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ABSTRACT: In this report, we present a method to characterize the kinetics of electron
transfer across the bilayer of a unilamellar liposome composed of 1,2-dimyristoyl-sn-glycero-
3-phosphocholine. The method utilizes synthetic phospholipids containing noninvasive
nitroxide spin labels having the >N−O• moiety at well-defined distances from the outer
surface of the liposome to serve as reporters for their local environment and, at the same
time, permit measurement of the kinetics of electron transfer. We used 5-doxyl and 16-doxyl
stearic acids. The paramagnetic >N−O• moiety is photo-oxidized to the corresponding
diamagnetic oxoammonium cation by a ruthenium electron acceptor formed in the solution.
Electron transfer is monitored by three independent spectroscopic methods: by both steady-
state and time-resolved electron paramagnetic resonance and by optical spectroscopy. These
techniques allowed us to differentiate between the electron transfer rates of nitroxides located
in the outer leaflet of the phospholipid bilayer and of those located in the inner leaflet.
Measurement of electron transfer rates as a function of temperature revealed a low-activation
barrier (ΔG‡ ∼ 40 kJ/mol) that supports a tunneling mechanism.

■ INTRODUCTION

Electron transfer (ET) is one of the principal processes
involved in harvesting and transferring energy in natural and
artificial systems. Indeed, it is an essential process in all living
organisms.1−3 Extensive studies of ET have been performed on
proteins,1,4,5 DNA,6,7 dendrimers,8 and artificial photosynthetic
centers.9,10 A consistent effort is devoted to the ET across lipid
membranes.11 Most of studies on ET across biological
membranes focus on natural or artificial redox-active
complexes embedded in a lipid bilayer and on the effects of
the presence of cations, on the processes of electron and
proton transfer.12,13 The study of membranes is relevant to
solar energy conversion.12,14−19 Also, knowledge of ET across
membranes is fundamental both for understanding the
functioning of natural photosynthetic systems and for creating
their artificial analogs.12,20 The contribution of the fatty-acid
chains of the phospholipids to ET is poorly understood. The
roles of the main types of chemical bonds, that is, hydrogen-,
π-, and σ-bonds in ET are not well understood either.13,21,22

In studies on membrane systems, unilamellar liposomes are
often used as model systems,23−27 with the donor and acceptor
being separated by a lipid bilayer. In general, methods that rely
on optical spectroscopies utilize bulky and rigid dyes, inferring
perturbations to the system; it is a challenge to identify probes
that do not substantially alter the membrane, and, at the same
time, provide clear-cut information on the ET phenom-
ena.12,14,17,19,23−26,28−30 Another challenge for the methods is

the flexibility to cover kinetics extending over several orders of
magnitude.
Electron paramagnetic resonance (EPR) spectroscopy

represents an interesting option for studying reaction kinetics
in a wide range of time scales, from microseconds31 to hours.32

It requires a paramagnetic center in the system, but, with
respect to popular optical spectroscopies, it overcomes the
disadvantage of coping with unresolved and overlapping
optical absorptions or background signals.
Here, we present a novel and highly efficient methodology

for studying ET across membranes based on EPR. We make
use of nitroxides as paramagnetic centers that are attached to
stearic acids in different positions to localize them at different
depths in the membrane. These molecules have been selected
as they do not substantially perturb the phospholipid
bilayer.33−36 Photoinduced oxidation of the nitroxides, using
a well-established procedure, yields time-dependent EPR signal
intensities that can be straightforwardly translated into kinetic
data. It is a key advantage that the study of the EPR spectra
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(eventually in the presence of added relaxants) can provide
relevant information both on the positioning of the nitroxide
moiety within the bilayer; and on the environment of the
probe.
Use of these probes enables us to systematically address the

contribution of the phospholipids to ET across a biological
membrane. It is important to distinguish this “background”
contribution if one wants to focus on ET of active constituents,
such as proteins and metal complexes dissolved into the
membrane.
Two probes, 5-doxyl stearic acid (5DSA) and 16-doxyl

stearic acid (16DSA) (Scheme 1), were introduced into

unilamellar liposomes composed of 1,2 dimyristoyl-sn-glycero-
3-phosphocholine (DMPC).37,38 While in 5DSA the nitroxide
moiety is located adjacent to the hydrophilic moiety of DMPC,
in 16DSA it resides deep within the lipophilic domain.39

