneous natural landscape (L6), PSCoV and TE increase by 37%
and 7%, respectively, for High TOF and MPS concurrently decreases by 40%. Conversely, passing
from Med TOF to No TOF in L6, MPS increases by 200% and PSCoV and TE decrease by 65% and
10%, respectively. In these homogeneous landscapes, we also found that AWMSI and MPFD are less
sensitive to changes in TOF cover.

Table 2. Values of the seven landscape metrics for the 18 analyzed viewsheds. Mean patch size (MPS),
patch size coefficient of variation (PSCoV), total edge (TE), area weighted mean shape index (AWMSI),
mean patch fractal dimension (MPFD), class density (CD) and Shannon’s diversity index (SDI).

Domain Landscape
ID

TOF
Cover

Fragmentation Metrics Complexity Metrics Diversity Metrics
MPS PSCoV TE AWMSI MPFD CD SDI

URBAN

L1
No TOF 9.2 218.5 44.8 2.88 1.37 0.017 0.86

Med TOF 6.1 273.1 51.4 3.09 1.40 0.021 0.92
High TOF 4.1 333.2 58.3 3.39 1.43 0.021 0.96

L2
No TOF 3.7 293.6 59.1 2.51 1.37 0.022 1.24

Med TOF 3.0 321.1 67.1 2.87 1.40 0.026 1.30
High TOF 2.2 368.4 74.0 3.16 1.43 0.026 1.34

RURAL

L3
No TOF 19.3 98.6 9.0 1.78 1.33 0.026 0.07

Med TOF 9.6 166.8 10.7 1.97 1.38 0.039 0.16
High TOF 5.9 222.0 12.7 2.21 1.41 0.039 0.22

L4
No TOF 4.6 170.4 24.9 2.19 1.33 0.050 0.98

Med TOF 3.6 196.1 27.0 2.27 1.36 0.060 1.05
High TOF 3.1 209.8 29.0 2.35 1.37 0.060 1.12

NATURAL

L5
No TOF 3.8 164.2 27.8 2.12 1.38 0.051 1.41

Med TOF 3.0 189.2 30.0 2.22 1.41 0.061 1.45
High TOF 2.6 202.4 32.0 2.36 1.42 0.061 1.48

L6
No TOF 35.9 63.5 6.7 1.68 1.29 0.028 0.48

Med TOF 12.0 179.0 7.5 1.73 1.48 0.042 0.49
High TOF 7.1 244.9 8.0 1.77 1.46 0.042 0.50

3.3. Correlation between Landscape Metrics and Preferences

Mean preference scores of the 18 photos increase along the urban–rural–natural gradient (Table 3).
Furthermore, the increase of the mean preference scores in urban and rural landscape triplets matches
the increase of TOF cover. Mean preference scores for L1 and L2 without TOF increase by 85% and
83%, respectively, passing to Med TOF and by 146% and 128% passing to High TOF. Similar, but less
emphasized, are the trends related to rural landscape triplets (L3 and L4). Indeed, in these cases, results
reveal that the highest mean preference scores correspond to the Med TOF rather than High TOF cover.
In fact, in L3 and L4, mean preference scores increase by 142% and 173%, respectively, passing from No
TOF to Med TOF, while decrease by 3% and 7% respectively passing from Med TOF to High TOF. Med
TOF achieves the highest mean preference score even in the heterogeneous natural landscape (L5) with
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the lowest value found for High TOF level. For natural homogeneous landscape (L6), No TOF shows
the highest mean preference score. In this case, results display a trend in mean preference scores that is
opposite to the increase of TOF cover. In detail, mean preference score of L6 decreases by 16% from
No TOF to Med TOF and by 23% from Med TOF to High TOF. With regard to the trends of landscape
metrics, a direct relation with the increase in TOF cover was found for all landscape types (Table 3).
This common trend is particularly emphasized in homogeneous rural and natural landscapes (L3 and
L6) where, e.g., landscape diversity triples passing from No TOF to High TOF in L3 and landscape
fragmentation rises from 0 to 0.49 passing from No TOF to High TOF in L6.

