
EXTENSIONS OF FORMAL HODGE STRUCTURES

Nicola Mazzari

Department of Mathematics, Università degli Studi di Padova, Italy.

Abstract

We define and study the properties of the category FHSn of formal Hodge structure
of level ≤ n following the ideas of L. Barbieri-Viale who discussed the case of level ≤ 1.
As an application we describe the generalized Albanese variety of Esnault, Srinivas and
Viehweg via the group Ext1 in FHSn. This formula generalizes the classical one to the
case of proper but non necessarily smooth complex varieties.
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Introduction

The aim of this work is to develop the program proposed by S. Bloch, L. Barbieri-Viale
and V. Srinivas ([BS02],[BV07]) of generalizing Deligne mixed Hodge structures providing
a new cohomology theory for complex algebraic varieties. In other words to construct and
study cohomological invariants of (proper) algebraic schemes over C which are finer than the
associated mixed Hodge structures in the case of singular spaces. For any natural number
n > 0 (the level) we construct an abelian category, FHSn, and a family of functors

Hn,k
] : (Sch/C)◦ → FHSn 1 ≤ k ≤ n

such that

1. The category MHSn of mixed Hodge structure of level ≤ n is a full sub-category of
FHSn.

2. There is a forgetful functor f : FHSn → MHSn s.t. f(Hn,k
] (X)) = Hn(X) (functorially

in X) is the usual mixed Hodge structure on the Betti cohomology of X, i.e. Hn(X) :=
Hn(Xan,Z).



Roughly speaking the sharp cohomology objects Hn,k
] (X) consist of the singular coho-

mology groups Hn(Xan,Z), with their mixed Hodge structure, plus some extra structure.
We remark that Hn,k

] (X) is completely determined by the mixed Hodge structure on Hn(X)
when X is proper and smooth; the extra structure shows up only when X is not proper or
singular.

The motivating example is the following. Let X be a proper algebraic scheme over C.
Denote Hi(X) := Hi(Xan,Z), Hi(X)C := Hi(X) ⊗ C and let Hi,j

dR(X) := Hi(Xan,Ω<j) be
the truncated analytic De Rham cohomology of X. Then there is a commutative diagram

Hi(X) //

%%LLLLLLLLLL
Hi(X)C/F

i // Hi(X)C/F
i−1 // · · · // Hi(X)C/F

1

Hi,i
dR(X)

πi

OO

// Hi,i−1
dR (X)

πi−1

OO

// · · · // Hi,1
dR(X)

π1

OO

where the C-linear maps πj are surjective. This diagram is the formal Hodge structure
Hi,i
] (X) (or simply Hi

](X)).
Note that this definition is compatible with the theory of formal Hodge structures of level
≤ 1 developed by L. Barbieri-Viale (See [BV07]). He defined H1

] (X) as the generalized
Hodge realization of Pic0(X), i.e. H1

] (X) := TH (Pic0(X)) which is explicitly represented by
the diagram

H1(X) //

&&LLLLLLLLLL
H1(X)C/F

1

H1,1
dR(X)

π1

OO

As an application of this theory we can express the Albanese variety of Esnault, Srinivas
and Viehweg ([ESV99]) using ext-groups. Precisely let X be a proper, irreducible, algebraic
scheme over C. Let d = dimX and denote by H2d−1,d

] (X) the formal Hodge structure
represented by the following diagram

H2d−1(X)
h

''OOOOOOOOOOO
// H2d−1(X)C/F

d // · · ·H2d−1(X)C/F
1

H2d−1,d
dR (X)

OO

// · · ·H2d−1,1
dR (X) .

OO

Then there is an isomorphism of complex Lie groups

ESV(X)an ∼= Ext1FHSd
(Z(−d),H2d−1,d

] (X))

where ESV(X) is the generalized Albanese of [ESV99]. Note that this formula generalizes
the classical one

Alb(X)an ∼= Ext1MHS(Z(−d),H2d−1(X))

which follows from the work of Carlson (See [Car87]).
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1 Formal Hodge Structures

We simply call a formal group a commutative group of the form H = Ho×Het where Het is
a finitely generated abelian group and Ho is a finite dimensional C-vector space. We denote
by FrmGrp the category with objects formal groups and morphisms f = (fo, fet) : H → H ′,
where fo : Ho → H ′o is C-linear and fet : Het → H ′

et is Z-linear.
We denote the category of mixed Hodge structures of level ≤ l (i.e. of type {(n,m)| 0 ≤

n,m ≤ l}) by MHSl = MHSl(0), for l ≥ 0. Also we define the category MHSl(n) to be
the full sub-category of MHS whose objects are Het ∈ MHS such that Het ⊗ Z(−n) is in
MHSl(0).
Let Vec = Vec1 be the category of finite dimensional complex vector spaces and n > 0 be
an integer. We define the category Vecn, as follows. The objects are diagrams of n − 1
composable arrows of Vec denoted by

V : Vn
vn−→ Vn−1

vn−1−→ Vn−2 → · · · → V1 .

Let V , V ′ ∈ Vecn, a morphism f : V → V ′ is a family fi : Vi → V ′i of C-linear maps
such that

Vi+1

fi+1

��

// Vi

fi

��
V ′i+1

// V ′i
is commutative for all 1 ≤ i ≤ n.

Definition 1.1 (level = 0). We define the category of formal Hodge structures of level 0
(twisted by k), FHS0(k) as follows: the objects are formal groups H such that Het is a pure
Hodge structure of type (−k,−k); morphism are maps of formal groups.

Equivalently FHS0(k) is the product category MHS0(k)× Vec.