Molecular dynamics simulations predicted 5DSA to be located
only ∼ 0.5 nm from the membrane surface. For 16DSA the
distance increases to ∼ 1.8 nm.39 These distinctly differing
locations of the probes are, therefore, well suited to obtaining
insight into the distance dependence of the ET process.
We selected DMPC-based membranes since they display a

transition from a gel-like to a liquid crystalline phase at room
temperature (296.6 K).40 This allows us to investigate the
influence of the rigidity of the lipid bilayer on ET. In the liquid
crystalline state, lateral diffusion of lipids within the vesicle
bilayer is rapid, whereas the transverse “flip-flop” motion is
extremely slow.41 Below 296.6 K, the transition to the gel-like
phase causes all modes of mobility to decrease by orders of
magnitude.42,43

To monitor the ET kinetics, we needed a reaction sequence
that could be triggered. Here, we utilized the well-established
photoinduced oxidation of [Ru(bpy)3]

2+ to [Ru(bpy)3]
3+ in

the presence of ammonium persulfate ((NH4)2S2O8).
44−50

The decisive and rate-limiting step is the subsequent oxidation
of the nitroxide moiety by ground-state [Ru(bpy)3]

3+. The
reaction produces the EPR-silent oxoammonium cation
(OAC), with concomitant regeneration of [Ru(bpy)3]

2+

(Scheme 2). This approach has been used successfully for
monitoring ET reactions,31,44,51 since the photoinduced
formation of [Ru(bpy)3]

3+ is faster than its reaction with
RNO•; furthermore, the Ru-complex is highly water-soluble,
therefore it does not diffuse into the membrane.
The complex [Ru(bpy)3]

2+ displays strong absorption at 452
nm. Following the decrease in absorption at this wavelength
thus provides an additional tool for following the ET
kinetics.46,52,53

To obtain a strong set of experimental data, we followed the
kinetics of the reactions displayed in Scheme 2 by steady-state
EPR (continuous irradiation), by laser-triggered time-resolved
EPR, and by optical absorption spectroscopy.

■ EXPERIMENTAL SECTION
Liposome Preparation. Liposomes were prepared by ultra-

sonication.54 Briefly, the phospholipid and the corresponding stable
nitroxide radical (SNR) (w/w 50:1) were dissolved in 0.5 mL
dichloromethane and dried to a thin film under a nitrogen stream in a
test tube at room temperature. After further drying for 1 h under
vacuum, the film was hydrated with 1 mL of buffer at neutral pH and
then sonicated for 15 min. Residual free SNRs were removed by
dialysis, and their complete removal checked by EPR.

Liposome Characterization by Small-Angle X-ray Scattering
(SAXS). The measurements utilized a SAXSpoint 2.0 (Anton Paar,
Graz, Austria) apparatus containing a Primux 100 micro microfocus
X-ray source operating at λ = 0.154 nm (Cu-Kα). Two-dimensional
scattering patterns were recorded by a 2D EIGER R Series Hybrid
Photon Counting (HPC) detector (Dectris Ltd., Baden-Daettwil,
Switzerland). The samples were inserted into a capillary (1 mm
diameter) and measured nine times for 300 s. The scattering patterns
were averaged and compensated for the cosmic X-ray impacts. All
measurements were performed at 20 °C. Absolute scale calibration
was achieved by using water as a secondary standard.55 All SAXS data
were evaluated by a generalized indirect Fourier transform (GIFT)
method to determine the pair distance distribution functions.56−58