Table 3. Mean preference scores and normalized landscape metrics of the six landscape types
investigated in relation to three different levels of TOF cover.

Domain Landscape
ID

TOF
Cover

Mean Preference
Score

Landscape
Fragmentation

Landscape
Complexity

Landscape
Diversity

URBAN

L1
No TOF 2.1 0.62 0.55 0.28

Med TOF 3.9 0.75 0.71 0.35
High TOF 5.1 0.87 0.86 0.36

L2
No TOF 2.5 0.83 0.46 0.47

Med TOF 4.6 0.91 0.64 0.55
High TOF 5.7 1.00 0.80 0.56

RURAL

L3
No TOF 4.9 0.21 0.15 0.10

Med TOF 6.9 0.39 0.33 0.28
High TOF 6.7 0.50 0.48 0.30

L4
No TOF 5.1 0.52 0.26 0.70

Med TOF 8.8 0.56 0.36 0.83
High TOF 8.2 0.59 0.40 0.86

NATURAL

L5
No TOF 9.6 0.53 0.37 0.86

Med TOF 11.6 0.58 0.48 0.99
High TOF 7.9 0.61 0.55 1.00

L6
No TOF 12.5 0.00 0.00 0.27

Med TOF 10.4 0.37 0.51 0.43
High TOF 8.1 0.49 0.47 0.44

Main results from the correlation analysis (Table 4) show that relationships between trends in
mean preference scores and trends in landscape fragmentation, complexity and diversity have greater
positive intensity in urban (L1 and L2) than in rural landscapes (L3 and L2). These correlations are
inverted, thus becoming negative, passing to natural landscapes (L5 and L6). A homogeneous urban
landscape (L1) displays the strongest positive correlations between trends in mean preference scores
and trends in landscape metrics, which tend to smoothly decrease passing to a heterogeneous urban
landscape (L2). Inversely, positive correlations are stronger in a heterogeneous than in a homogenous
rural landscapes (L4 and L3, respectively). A heterogeneous natural landscape (L5) displays very
weak correlations, almost null in the case of landscape diversity. Finally, in a homogeneous natural
landscape (L6) there are weak negative correlations between mean preference scores and landscape
complexity and diversity.

Table 4. Mean preference scores and normalized landscape metrics of the six landscape types
investigated in relation to three different levels of TOF cover.

Landscape Preference Scores
URBAN RURAL NATURAL

L1 L2 L3 L4 L5 L6

Landscape fragmentation 0.62 0.53 0.35 0.43 −0.15 −0.42
Landscape complexity 0.62 0.54 0.33 0.46 −0.14 −0.34
Landscape diversity 0.57 0.55 0.38 0.49 −0.03 −0.37
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4. Discussion