Definition 1.2 (level ≤ n). Fix n > 0 an integer. We define a formal Hodge structure of
level ≤ n (or a n-formal Hodge structure) to be the data of

i) A formal group H (over C) carrying a mixed Hodge structure on the étale component,
(Het, F,W ), of level ≤ n. Hence we get Fn+1HC = 0 and F 0HC = HC, where HC := Het⊗C.

ii) A family of fin. gen. C-vector spaces Vi, for 1 ≤ i ≤ n.



iii) A commutative diagram of abelian groups

Het

het

##G
GGGGGGGG

c // HC/F
n // HC/F

n−1 // · · · // HC/F
1

Ho
ho

// Vn

πn

OO

vn

// Vn−1

πn−1

OO

vn−1
// · · · // V1

π1

OO

such that πi, ho are C-linear maps.

We denote this object by (H,V ) or (H,V, h, π). Note that V = {Vn → · · · → V1} can be
viewed as an object of Vecn.
The map h = (het, h

o) : H → Vn is called augmentation of the given formal Hodge structure.

A morphism of n-formal Hodge structures is a pair (f, φ) such that: f : H → H ′ is a
morphism of formal groups; f induces a morphism of mixed Hodge structures fet; φi : Vi →
V ′i is a family of C-linear maps; φ : V → V ′ is a morphism in Vecn; (f, φ) are compatible
with the above structure, i.e. such that the following diagram commutes

H ′
et

h′et

##H
HHHHHHHH
// H ′

C/F

Het

het

##G
GGGGGGGG
//

fet

55kkkkkkkkkkkkkkkkkkk
H ′

C/F

f̄C

55kkkkkkkkkkkkkkkkk
(H ′)o

(h′)o
// V ′

π′

OO

Ho
ho

//

fo

55kkkkkkkkkkkkkkkkkk
V

π

OO

φ

55jjjjjjjjjjjjjjjjjjjjj

We denote this category by FHSn = FHSn(0).

Remark 1.3. Note that the commutativity of the diagram (iii) of the above definitions implies
that the maps πi are surjective. In fact after tensor by C we get that the composition πn◦hC

is the canonical projection HC → HC/F
n: hence πn is surjective. Similarly we obtain the

surjectivity of πi for all i.

Example 1.4 (Sharp cohomology of a curve). Let U = X \D be a complex projective curve
minus a finite number of points. Then we get the following commutative diagram

H1(U)

))SSSSSSSSSSSSSSSS
// H1(U)C/F

1

Ker(H1,1
dR(X) → H1,1

dR(U)) // H1,1
dR(X)

π1

OO

representing a formal Hodge structure of level ≤ 1.

Remark 1.5 (Twisted fhs). In a similar way one can define the category FHSn(k) whose
object are represented by diagrams

Het

hZ

$$II
III

III
II

// HC/F
n−k // HC/F

n−1−k // · · · // HC/F
1−k

Ho
ho
// Vn−k

πn−k

OO

vn−k

// Vn−k−1

πn−k−1

OO

vn−k−1
// · · · // V1−k

π1−k

OO



where Het is an object of MHSn(k).
Hence the Tate twist Het 7→ Het ⊗ Z(k) induces an equivalence of categories

FHSn(0) → FHSn(k) (H,V ) 7→ (H(k), V (k))

where H(k) = Het⊗Z(k)×Ho and V (k) is obtained by V shifting the degrees, i.e. V (k)i =
Vi+k, for 1− k ≤ i ≤ n− k.

Example 1.6 (Level ≤ 1). According to the above definition a 1-formal Hodge structure
twisted by 1 is represented by a diagram

Het

het

##G
GGGGGGGG
// HC/F

0

Ho
ho

// V0

π0

OO

where is (Het, F,W ) be a mixed Hodge structure of level ≤ 1 (twisted by Z(1)), i.e. of type
[−1, 0]× [−1, 0] ⊂ Z2 (recall that this implies F 1HC = 0 and F−1HC = HC). If we further
assume that Het carries a mixed Hodge structure such that grW−1Het is polarized we get the
category studied in [BV07].

Proposition 1.7 (Properties of FHS). i) The category FHSn is an abelian category.
ii) The forgetful functor (H,V ) 7→ H (resp. (H,V ) 7→ V ) is an exact functor with values

in the category of formal groups (resp. the category Vecn).
iii) There exists a full and thick embedding MHSl(0) → FHSl(0) induced by (Het, F,W ) 7→

(Het, Vi = HC/F
i).

iv) There exists a full and thick embedding Vecl(0) → FHSl(0) induced by V 7→ (0, V ).

Proof. i) It follows from the fact that we can compute kernels, co-kernels and direct sum
component-wise.

ii) It follows by (i).
iii) Let (f, φ) : (Het,HC/F ) → (H ′

et,H
′
C/F ) be a morphism in FHSn. Then by definition

for any 1 ≤ i ≤ n there is a commutative diagram

HC/F
i

id

��

φi // H ′
C/F

i

id

��
HC/F

i

f̄i

// H ′
C/F

i

where f̄i(x+ F iHC) = f(x) + F iH ′
C is the map induce by f : it is well defined because the

morphisms of mixed Hodge structures are strictly compatible w.r.t. the Hodge filtration.
Hence φ is completely determined by f .

iv) It is a direct consequence of the definition of FHSn.

Lemma 1.8. Fix n ∈ Z. The following functor

MHS → Vec , (Het,W, F ) 7→ HC/F
n

is an exact functor.



Proof. This follows from [Del71, §1.2.10].