Liposome Characterization by Dynamic Light Scattering.
The dynamic light scattering (DLS) equipment consisted of a diode
laser (Coherent Verdi V5, λ = 532 nm) and a goniometer with single-
mode fiber detection optics (OZ from GMP, Zürich, Switzerland).
The data were acquired by an ALV/SO-SIPD/DUAL photomultiplier
with pseudocross correlation and an ALV 7004 Digital Multiple Tau
Real Time Correlator (ALV, Langen, Germany). The ALV software
package was used to record and store the correlation functions. Light
scattering was measured five times for 30 s, at a scattering angle of 90°
and a temperature of 25 °C, and the resulting correlation functions
were averaged. The hydrodynamic radius was calculated using
optimized regulation technique software.59

Continuous-Wave Electron Paramagnetic Resonance. Con-
tinuous wave (cw) EPR spectra were recorded on a Bruker X-band
spectrometer (EMX, 100 kHz field modulation) at 275, 283, 303, and
310 K with a 0.15 mT field modulation amplitude. Photolysis was
conducted using a Hamamatsu Lightingcure LC4 Xe/Hg lamp. The
correlation times were calculated using the MATLAB-based GUI
SimLabel.60 The concentration of the SNR was 2 × 10−5 M in all
measurements. The concentration of [Ru(bpy)3]Cl2 and (NH4)2S2O8
were 1 × 10−5 and 5 × 10−4 M, respectively.

Power Saturation Experiments. The power saturation experi-
ments for determining the position of the nitroxide moieties within
the bilayer of the DMPC liposomes were performed on an E580
ELEXSYS Bruker X-band spectrometer, equipped with a room-
temperature dielectric resonator, ER4123D. All spectra were obtained
using the following parameters: modulation amplitude 0.15 mT;
modulation frequency 100 kHz; time constant 82 ms; conversion time

Scheme 1. Phospholipid 1,2-Dimyristoyl-sn-glycero-3-
phosphocholine (DMPC) and Stable Nitroxide Radicals
(SNRs) 5DSA and 16DSA

Scheme 2. Photoinduced Oxidation of a Nitroxide to the
Corresponding Oxoammonium Cation by Photoexcitation
of [Ru(bpy)3]

2+ to its Excited State [Ru(bpy)3]
2+* via a

Metal-to-Ligand Charge Transfer (kexc ≥ 5 × 1010 s−1)54

Followed by Oxidation of [Ru(bpy)3]
2 +* to [Ru(bpy)3]3+ in

the Presence of (NH4)2S2O8
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164 ms; scan width 1.5 mT; 512 points; and temperature 293 K. The
microwave power was ramped up automatically from 0.05 to 127 mW.
The experimental protocol for the insertion depth measurements was
as follows: approximately 5 μL samples were loaded into a gas
permeable TPX capillary (L&M EPR Supplies, Inc., Milwaukee, WI,
USA), and three saturation experiments were performed. The first
experiment was done on the sample in equilibrium with air, to
saturate the membrane with oxygen. The second experiment was
performed on the same sample after deoxygenation under dry
nitrogen flow for 20 min. The third experiment was carried out on a
new sample to which a nickel complex with ethylenediaminediacetic
acid (NiEDDA) had been added to a final concentration of 20 mM;
the sample was then deoxygenated as mentioned above. The three
power saturation curves (intensity vs microwave power) were
obtained using a home-written program in Matlab that extracts the
peak-to-peak amplitudes of the central line of the EPR spectra of the
above experiments. The saturation curves were fitted using the
standard equation:27,61,62

y A
x

1 (2 1) x
p

1/2

1/h
h

1/2

= ·
+ − ·

Ä
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ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ (1)

where p1/2 is the saturation parameter, namely, the power at which the
first derivative amplitude is reduced to half of its unsaturated value, h
is the homogeneity parameter, indicating the homogeneity of
saturation of the resonance line (ranging from h = 1.5 for a fully
homogeneous line to h = 0.5 for a fully inhomogeneous line), and A is
a scaling factor that accounts for the absolute signal intensity. The

dimensionless parameter (Φ) that is related to the immersion depth
of the nitroxide inside the membrane can be directly calculated from
the ratio of the p1/2 parameters obtained from the fitting of the data
from the three experiments described above:

p p

p p
ln 1/2

oxygen
1/2
nitrogen

1/2
NiEDDA

1/2
nitrogenΦ =

−

− (2)