4.1. Preference along the Urban–Rural–Natural Gradient

Our results demonstrate that preference increases when human-shaped landscapes are rich in TOF.
Emotional response to nature amenity is particularly evident in urban domains, where the abundance
of natural features (i.e., TOF) are in contrast with the common idea of a townscape. Indeed, as observed
by [32], archetypal landscapes generate an immediate judgment by people, which in the specific
case of a townscape maximally enriched in natural features (e.g., TOF) reflect in a strong positive
consensus. In this sense, our results are in agreement with the theory that landscape preference is
commonly increased with exposure to nature [31,33]. Furthermore, the consensus in preferences for
urban landscapes is due to the fact that judgment is not only positively conditioned by the cover of
natural elements but also negatively influenced by the presence of buildings and modern factories,
unanimously recognized as the least appreciated visual landscape elements [34]. The wide agreement
between different groups of respondents in preferring high TOF cover in urban contexts indicates that
their variations within landscapes are greater than differences in people’s judgments [35]. The changes
in preference for TOF depend on the level of landscape naturalness along the urban–rural–natural
gradient, resulting as very high in urban domains where TOF represent the last legacy of nature [36].
Our findings are in line with other similar studies, highlighting how people commonly prefer urban
landscapes with plentiful natural elements [37–39]. Instead, preference analysis in rural landscapes
shows a more balanced distribution ratio, albeit confirming the general preference for landscape with
high TOF cover. Considering rural landscapes as transitional between extremely anthropized and
natural landscapes [40], natural features such as TOF are already present, thus lowering their overall
impact compared to urban domains. Indeed, TOF influence on preferences appear slightly greater
in homogeneous rural landscapes characterized by high agricultural intensification with respect to
heterogeneous and extensively cultivated ones. As shown by [41], trees and small woods in arable
plots represent the most appreciated visual landscape attributes. Furthermore, results are consistent
with those obtained by [42], showing how preferred elements of the natural landscapes include not
only large bio-physical features (i.e., mountains and forests more than TOF) but also conceptual
(e.g., wilderness) and emotional (e.g., excitement) aspects. Moreover, [10] proved how in natural
landscapes the cover of small and scattered forest patches is interpreted as a reduction in naturalness
negatively influencing landscape perception. It is possible that this reaction also depends on the fact
that fragmentation of forested landscapes is automatically linked to the spontaneous rewilding of
mountain and marginal areas. Indeed, it has been observed that people prefer heterogeneous forested
landscapes as long as their heterogeneity is not due to land abandonment [43].

4.2. Effects of Change in TOF Cover and Landscape Metrics

Effects of a change in TOF cover are mostly evident in landscapes with the lowest levels of
heterogeneity, where TOF and small patches in general represent the main elements of diversification [5].
Conversely, the ongoing processes of urbanization, agricultural intensification and abandonment
of marginal lands in Italy and other countries, are often taking place at the expense of TOF with
subsequent landscape homogenization [8]. More specifically, landscape analysis proves how changes
in TOF cover in homogeneous landscapes mainly affect patch size and edge metrics. Confirming
this result, a spatial simulation exercise by [3] demonstrated that TOF affect this variety of metrics
precisely, improving ecological connectivity. Moreover, TOF cover strongly affects diversity metrics in
homogeneous rural landscapes where they represent important permanent features of structural and
biological diversity [6]. Indeed, agricultural intensification mainly implies the removal of TOF patches
to facilitate mechanization, thus favoring the consolidation of small landholdings into single huge
proprieties that radically simplify the landscape mosaic [44].

Our results confirm the positive correlations between landscape preferences and landscape metrics
in relation to the increasing TOF cover. These correlations are particularly emphasized in landscapes
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largely modified by humans (i.e., urban and rural). Pearson’s coefficients tend to decrease with the
decreasing human-induced landscape alteration in rural compared to urban landscapes. Moreover,
landscape diversity is less correlated to preference scores than landscape complexity and fragmentation.
As previously mentioned, agricultural lands, currently accounting for almost half of the European
Union (EU) surface area [45], have undergone important structural changes in the post-war period,
leading to extreme simplification of the landscape mosaics [44]. This simplification also has negative
impacts on landscape preference due to the homogenization of the landscape mosaic often dominated
by a few and similar large land patches [46]. Moving towards more natural landscapes, human
impacts on landscape structure tend to decrease as well as TOF contribution to landscape preference.
Although TOF continue to implicate a general upgrading in heterogeneity, preference scores suggest
that their increase in natural landscapes is perceived as a reduction of naturalness. Since TOF influence
on landscape structure is less marked in heterogeneous natural landscapes compared to homogeneous
ones, correlations between trends in preferences and metrics are negligible in the former and weak or
medium negative in the latter. In detail, landscape fragmentation shows the highest negative correlation
with preference scores in homogeneous natural landscapes (L6), thus confirming fragmentation as a
negative indicator for preference in such landscapes [10].