1.1 Sub-categories of FHSn

Let (H,V ) be a formal Hodge structure of level ≤ n. It can be visualized as a diagram

Het

het

##G
GGGGGGGG
// HC/F

n // HC/F
n−1 // · · · // HC/F

1

Ho
ho

// Vn

πn

OO

vn

// Vn−1

πn−1

OO

vn−1
// · · · // V1

π1

OO

V on

OO

// V on−1

OO

// · · · // V o1

OO

where V oi := Ker(πi : Vi → HC/F
i). We can consider the following n-formal Hodge struc-

tures

1. (H,V )et := (Het, V/V
o), called the étale part of (H,V ).

2. (H,V )× := (H,V/V o), where the augmentation H → HC/F
n = Vn/V

o
n is the com-

posite πn ◦ h.

We say that (H,V ) is étale (resp. connected) if (H,V ) = (H,V )et (resp. (H,V )et = 0).
Also we say that (H,V ) is special if ho : Ho → Vn factors through V on . We will denote by
FHSn,et (resp. FHSon, FHSsn) the full sub-category of FHSn whose objects are étale (resp.
connected, special). Note that by construction the category of étale formal Hodge structure
FHSn,et is equivalent to MHSn, by abuse of notation we will identify these two categories.

Proposition 1.9 (Canonical Decomposition). i) Let (H,V ) ∈ FHSn (n > 0), then there
are two canonical exact sequences

0 → (0, V o) → (H,V ) → (H,V )× → 0 ; 0 → (H,V )et → (H,V )× → (Ho, 0) → 0

ii) The augmentation ho : Ho → Vn factors trough V on ⇐⇒ there is a canonical exact
sequence

0 → (H,V )o → (H,V ) → (H,V )et → 0

where (H,V )o := (Ho, V o).

Proof. i) Let (0, θ) : (0, V o) → (H,V ) be the canonical inclusion. By 1.7 Coker(0, θ) can
be calculated in the product category FrmGrp×Vecn, i.e. Coker(0, θ) = Coker 0×Coker θ =
H × V/V o and the augmentation H → HC/F

n is the composition H h→ Vn
πn→ HC/F

n.
For the second exact sequence consider the natural projection po : H → Ho. It in-

duces a morphism (po, 0) : (H,V )× → (Ho, 0). Using the same argument as above we get
Ker(po, 0) = Ker po×Ker 0 = Het×V/V 0 as an object of FrmGrp×Vecn. From this follows
the second exact sequence.



ii) By the definition of a morphism of formal Hodge structures (of level ≤ n) we get that
the canonical map, in the category FrmGrp× Vecn, (pZ, π) : H × V → Het × V/V o induces
a morphism of formal Hodge structures ⇐⇒ the following diagram commutes

H

h

��

pZ // HZ

��
Vn πn

// HC/F
n

i.e. πnh(x, y) = y mod FnHC for all x ∈ Ho, y ∈ Het ⇐⇒ ho(x) = 0.

Remark 1.10. With the above notations consider the map (po, 0) : H × V → Ho × 0. Note
that this is a morphism of formal Hodge structure ⇐⇒ V 0 = 0 ⇐⇒ (H,V ) = (H,V )×.

Remark 1.11. For n = 0 we can also use the same definitions, but the situation is much
more easier. In fact a formal structure of level 0 is just a formal group H, hence there is a
split exact sequence

0 → Ho → H → Het → 0

in FHS0(0).

Corollary 1.12. Let K0(FHSn) be the Grothendieck group (see [PS08, Def. A.4]) associated
to the abelian category FHSn. Then

K0(FHSn) = K0(Vec)× K0(Vecn)× K0(MHSn)
∼= {(f, g) ∈ Z[t]× Z[u, v]| degt f,degu g,degv g ≤ n , g(u, v) = g(v, u)}

Proof. It follows easily by (i) of 1.9.

By 1.7 there exists a canonical embedding MHSn ⊂ FHSn (resp. Vecn ⊂ FHSn). It is easy
to check that this embedding gives, in the usual way, a full embedding when passing to the
associated homotopy categories, i.e.

K(MHSn) ⊂ K(FHSn) , resp. K(Vecn) ⊂ K(FHSn) . (1)

With the following lemma we can prove that we have an embedding when passing to the
associated derived categories.

Lemma 1.13. Let A′ ⊂ A be a full embedding of categories. Let S be a multiplicative system
in A and S′ be its restriction to A′. Assume that one of the following conditions

i) For any s : A′ → A (where A′ ∈ A′, A ∈ A, s ∈ S) there exists a morphism f : A→ B′

such that B′ ∈ A′ and f ◦ s ∈ S.
ii) The same as (i) with the arrow reversed.

Then the localization A′S′ is a full sub-category of AS.

Proof. [KS90, 1.6.5].



Proposition 1.14. There is a full embedding of categories D(MHSn) ⊂ D(FHSn) (resp.
D(Vecn) ⊂ D(FHSn)).

Proof. We will prove only the case involving MHSn, the other one is similar. First note
that similarly to (1) there is a full embedding K(FHSn,×) ⊂ K(FHSn), where FHSn,× is
the full sub-category of FHSn with objects (H,V ) such that (H,V ) = (H,V )× (See 1.9).
Now using (i) of lemma 1.13 and the first exact sequence of 1.9 we get a full embedding
D(FHSn,×) ⊂ D(FHSn).
Then consider the canonical embedding MHSn ⊂ FHSn,×. Again we get a full embedding
of triangulated categories K(MHSn) ⊂ K(FHSn,×). Now using (ii) of lemma 1.13 and the
second exact sequence of 1.9 we get a full embedding D(FHSn,×) ⊂ D(FHSn).