Time-Resolved Electron Paramagnetic Resonance. Time-
resolved EPR (TR-EPR) signals were collected using the instrument
lock-in amplifier connected to a fast digitizer on an E580 ELEXSYS
Bruker X-band spectrometer. The modulation frequency was 100
kHz, and the modulation amplitude was 0.2 mT. The modulation of
the magnetic field was set to a frequency of 100 kHz so that the time
resolution was regulated by the time constant value (TC) to a
maximum value of ∼ 10 μs. The experimental procedure involved a
single laser pulse to photoexcite [Ru(bpy)3Cl2], thus initiating the ET
process as depicted in Scheme 2 followed by monitoring the decay of
the EPR signal. Photoexcitation was performed using a Quantel
Rainbow Nd:YAG laser (1064 nm) mounted with second and third
harmonic modules and an optical parameteric oscillator. The final
irradiation wavelength was set to 436 nm. The concentration of the
SNR was 6.4 × 10−4 M in all measurements.

Time-Resolved UV−visible Spectroscopy. TR-UV-vis spectra
were recorded on a UV-vis spectrometer equipped with optical fibers
and a 1024-pixel diode-array detector (J&M Analytik AG, Essingen,
Germany). Standard fluorescence quartz cuvettes were used for all
measurements. Excitation of the samples was performed using a
Hamamatsu Lightingcure LC4 Xe/Hg lamp. The concentration of the

Scheme 3. Kinetic Equations and Boundary Conditions Used for the Simulation of the Time-Dependent Decrease of the EPR
signal of 5DSA and 16DSA Nitroxides and Graphical Representation of the Inner and outer ET Pathwaysa

a[Ru(bpy)3]
3+ is formed according to Scheme 2 in a rather short time scale (kox = 1.2 × 109 M−1 s−1).48 It is reduced to [Ru(bpy)3]

2+ by the
nitroxide groups (oxidized to OAC) in a bimolecular process acting as the bottleneck of the ET process, eqs (1) and (2), and eqs (3) and (4)
represent kinetic boundary conditions
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SNR was 1 × 10−5 M for all measurements. The concentrations of
[Ru(bpy)3]Cl2 and (NH4)2S2O8 were 1.41 × 10−5 and 5 × 10−4 M,
respectively, for all measurements. The cuvette was irradiated for 30 s
before each measurement, so as to convert all the [Ru(bpy)3]

2+ to its
oxidized form. After injection of the liposomes containing the SNRs,
the absorbance at 452 nm was monitored with readings acquired at 1
s intervals.
Kinetic Analysis. Kinetic analysis was conducted using the kinetic

reaction shown in Scheme 3 and explained in greater detail in the
Supporting Information. The rate constants from the literature data
were used where possible (Supporting Information, Schemes S1 and
S2). The rate constants for the other reactions were determined by
fitting the experimental curves with COPASI, a free software.63 Two
second-order distance-dependent reactions were used for the limiting-
step electron transfer reaction for both 5DSA and 16DSA.

■ RESULTS AND DISCUSSION
Structure of the Liposomes and Properties of the

Spin Probes. It was first necessary to establish that the
presence of the spin-labeled fatty acids does not affect the
integrity of the membrane. DLS measurements reveal that both
the unmodified liposomes and those containing either 5DSA
or 16DSA have a narrow size distribution, with an average
hydrodynamic radius of 53 nm (see Supporting Information,
Figure S5). SAXS shows that the thicknesses of the liposomes
(ca. 5.1 nm, a result corroborated by molecular dynamics
simulations),62 is insignificantly altered when either of the
probes resides in the membrane (see Supporting Information,
Figure S4). We conclude that insertion of the phospholipids
containing the SNRs does not significantly perturb the
membrane structure.
Besides being a pivotal reactant in the ET reaction, the

RNO• group also serves as an efficient probe of the local
environment. Figure 1 shows the temperature-dependent EPR
spectra of 16DSA and 5DSA. Significantly, the signals detected
for 16DSA display narrower spectral lines than those of 5DSA.