4.3. Methodological Remarks

Our methodology allowed landscape preference for TOF to be assessed along the whole
urban–rural–natural gradient. This is particularly relevant to recent objectives of sustainable landscape
planning and management highlighting interactions among different services and beneficiaries,
but often neglecting the variability of landscape types [47]. In this perspective, the implementation
of innovative cross-disciplinary tools able to support landscape planning is foreseeable. Huge
efforts in terms of both time and costs needed to assess TOF-related cultural services at large scale
through social perception approaches with an adequate level of robustness represent a barrier to
their effective implementation in planning strategies [18]. Therefore, it would be more appropriate
to advocate techniques that include social information in a biophysical dataset, such as predictive
models able to evaluate and map TOF-related cultural services as well as their changes in relation
to landscape dynamics [48]. Then again, the development of new indicators based on individual
experience in natural environments could facilitate the evaluation of ecological implications on
human wellbeing [49]. While these analyses are particularly important to foster in mountain areas,
e.g., tourist attractiveness [48], they are becoming crucial in urban areas to promote stress relief and
perceived safety linked to greenspaces planning [50]. In this perspective, our results demonstrate
that an increasing cover of trees in urban domains, even if in small patches such as TOF, increases
landscape preferences. Given that TOF coverage in Italy increased by approximately 27% (91,000 ha)
in the last few decades with respect to 1990 [5], it is then crucial to investigate where this change
occurred, e.g., natural or urban contexts, in order to understand the impact of such changes on
landscape preferences. Moreover, the influence of other aspects such as patch size and shape as well
as species composition of TOF elements, might be explored to better characterize their relationship
with landscape preferences. These methods would represent the best compromise in order to
(i) overcome the conceptual divergence between provisioning and perception of cultural services
connected to their intangibility, (ii) incorporate social and ecological bases in sustainable landscape
planning and management strategies by optimizing services demand and supply, and (iii) facilitate
the implementation of current international recommendations and policies aimed at improving
socio-cultural and economic development through green infrastructure and nature-based solutions [51].

5. Conclusions

Our results demonstrate that there is wide agreement among different groups of people in
recognizing the added value of TOF to landscape preference. Increasing TOF cover positively affects
landscape preferences following a landscape anthropization gradient, thus resulting as higher in urban



Forests 2020, 11, 728 11 of 16

than rural and natural ecosystems. Accordingly, our findings advocate initiatives aimed at conserving
and improving the presence of TOF in urban and rural areas ensuring health, cultural, economic and
environmental benefits for people [52]. The positive contribution of TOF on landscape preference
in such areas demonstrate that their implementation can also ameliorate this aspect as well as those
related to their ecological, regulating and supporting role [53]. In light of our results, we can conclude
that increasing tree cover, either by planting or by spontaneous rewilding, even by small patches such
as TOF can be considered as a positive initiative to increase landscape preference as well. Otherwise,
instead of specific biophysical attributes and features, preference for natural landscapes would seem
to be related to emotional reasons, including a transversal perception that originates from cognitive
processes. Therefore, TOF contribution to landscape preference is null, if not negative, in extremely
natural landscapes where they represent a sort of unwanted human legacy. Considering the influence
that landscape preference can play on cultural ecosystem services provisioning and, in turn, on decision
making processes, our results can support landscape policy and planning in fostering or hampering
TOF diffusion depending on the different territorial contexts. However, given the high variability in
the species as well as the spatial composition of TOF, future studies able to combine information on
ecological diversity and social perception of this tree resource are suggested.
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Appendix A

Table A1. Results of the characterization of the 15 viewsheds in relation to main land-use and
heterogeneity level. In bold, the six selected viewsheds. Patch density (PD), land-use class density (CD)
and Shannon’s diversity index (SDI) and their normalized values, and index of landscape heterogeneity
(H index).

ID
Photo

Main
Land
Use

Area
(ha) PD

PD
Normalized

Value
CD

CD
Normalized

Value
SDI

SDI
Normalized

Value

H
Index

1 Artificial
surfaces 238.1 0.11 0.24 0.017 0.03 0.86 0.61 0.295

2 Artificial
surfaces 228.7 0.09 0.17 0.022 0.10 0.89 0.62 0.304

3 Artificial
surfaces 99.6 0.20 0.50 0.040 0.37 0.93 0.65 0.515

4 Artificial
surfaces 175.2 0.34 0.92 0.023 0.12 0.88 0.62 0.559

5 Artificial
surfaces 228.0 0.27 0.71 0.022 0.11 1.24 0.87 0.568

6 Agricultural
areas 77.0 0.05 0.07 0.026 0.17 0.07 0.05 0.097

7 Agricultural
areas 100.1 0.06 0.09 0.030 0.22 0.20 0.14 0.155
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Table A1. Cont.