1.2 Adjunctions

Proposition 1.15. The following adjunction formulas hold
i) HomMHS(Het,H

′
et) ∼= HomFHSn((H,V ), (H ′

et,H
′
C/F )) for all (H,V ) ∈ FHSsn (i.e. spe-

cial), H ′
et ∈ MHSn.

ii) HomFHSn((Ho, V ), (H ′, V ′)) ∼= HomFHSn((Ho, V ), ((H ′)o, (V ′)o)) for all (Ho, V ) ∈
FHSon (i.e. connected), (H ′, V ′) ∈ FHSsn.

Proof. The proof is straightforward. Explicitly: i) Let (H,V ) ∈ FHSsn, H ′
et ∈ MHSn.

By definition a morphism (f, φ) ∈ HomFHSn((H,V ), (H ′
et,H

′
C/F )) is a morphism of formal

groups f : H → H ′ such that fet is a morphism of mixed Hodge structures, hence f = fet,
and φ : V → H ′

C/F is subject to the condition f/F ◦ π = φ. Then the association (f, φ) 7→
fet ∈ HomMHS(Het,H

′
et) is an isomorphism.

ii) Let (Ho, V ) ∈ FHSon, (H ′, V ′) ∈ FHSsn.
A morphism (f, φ) in HomFHSn

((Ho, V ), (H ′, V ′)) is of the form f = fo : Ho → (H ′)o,
φ : V → V ′ must factor through (V ′)o because π′ ◦ φ = π ◦ f/F = 0.

1.3 Different levels

Any mixed Hodge structure of level ≤ n (say in MHSn(0)) can also be viewed as an object
of MHSm(0) for any m > n. This give a sequence of full embeddings

MHS0 ⊂ MHS1 ⊂ · · · ⊂ MHS

In this section we want to investigate the analogous situation in the case of formal Hodge
structures.

Consider the two functors ι, η : Vecn → Vecn+1 defined as follows

ι(V ) : ι(V )n+1 = Vn
id→ ι(V )n = Vn

vn→ · · · → V1

η(V ) : η(V )n+1 = 0 0→ ι(V )n = Vn
vn→ · · · → V1

Proposition 1.16. The functors ι, η are full and faithful. Moreover the essential image of
ι (resp. η) is a thick sub-category1.

1By thick we mean a sub-category closed under kernels, co-kernels and extensions



Proof. To check that ι, η are embeddings it is straightforward. We prove that the essential
image of ι (resp. η) is closed under extensions only in case n = 2 just to simplify the
notations.

First consider an extension of ηV by ηV ′ in Vec3

0 // 0

��

// V ′′3

��

// 0

��

// 0

0 // V ′2

��

// V ′′2

��

// V2

��

// 0

0 // V ′1 // V ′′1 // V1
// 0

then it follows that V ′′3 = 0.
Now consider an extension of ιV by ιV ′ in Vec3

0 // V ′2

id

��

// V ′′3

v

��

// V2

id

��

// 0

0 // V ′2

��

// V ′′2

��

// V2

��

// 0

0 // V ′1 // V ′′1 // V1
// 0

Then v is an isomorphism (by the snake lemma). It follows that V ′′ is isomorphic, in Vec3,
to an object of ιVec2. To check that the essential image of ι (resp. η) is closed under kernels
and cokernels is straightforward.

Remark 1.17. The category of complexes of objects of Vec concentrated in degrees 1, ..., n
is a full sub-category of Vecn. Moreover the embedding induces an equivalence of categories
for n = 1 and 2, but for n > 2 the embedding is not thick.

Example 1.18 (FHS1 ⊂ FHS2). The basic construction is the following: let (H,V ) be a 1-fhs,
we can associate a 2-fhs (H ′, V ′) represented by a diagram of the following type

H ′
et

h′Z $$I
IIIIIIIII
// H ′

C/F
2 // H ′

C/F
1

(H ′)o
(h′)o

// V ′2

π′2

OO

v′2

// V ′1

π′1

OO

Take H ′
et := Het, then H ′

C/F
2 = HC, H ′

C/F
1 = HC/F

1 and the augmentation h′et is the
canonical inclusion; let V ′1 := V1, π′1 := π1 and define V ′2 , π′2, v′2 via fiber product

V ′2

v′2

��

π′2 // HC

��
V1 π1

// HC/F
1



Hence V ′2 fits in the following exact sequences

0 → F 1HC → V ′2 → V1 → 0 ; 0 → V 0
1 → V ′2 → HC → 0 .

Finally we define (h′)o : (H ′)o → V ′2 again via fiber product

(H ′)o

��

(h′)o

// V ′2

v′2
��

Ho
ho
// V1

hence we get the following exact sequence

0 → F 1HC → (H ′)o → Ho → 0 .

By induction is easy to extend this construction. We have the following result.

Proposition 1.19. Let n, k > 0. Then there exists a faithful functor

ι = ιk : FHSn → FHSn+k

Moreover ι induces an equivalence between FHSn and the sub-category of FHSn+k whose
objects are (H,V ) such that

a) Het is of level ≤ n. Hence Fn+1HC = 0 and F 0HC = HC.
b) Vn+i = Vn+1 for 1 ≤ i ≤ k.
c) There exists a commutative diagram with exact rows

Fn // HC // HC/F
n

Fn

α
""E

EE
EE

EE
EE

id

OO

// Vn+1

πn+1

OO

vn+1 // Vn

πn

OO

Ho

ho

OO

where α is a C-linear map.
And morphisms are those in FHSn+k compatible w.r.t. the diagram in (c).

Proof. The construction of ιk is a generalization of that in 1.18. We have ιk = ι1 ◦ ιk−1,
hence it is enough to define ι1 which is the same as in 1.18 up to a change of subscripts:
n = 1, n+ 1 = 2.