This is a direct indication that the NO• group of the 16DSA
resides in an environment whose density/viscosity is
substantially lower than that of the surrounding 5DSA.
Above the transition temperature, in the liquid-crystal phase
(>296.6 K), for both probes the lines become narrower,
revealing higher mobility (much shorter rotational correlation
times, see Supporting Information Table S1). These temper-
ature-dependent lineshape changes are reversible. The data
obtained are in line with 16DSA being positioned in the rather

flexible, lipophilic environment toward the center of the
bilayer, while 5DSA resides in a more ordered, rigid, and
hydrophilic region close to the polar head group.38,64−67 Our
experimental data correspond well with the MD simulations
referred to in the introduction.39 Simulations evidence that all
the EPR signals measured represent single species. This
demonstrates that each label occupies a well-defined position
within the membrane (on the EPR time scale) and confirms
that no labels are detectable in the aqueous solution outside
the membrane.
It has been reported that the fatty-acid-based chains bearing

the labels may fold back within the bilayer.36 Such a process
would substantially affect the evaluation of the distance
dependence. We, therefore, used power saturation EPR to
experimentally address this issue. This method provides the
depth parameter Φ (see the Experimental Section, and also
Supporting Information Figure S8 and Table S2), which is a
measure of the immersion depth of the spin label.61 Φ values
of 1.5 and 2.9 were obtained for 5DSA and 16DSA,
respectively. These values are very similar to those reported
for structurally related 5DPC (1-palmitoyl-2-stearoyl-(5-
doxyl)-sn-glycero-3-phosphocholine, Φ = 1.4) and 14DPC
(1-palmitoyl-2-stearoyl-(14-doxyl)-sn-glycero-3-phosphocho-
line, Φ = 3.0) in comparable POPC membranes (Table S2).68

This strengthens our contention that the nitroxide moiety in
16DSA is positioned substantially deeper within the bilayer
than 5DSA, and that back-folding does not make a substantial
contribution, in agreement with earlier findings.69

Kinetics. After preparing and characterizing the unilamellar
phospholipid vesicles and their nitroxide-labeled derivatives,
they were added to a solution containing [Ru(bpy)3Cl2] and
(NH4)2S2O8. As shown in Scheme 2, irradiation converts the
Ru(II) complex (present in the external aqueous phase) to
Ru(III), which then oxidizes the paramagnetic nitroxide
moiety to the EPR-silent oxoammonium cation. Accordingly,
the Ru complex in the outer aqueous phase can interact with
the nitroxide residing in the adjacent outer leaflet and a more
distant one in the inner leaflet. This has to be accounted for in
the kinetic equations, which are represented in Scheme 3.
Consequently, the oxidation of the nitroxide moiety has to be
split into two components: one accounting for the shorter
(kouter) and one for the longer (kinner) distance. In terms of the
overall concentration of the spin labels, we assume that they
are evenly distributed between the inner and outer leaflet (eqs
3 and 4 in Scheme 3). The overall reaction scheme is therefore
the combination of Schemes 2, and 3, and it is shown in
Schemes S1 and S2 (See the Supporting Information) for the
two cases of symmetric and nonsymmetric liposomes. The
numerical solution of the overall equation scheme as described
in the Experimental Section allows the determination of the
concentration of all species and the fitting of all the
experimental traces.
EPR time traces obtained under steady-state irradiation of

nonsymmetrically prepared liposomes are displayed in Figure
2a−d. These curves reveal two reaction regimes, one
dominating at short times, the second emerging after about
10 s. This is consistent with the presence of reactions 1 and 2
in Scheme 3, since ruthenium resides only in the solution
outside the liposome (see Scheme S1). Our hypothesis has
been verified using symmetric liposomes (Figure 2e−h, see
below). The presence of two distinct rates for the two leaflets
is possible since the nitroxides do not quickly exchange
between the two leaflets in the time frame of the experiments,