ID
Photo

Main
Land
Use

Area
(ha) PD

PD
Normalized

Value
CD

CD
Normalized

Value
SDI

SDI
Normalized

Value

H
Index

8 Agricultural
areas 207.8 0.07 0.13 0.014 0.00 0.75 0.53 0.220

9 Agricultural
areas 12.2 0.16 0.40 0.082 1.00 0.00 0.00 0.467

10 Agricultural
areas 100.6 0.22 0.56 0.050 0.52 0.98 0.69 0.593

11 Forests 98.6 0.26 0.69 0.051 0.53 1.41 1.00 0.743
12 Forests 101.0 0.19 0.47 0.040 0.37 0.88 0.62 0.489
13 Forests 297.9 0.14 0.33 0.017 0.03 1.00 0.70 0.357
14 Forests 158.0 0.06 0.10 0.025 0.16 0.97 0.68 0.316
15 Forests 71.7 0.03 0.00 0.028 0.19 0.48 0.33 0.178

Table A2. Overview of the 16 landscape metrics [27] originally considered for the landscape analysis of
the 18 viewsheds. In bold, the seven metrics selected after the auto-correlation test and used for the
landscape analysis.

Landscape
Metric Acronym Description

Fragmentation

Patch Density PD Number of patches in the viewshed, divided by total
viewshed area.

Mean Patch Size MPS Sum, across all patches in the viewshed, of the patch areas,
divided by the total number of patches.

Median Patch Size MedPS
Area of the patch representing the midpoint of the rank order

distribution of patch areas based on all patches in the
viewshed.

Patch Size Coefficient
of Variance PSCoV Standard deviation of patch areas divided by the mean patch

area.

Patch Size Standard
Deviation PSSD

Square root of the sum of the squared deviations of each patch
area from the mean patch area computed for all patches in the
viewshed, divided by the total number of patches (i.e., the root

mean squared error in the patch size).
Total Edge TE Sum of the lengths of all edge segments in the viewshed.

Edge Density ED Sum of the lengths of all edge segments in the viewshed,
divided by the total viewshed.

Mean Patch Edge MPE Lengths of all edge segments in the viewshed divided by the
total number of patches.

Complexity

Mean Shape Index MSI
Sum of patch perimeter divided by the square root of area of

each patch in the viewshed, adjusted by a constant for a
square standard, divided by the number of patches.

Area Weighted Mean
Shape Index AWMSI

Sum, across all patches, of each patch perimeter divided by
the square root of the patch area, adjusted by a constant for a
square standard, multiplied by the patch area and divided by

the total area of the viewshed.

Mean Perimeter-Area
Ratio MPAR

Sum, across all patches in the landscape, of the simple ratio of
patch perimeter to area, divided by the total number of

patches.

Mean Patch Fractal
Dimension MPFD

Sum of two times the logarithm of patch perimeter, divided by
the logarithm of patch area for each patch in the viewshed,

divided by the number of all patches.
Area Weighted Mean

Patch Fractal
Dimension

AWMPFD
Sum, across all patches, of two times the logarithm of patch
perimeter, divided by the logarithm of patch area multiplied

by the patch area divided by the total landscape area.

Diversity

Class Density CD Total number of patch classes in the viewshed, divided by
total viewshed area.

Shannon’s Diversity
Index SDI Sum, across all patch classes, of the proportional cover of each

patch class multiplied by that proportion.

Shannon’s Evenness
Index SEI

Minus the sum, across all patch classes, of the proportional
cover of each patch class multiplied by that proportion,

divided by the logarithm of the number of patch classes.
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