To prove the equivalence we define a quasi-inverse: Let (H ′, V ′) ∈ FHSn+1 and satisfying
a, b, c and α : FnH ′

C → (H ′)o as in the proposition.
Define (H,V ) ∈ FHSn in the following way: H = H ′/α(FnH ′

C); Vi = V ′i for all 1 ≤ i ≤ n;

h : H ′/α(FnH ′
C) h̄′−→ V ′n+1

v′n+1−→ V ′n = Vn, where h̄′ = (h′et, (h
′)o mod Fn).

Proposition 1.20. Let n, k > 0 and denote by ιkFHSn ⊂ FHSn+k the essential image
of FHSn (See the previous proposition). Then ιkFHSn ⊂ FHSn+k is an abelian (not full)
sub-category closed under kernels, cokernels and extensions.



Proof. Straightforward.

Remark 1.21. Note that ιkFHSn ⊂ FHSn+k it is not closed under sub-objects.

Remark 1.22. Let FHSprpn be the full sub-category of FHSn whose objects are formal Hodge
structures (H,V ) with Ho = 02. Then ιk induces a full and faithful functor

ι = ιk : FHSprpn → FHSprpn+k

Moreover ιkFHSprpn ⊂ FHSprpn+k is an abelian thick sub-category.

Example 1.23 (Special structures). For special structures it is natural to consider the fol-
lowing construction, similar to ιk (Compare with 1.18). Let (H,V ) be a formal Hodge
structures of level ≤ 1. Define τ(H,V ) = (H,V ′) to be the formal Hodge structure of level
≤ 2 represented by the following diagram

Het

!!B
BB

BB
BB

B
// HC

hC // HC/F
1

Ho

(h′)o
// V ′2

π′2

OO

v′2

// V1

π1

OO

where V ′2 , v′2, (h′)o are defined via fiber product as follows

Ho

ho

��

0

%%
(h′)o

  
V ′2

v′2

��

π′2 // HC

��
V1 π1

// HC/F
1

Note that the commutativity of the external square is equivalent to say that (H,V ) is special.
Hence this construction cannot be used for general formal Hodge structures.

Proposition 1.24. Let n, k > 0 integers. Then there exists a full and faithful functor

τ = τk : FHSsn → FHSsn+k

Moreover the essential image of τk, τkFHSspcn , is the full and thick abelian sub-category of
FHSspcn+k with objects (H,V ) such that

a) Het is of level ≤ n. Hence Fn+1HC = 0 and F 0HC = HC.
b) Vn+i = Vn+1 for 1 ≤ i ≤ k.
c) Vn+1 = HC ×HC/Fn Vn.

2The superscript prp stands for proper. In fact the sharp cohomology objects (3.1) of a proper variety
have this property.



Proof. Note that τk = τ1 ◦ τk−1, hence is enough to construct τ1. Let (H,V ) be a special
formal Hodge structure of level ≤ n, then τ1(H,V ) is defined as in 1.23 up to change the
sub-scripts n = 1, n+ 1 = 2.

To prove the equivalence it is enough to construct a quasi-inverse of τ1. Let (H ′, V ′) be a
special formal Hodge structure of level ≤ n satisfying the conditions a, b, c of the proposition,
then define (H,V ) ∈ FHSn as follows: H := H ′; Vi := V ′i for all 1 ≤ i ≤ n; h = v′n+1 ◦ h′.

Thickness follows directly from the exactness of the functors

(H,V ) 7→ Het , (H,V ) 7→ V o .

Remark 1.25. The functors τk, ιk agree on the full sub-category of FHSn formed by (H,V )
with Ho = 0.

2 Extensions in FHSn

2.1 Basic facts

Example 2.1. We describe the ext-groups for Vec2. We have the following isomorphism

φ : Ext1Vec2(V, V
′) ∼→ HomVec(Ker v,Coker v′)

Explicitly φ associates to any extension class the Ker-Coker boundary map of the snake
lemma. To prove it is an isomorphism we argue as follows. The abelian category Vec2 is
equivalent to the full sub-category C ′ of Cb(Vec) of complexes concentrated in degree 0, 1.
Hence the group of classes of extensions is isomorphic. Now let a : A0 → A1, b : B0 → B1

be two complexes of objects of Vec. Then we have

Ext1C′(A•, B•) = Ext1Cb(Vec)(A
•, B•) = HomDb(Vec)(A

•, B•[1])

because C ′ is a thick sub-category of Cb(Vec).
The category Vec is of cohomological dimension 0, then a : A0 → A1 is quasi-isomorphic

to Ker a 0→ Coker a, similarly for B•. It follows that

HomDb(Vec)(A
•, B•[1]) = HomDb(Vec)(Ker a[0]⊕ Coker a[−1],Ker b[1]⊕ Coker b[0])

= HomVec(Ker a,Coker b) .

As a corollary we obtain that Ext1Vec2(V,−) is a right exact functor and this is a sufficient
condition for the vanishing of ExtiVec2(,−) for i ≤ 2 (i.e. Vec2 is a category of cohomological
dimension 1.).