Figure 1. Temperature-dependent cw-EPR spectra of (a) 16DSA, and
(b) 5DSA embedded in DMPC liposomes in aqueous solution
(experimental, black; simulations, red). The data are shown in Table
S1. Note that the experimental spectra do not contain components
corresponding to spin labels in the aqueous phase outside the lipid
bilayer.
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as the “flip-flop” motion is known to be extremely slow.
Additionally, as proved by the lineshapes of the cw-EPR
spectra and by the power saturation EPR experiments on
symmetric liposomes, 5DSA and 16DSA occupy markedly
distinct positions in the bilayer and therefore should give rise
to different electron transfer rates.
Following these observations, we solved the kinetic scheme

and fitted the different time traces. From the solution, we
determined that eqs 1 and 2 of Scheme 3, characterized by
kouter and kinner, are the rate-limiting steps. For 5DSA, kouter
increases from 3.6 to 6.2 × 105 M−1 s−1 increasing the
temperature from 275 to 310 K (Table 1). The kinner rate
constant is two orders of magnitude smaller and increases from
4.7 to 15.0 × 103 M−1 s−1 in the same temperature range.
Analogously, for 16DSA, the rate constants increase from 1.6
to 3.8 × 105 M−1 s−1 and from 6.8 to 33.0 × 103 M−1 s−1,
respectively (Table 1). The observation that the rate constant
kouter for 5DSA is larger than that of 16DSA by a factor of two
(at all temperatures) let us conclude that the nitroxide moiety
of 16DSA is approximately 1 nm more distant from the water/
membrane interface (containing the Ru(III) complex) than
that of 5DSA (see also below).39 Markedly, kinner is bigger for
16DSA (closer to the outer liposome surface) and smaller for
5DSA. The rates, which we assign to the oxidation of the
nitroxides in the inner leaflet, kinner, are ca. two orders of
magnitude lower than kouter.

To verify that the origin of two electron transfer rates have
been correctly assessed, we designed an experiment in which
the signal decay depends only on the electron transfer rate of
the outer leaflet, the fast electron transfer process (kouter). We
prepared liposomes that contained [Ru(bpy)3]Cl2/
(NH4)2S2O8 in the external and in the internal aqueous
phase (symmetric liposomes), and we employed time-resolved
EPR coupled to pulsed-laser irradiation to focus on the
microsecond range. Indeed, the decay curves so obtained for
the EPR signals of 16DSA and 5DSA (Figure 2e−h and
Supporting Information Figure S3) display only one
component. The corresponding temperature-dependent rate
constants are therefore obtained from solution of Scheme S2.
They are identical (within the experimental error, Table 1) to
those assigned to kouter determined in the steady-state
experiment. This clearly underpins the assignment of the two
distinctly different time regimes to the ET to the inner and
outer leaflets.
In a parallel set of experiments, we used optical spectroscopy

to follow the concentration of the oxidant, [Ru(bpy)3]
3+,

present only in the external aqueous phase, to obtain the
absolute rate constant for its formation and to establish its
steady-state concentration under our experimental conditions.
Upon irradiation of [Ru(bpy)3]Cl2 in the presence of
(NH4)2S2O8, the band at 452 nm of [Ru(bpy)3]Cl2 decreases

Figure 2. EPR intensity vs time detected upon steady-state irradiation (Black, experimental; red, simulated; and the residuals are shown below the
decay curves). For the reactions, see Scheme 2. (a) 16DSA at 283 K, (b) 16DSA at 304 K, (c) 5DSA at 283 K, and (d) 5DSA at 304 K. In these
experiments, the photoredox system is located only in the aqueous phase outside the liposome. Analogous curves are obtained upon pulsed-laser
irradiation, (e−h). Here, the photoredox system is present in the external and in the internal aqueous phase. Note the different time scales for
continuous and pulsed irradiation.

Table 1. Temperature-Dependent Rate Constants for the Redox Reaction between 5DSA and 16DSA Embedded in the DMPC
Bilayer and [Ru(bpy)3]Cl2 and (NH4)2S2O8, Using cw- and TR-EPR (Experimental Error ∼ 10% for all Rate Constants)

label T/K kouter cw-EPR /105 M−1 s−1 kinner cw-EPR /103 M−1 s−1 kouter TR-EPR /105 M−1 s−1

5DSA 275 3.6 4.7 2.8
283 4.0 6.0 3.2
304 5.4 6.0 4.8
310 6.2 15 5.6

16DSA 275 1.8 6.8 1.7
283 2.0 9.7 2.3
304 2.4 10 2.7
310 3.8 33 4.0
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within ca. 200 s indicating the oxidation of the Ru(II) species
to [Ru(bpy)3]

3+ (Figure 3a).53,70,71

Finally, to confirm the kinetics of the slow process, we took
advantage of UV-vis spectroscopy and followed the reaction
with a low time resolution >10 s. A cuvette containing the
photoredox system was irradiated for 30 s before each
measurement, to convert all the [Ru(bpy)3]

2+ to its oxidized
form. After injection of the liposomes containing the SNRs, the
absorbance at 452 nm was monitored. Indeed, the reappear-
ance of the 452 nm band, after immediate addition of the SNR
in the dark, allows us to follow the much slower and rate-
determining reduction of [Ru(bpy)3]

3+ by SNRs of the inner
leaflet, while the one from the outer leaflet is too fast to be
detected. Figure 3b displays the concentration of [Ru(bpy)3]

3+

as a function of time. The corresponding rate constants at 295
K are 3.5 × 103 M−1 s−1 for 5DSA and 8.0 × 103 M−1 s−1 for
16DSA; they are close to the values for kinner obtained by cw-
EPR.
In order to obtain more information on the kinetics, and in

particular on the activation parameters, we have determined
the temperature dependence of the kinner and kouter using Eyring
theory (see Supporting Information Figure S6); here, the
rather small but systematic changes of kinner and kouter (Table 1)
afford alike and small free-activation energies, ΔG‡, of ca. 41
kJ/mol for both 5DSA and 16DSA (Table 2). Finally, it is

necessary to discuss the ET mechanism in the light of our
experimental data. It has been shown that tunneling, or
superexchange of electrons between sites,72,73 is a plausible
mechanism for ET in phospholipid membranes.19,20,30,74

Our data confirm the low energy barriers that were both
predicted and experimentally validated.1−3

For tunneling to occur, the donor and acceptor pairs need to
interact via an electronic coupling matrix element. Calculation
of the electronic coupling elements is possible, on the basis of
Marcus theory.2 A numerical estimation of these elements is
provided under the Supporting Information. Naturally, these

elements are dependent on the distance and on the medium,
following an exponential function. In our case, a distance-decay
parameter of 0.5 ± 0.1 nm−1 was obtained, a value somewhat
similar to others reported for membranes.74−76 We think that
the main reason for the disagreement is the different definition
of the distance. We considered geometric distances, whereas in
the literature the measurements are conducted electrochemi-
cally, thus the technique is likely more sensitive to the apolar
part than to the polar one.75

Other mechanisms that may be considered for ET in
liposomes, such as adiabatic ET, have been ruled out. In fact,
adiabatic ET is often characterized by a sensitivity of the ET
process to solvent properties, that is, reorganization, whether in
an isotropic environment77 or in a microheterogeneous
medium.78 In our system, the alkyl chains of DMPC can be
regarded as a solvent with very slow reorganization
capabilities.78 It is thus likely that the dynamics of the alkyl
chains (equivalent to solvent relaxation) would dominate the
kinetics of ET and slow down the ET rates, which would be
then much lower than in an aqueous solution.31 However, our
data do not display such a decrease in ET rates. Moreover, the
temperature dependence does not support an adiabatic
mechanism. Finally, involvement of a hopping mechanism
appears to be unlikely, since no electroactive component (e.g.,
an aromatic group) is located between the donor and the
acceptor.79