Example 2.2. The category Vec3 is of cohomological dimension 1. We argue as in [Maz].
Let V be an object of Vec3, we define the following increasing filtration

W−2 = {0 → 0 → V1} ; W−1 = {0 → V2 → V1} ; W0 = V



Note that morphisms in Vec3 are compatible w.r.t. this filtration. To prove that Ext2Vec3(V, V
′) =

0 it is sufficient to show that Ext2Vec3(grWi V, grWj V ′) = 0 for i, j = −2,−1, 0 (just use the
short exact sequences induced by W , cf. [Maz, Proof of 2.5]). We prove the case i = 0,
j = −2 leaving to the reader the other cases (which are easier, cf. [Maz, 2.2-2.4]).
Let γ ∈ Ext2Vec3(grW0 V, grW−2 V

′) = 0, we can represent γ by an exact sequence in Vec3 of
the following type

0 → grW−2 V
′ → A→ B → grW0 V → 0

Let C = Coker(grW−2 V
′ → A) = Ker(B → grW0 V ), then γ = γ1·γ2 where γ1 ∈ Ext1Vec3(C, grW−2 V

′),
γ2 ∈ Ext1Vec3(grW0 V,C). Arguing as in [Maz, 2.4] we can suppose that C = grW−1 C, hence

γ1 = [0 → grW−2 V
′ → A→ grW−1 C → 0] , γ2 = [0 → grW−1 C → B → grW0 V → 0]

It follows that A = {0 → C2
f1−→ V ′1}, B = {V3

f2−→ C2 → 0} for some f1, f2. Now consider
D = {V3

f2−→ C2
f1−→ V ′1} ∈ Vec3, then it is easy to check that

γ1 = [0 →W−2D →W−1D → grW−1D → 0] , γ2 = [0 → gr−1D →W0D/W−2D → grW0 D → 0]

By [Maz, Lemma 2.1] γ = 0.

Proposition 2.3. Let Het be a mixed Hodge structure of level ≤ n: we consider it as an
étale formal Hodge structure. Let (H ′, V ′) be be a formal Hodge structure of level ≤ n (for
n > 0). Then

i) There is a canonical isomorphism of abelian groups

Ext1MHS(Het,H
′
et) ∼= Ext1FHSn

(Het, (H ′, V ′/V ′
o)) .

ii) For any i ≥ 2 there is a canonical isomorphism

ExtiFHSn
(Het, (H ′, V ′/V ′

o)) ∼= ExtiFHSn
(Het, (H ′o, 0)) .

Proof. This follows easily by the computation of the long exact sequence obtained applying
HomFHSn(HZ,−) to the short exact sequence

0 → (H ′, V ′)et → (H ′, V ′)× → (H ′o, 0) → 0 .

Proposition 2.4. The forgetful functor (H,V ) 7→ Het induces a surjective morphism of
abelian groups

γ : Ext1FHSn
((H,V ), (H ′, V ′)) → Ext1MHS(Het,H

′
et)

for any (H,V ), (H ′, V ′) with Het,H
′
et free.

Proof. Recall the extension formula for mixed Hodge structures is (see [PS08, I §3.5])

Ext1MHS(Het,H
′
et) ∼=

W0Hom(Het,H
′
et)C

F 0 ∩W0(Hom(Het,H ′
et)C) +W0Hom(Het,H ′

et)Z
(2)



more precisely we get that any extension class can be represented by H̃et = (H ′
et⊕Het,W, Fθ)

where the weight filtration is the direct sum WiH
′
et⊕WiHet and F iθ := F iH ′

et + θ(F iHet)⊕
F iHet, for some θ ∈W0Hom(Het,H

′
et)C. It follows that H̃C/F

i
θ = H ′

C/F
i⊕HC/F

i. Then we
can consider the formal Hodge structure of level ≤ n (H̃, Ṽ ) defined as follows: H̃et = (H ′

et⊕
Het,W, Fθ) as above; H̃o := (H ′)o⊕Ho; Ṽi := V ′i ⊕Vi, ṽi := (v′i, vi); h̃ = (h′, h). Then it easy
to check that (H̃, Ṽ ) ∈ Ext1FHSn

((H ′, V ′), (H,V )) and γ(H̃, Ṽ ) = (H ′
et ⊕Het,W, Fθ).

Example 2.5 (Infinitesimal deformation). Let f : X̂ → Spec C[ε]/(ε2) a smooth and pro-
jective morphism. Write X/C for the smooth and projective variety corresponding to the
special fiber, i.e. the fiber product

X

��

// X̂

f

��
Spec C // Spec C[ε]/(ε2)

then (see [BS02, 2.4]) for any i, n there is a commutative diagram with exact rows

0 // Hn−i+1(Xan,Ωi−1)

0

��

// Hn(X̂an,Ω<i)

��

// Hn(Xan,C)/F i

��

// 0

0 // Hn−i+2(Xan,Ωi−2) // Hn(X̂an,Ω<i−1) // Hn(Xan,C)/F i−1 // 0

Hence there is an extension of formal Hodge structures of level ≤ n

0 → (0, V ) → (Hn(X),Hn,∗
dR (X̂)) → Hn(X) → 0

with Vi = Hn−i+1(Xan,Ωi−1) and vi = 0.

Remark 2.6. It is well known that the groups Exti(A,B) vanish in category of mixed Hodge
structures for any i > 1. It is natural to ask if the groups ExtiFHSn

((H,V ), (H ′, V ′)) vanish
for i > n (up to torsion). In particular Bloch and Srinivas raised a similar question for
special formal Hodge structures (cf. [BS02]).

The author answered positively this question for n = 1 in [Maz].

2.2 Formal Carlson theory

Proposition 2.7. Let A,B torsion-free mixed Hodge structures. Suppose B pure of weight
2p and A of weights ≤ 2p− 1. There is a commutative diagram of complex Lie group

Ext1MHS(B,A)

i∗ ((RRRRRRRRRRRRR

γ // HomZ(Bp,pZ , Jp(A))

Ext1MHS(B
p,p
Z , A)

γ̄

OO

where γ̄ is an isomorphism; i∗ is the surjection induced by the inclusion i : Bp,pZ → B.



Proof. This follows easily from the explicit formula 2. The construction of γ, γ̄ is given
in the following remark. Then choosing a basis of Bp,pZ it is easy to check that γ̄ is an
isomorphism.

Remark 2.8. i) Let {b1, ..., bn} a Z-basis of Bp,pZ , then HomZ(Bp,pZ , Jp(A)) ∼= ⊕ni=1J
p(A)

which is a complex Lie group.
ii) Explicitly γ can be constructed as follows. Let x ∈ Ext1MHS(B,A) represented by the

extension
0 → A→ H → B → 0

then apply HomMHS(Z(−p),−) to the above exact sequence and consider the boundary of
the associated long exact sequence

· · · → HomMHS(Z(−p), B) ∂x−→ Ext1MHS(Z(−p), A) → · · ·

Note that ∂x does not depend on the choice of the representative of x; HomMHS(Z(−p), B) =
Bp,pZ ; Jp(A) = Ext1MHS(Z(−p), A).

Hence we can define γ(x) := ∂x ∈ HomZ(Bp,pZ , Jp(A)).
iii) If the complex Lie group Jp(A) is algebraic then HomZ(Bp,pZ , Jp(A)) can be identified

with set of one motives of type
u : Bp,pZ → Jp(A)

Definition 2.9 (formal-p-Jacobian). Let (H,V ) be a formal Hodge structure of level ≤ n.
Assume Het is a torsion free mixed Hodge structure. For 1 ≤ p ≤ n the p-th formal Jacobian
of (H,V ) is defined as

Jp] (H,V ) := Vp/Het.

where Het acts on Vp via the augmentation h. By construction there is an extension of
abelian groups

0 → V 0
p → Jp] (H,V ) → Jp(H,V ) → 0

where we define Jp(H,V ) := Jp(Het) = HC/(F p +Het).

Note that that Jp] (H,V ) is a complex Lie group if the weights of Het are ≤ 2p− 1.

Proposition 2.10. There is an extension of abelian groups

0 → V op → Ext1FHSp
(Z(−p), (H,V )) → Ext1MHS(Z(−p),Het) → 0

for any (H,V ) formal Hodge structure of level ≤ p + 1. In particular if Het has weights
≤ 2p− 1 there is an extension

0 → V op → Ext1FHSp
(Z(−p), (H,V )) → Jp(Het) → 0 . (3)

Proof. By 2.4 there is a surjective map

γ : Ext1FHSp
(Z(−p), (H,V )) → Ext1MHS(Z(−p),Het) .



Recall that Z(−p) is a mixed Hodge structure and here is considered as a formal Hodge
structure of level ≤ p represented by the following diagram

Z

��>
>>

>>
>>

// 0 // · · ·

0
ho
// 0

OO

// · · ·

It follows directly from the definition of a morphism of formal Hodge structures that an
element of Ker γ is a formal Hodge structure of the form (H ×Z(−p),H/F ) represented by

Het × Z
h′et

%%KKKKKKKKKKK
// HC/F

n // HC/F
n−1 // · · · // HC/F

1

Ho
ho

// Vn

πn

OO

vn

// Vn−1

πn−1

OO

vn−1
// · · · // V1

π1

OO

where the augmentation h′et(x, z) = het(x) + θ(z) for some θ : Z → V op . The map θ does
not depend on the representative of the class of the extension because Vp and Z(−p) are
fixed.

Example 2.11. By the previous proposition for p = 1 we get

0 → V o1 → Ext1FHS1
(Z(−1), (H,V )) → Ext1MHS(Z(−1),Het) → 0 .

3 Sharp Cohomology

Definition 3.1. Let X be a proper scheme over C, n > 0 and 1 ≤ k ≤ n. We define the
sharp cohomology object Hn,k

] (X) to be the n-formal Hodge structure represented by the
following diagram

Hn(X)

&&LLLLLLLLLLL
// Hn(X)C/F

n // · · · // Hn(X)C/F
1

V n,kn (X)

OO

// · · · // V n,k1 (X)

OO

where

V n,ki (X) :=

Hn,i
dR(X) if 1 ≤ i ≤ k

Hn(X)C/F
i ×Hn(X)C/Fk Hn,k

dR (X) if k < i ≤ n

In the case n = k we will simply write Hn
] (X) = Hn,n

] (X). This object is represented
explicitly by

Hn(Xan,Z)

((PPPPPPPPPPPP
// Hn(Xan,C)/Fn // Hn(Xan,C)/Fn−1 // · · · // Hn(Xan,C)/F 1

Hn(Xan,Ω<n)

OO

// Hn(Xan,Ω<n−1)

OO

// · · · // Hn(Xan,O)

OO



Example 3.2. Let X be a proper scheme of dimension d (over C). Then H2d−1(X) is a
mixed Hodge structure satisfying F d+1 = 0 and the sharp cohomology object H2d−1,d

] (X)
is represented by

H2d−1(X)

&&MMMMMMMMMMM
// H2d−1(X)C

id // · · ·H2d−1(X)C // H2d−1(X)C/F
d · · ·

V 2d−1,k
n (X)

OO

id // · · ·V 2d−1,k
k+1 (X)

OO

// H2d−1,d
dR (X) · · ·

OO

and
F d+1H2d−1(X)C ⊂ V 2d−1,k

n (X) = V 2d−1,k
n−1 (X) = · · · = V 2d−1,k

k+1 (X)

Hence, according to Proposition 1.19, H2d−1,d
] (X) can be viewed as a formal Hodge structure

of level ≤ d.