■ SUMMARY AND CONCLUSIONS

In the present study it was demonstrated, for the first time, that
it is possible to study the kinetics of ET through a lipid
membrane bilayer from an electron donor (nitroxide radicals)
located within the membrane to a photogenerated Ru(III) in
the aqueous solution. Introduction of the spin-label at different
positions on the fatty-acid chain permitted construction of a
molecular “ruler” for monitoring ET in natural and artificial
membrane systems by precise control of the donor/acceptor
distance.
We have used this experimental system to determine both

the rate constants and activation energies for ET between
[Ru(bpy)3]

3+ and the nitroxide moieties in 5DSA and 16DSA
embedded in unilamellar DMPC liposomes. By using both
EPR and optical methods, we obtained significant information:
(i) We could unequivocally show that the spin labels do not
affect the structure of the phospholipid membrane; (ii) we
could quantify the penetration depth and the local mobility of
the labels 5DSA and 16DSA.

Figure 3. (a) Time-resolved absorption spectrum of [Ru(bpy)3]Cl2 and (NH4)2S2O8 upon constant irradiation in aqueous solution. The inset
shows the absorption change at 452 nm; (b) conversion of [Ru(bpy)3]

3+ to [Ru(bpy)3]
2+ in the dark in a reaction mixture containing

[Ru(bpy)3]Cl2, (NH4)2S2O8, and DMPC liposomes into which 16DSA had been incorporated (monitored at 452 nm). The fit of the concentration
according to Scheme 2 is displayed in red.

Table 2. Activation Parameters for the Fast ET Calculated
from the cw-EPR (cw) and TR-EPR (TR) Data Using the
Eyring Equation (Equation S1, See the Supporting
Information for More Details)

label ΔH‡/ (kJ/mol) ΔS‡ / [J/(mol K)] ΔG‡/ (kJ/mol)

cw TR cw TR cw TR

5DSA 8 ± 1 11 ± 1 110 ± 10 110 ± 10 40 ± 4 41 ± 4
16DSA 12 ± 1 11 ± 1 111 ± 9 102 ± 8 42 ± 5 42 ± 5
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Our results create a consistent picture for ET through the
phospholipid bilayer. Low values of activation energy for ET
(ΔG‡ values of 40 ± 4 kJ/mol for 5DSA, and 42 ± 5 kJ/mol
for 16DSA), as well as the absence of a pronounced effect of
the membrane phase transition on the kinetics of ET, provide
experimental evidence that ET within the phospholipid bilayer
occurs via a tunneling mechanism. We determined a distance
dependence of kET with a β-parameter of 0.5 ± 0.1 nm−1.
The “molecular ruler” methodology that we have developed

can be applied not only to phospholipid bilayers, but also to
biological membranes, to artificial membranes, and to proteins
and protein complexes, thus providing direct experimental
information concerning the dynamics of their local environ-
ments. It can thus be used, for example, in investigating the
involvement of π-electrons and/or water bridges in long-range
ET. Since water is always present in membranes (the so called
“hydropathy plot”80), and EPR signals of nitroxides are
sensitive to the polarity of the environment, our approach
provides a unique opportunity to studying the roles of water
and hydrogen bonds in ET in membranes and proteins
(dehydration methods are well known).
EPR spectra of some stable nitroxide radicals (imidazoline

and imidazolidine types) are pH-sensitive.44,51,81 Use of such
probes seems extremely promising for simultaneous examina-
tion of electron and proton transfer in membrane systems by
the EPR approach described here. Their use can provide a
unique method for quantitative characterization of proton-
coupled ET reactions82,83 in many important natural and
artificial catalytic systems.84−86
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