Proposition 3.3. For any n and 1 ≤ p ≤ n, the association X 7→ Hn,p
] (X) induces a

contravariant functor from the category of proper complex algebraic schemes to the category
FHSn.

Proof. It is enough to prove the claim for p = n. We know that Hn(X) := Hn(Xan,Z)
along with its mixed Hodge structures is functorial in X, so for any f : X → Y we have
Hn(f) : Hn(Y ) → Hn(X). Also by the theory of Kähler differentials there exist a map of
complexes of sheaves over X, φ• : f∗Ω•Y → Ω•X , inducing

α : Hn(X, f∗Ω<rY ) −→ Hn(X,Ω<rX )

Moreover there exists β : Hn(Y,Ω<rY ) → Hn(X, f∗Ω<rY ). For it is sufficient to construct a
map β′ : Hn(Y,Ω<rY ) → Hn(X, f−1Ω<rY ). So let I• (resp. J•) an injective resolution3 of Ω<rY
(resp. f−1Ω<rY ). Using that f−1 preserves quasi-isomorphisms, we have the commutative
diagram

f−1Ω<rY

quis

��

quis // J•

f−1I•
∃γ

;;xxxxxxxxx

where the existence of γ follows from the fact that J• is injective. So we have defined a map
ψr : Hn(Y,Ω<r) → Hn(X,Ω<r).
Now choosing I•r , J

•
r for any r it’s easy to see that the maps ψr fit in the commutative

diagram

· · · // Hn(Y,Ω<r)

ψr

��

// Hn(Y,Ω<r−1)

ψr−1

��

// · · ·

· · · // Hn(X,Ω<r) // Hn(X,Ωr−1) // · · ·
Now it is straightforward to check that Hn,n

] (g ◦ f) = Hn,n
] (f) ◦Hn,n

] (g), for any f : X → Y ,
g : Y → Z.

3By injective resolution of a complex of sheaves A• we mean a quasi isomorphism A• → I•, where I• is
a complex of injective objects.



Example 3.4 (No Künneth). Let X,Y be complete, connected, complex varieties. Then by
Künneth formula follows

H1((X × Y )an, ?) = H1(Xan, ?)⊕H1(Yan, ?) ? = Z, O

so that H1
] (X × Y ) = H1

] (X)⊕H1
] (Y ). But as soon as we move in degree 2 there is no hope

for a good formula. With the same notation we get

H2((X × Y ))Q = H2(X)Q ⊕H1(X)Q ⊗H1(Y )Q ⊕H2(Y )Q

which is the usual decomposition of singular cohomology. Let p : X×Y → X, q : X×Y → Y

the two projections; note that

OX×Y → Ω1
X×Y = σ<2

(
p∗(OX → Ω1

X)⊗ q∗(OY → Ω1
Y )

)
hence there is a canonical map

H2(X × Y, p∗(Ω<2
X )⊗ q∗(Ω<2

Y )) = ⊕2
i=0H

2−i,2
dR (X)⊗Hi,2

dR(Y ) → H2,2
dR(X × Y )

which is not necessarily an isomorphism. From this follows that we cannot have a Künneth
formula for H2,2

] (X × Y ).

3.1 The generalized Albanese of Esnault-Srinivas-Viehweg

Let X be a proper and irreducible algebraic scheme of dimension d over C. Then there exists
an algebraic group, say ESV(X), such that ESV(X)an = H2d−1(X,Ω<d)/H2d−1(Xan,Z) and
it fits in the following commutative diagram with exact rows

0 // Ker c

ρ

��

// H2d−1(X)C
H2d−1(X)

α

��

c // Jd(H2d−1(X))

id

��

// 0

0 // Ker θ // H2d−1,d
dR (X)

H2d−1(X)

θ // Jd(H2d−1(X)) // 0

where α is induced by de canonical map of complexes of analytic sheaves C → Ω<d. (See
[ESV99, Theorem 1, Lemma 3.1])

Recall that the formal Hodge structure (of level ≤ 2d− 1) H2d−1,d
] (X) can be viewed as

a fhs of level ≤ d (see 3.2) represented by the following diagram

H2d−1(X)
h

''OOOOOOOOOOO
// H2d−1(X)C/F

d // · · ·H2d−1(X)C/F
1

H2d−1,d
dR (X)

OO

// · · ·H2d−1,1
dR (X) .

OO

Proposition 3.5. There is an isomorphism of complex connected Lie groups (not only of
abelian groups!)

ESV(X)an ∼= Ext1FHSd
(Z(−d),H2d−1,d

] (X))

where Z(−d) is the Tate structure of type (d, d) viewed as an étale formal Hodge structure.



Proof. Step 1. By [BV07] there is a canonical isomorphism of Lie groups

ESVan(X) ∼= Ext1tMa
1
([Z → 0], [0 → ESV(X)]) ∼= Ext1FHS1(1)(Z(0), TH (ESV(X)))

(recall that in [BV07] FHS1(1) is simply denote by FHS1; tMa
1 is the category of generalized

1-motives with torsion) where TH (ESV(X)) is the formal Hodge structure represented by

H2d−1(X)(d)

((QQQQQQQQQQQQQ
// H2d−1(X)C(d)/F 0

H2d−1,d
dR (X)

OO

Step 2. Up to a twist by −d we can view TH (ESV(X)) as an object of FHSd, say
(Het, V ) with Het = H2d−1(X), Vd = H2d−1,d

dR (X), Vi = 0 for 1 ≤ i < d. It is easy
to check that Ext1FHS1(1)(Z(0), TH (ESV(X))) = Ext1FHSd

(Z(−d), (Het, V )). Then applying
Ext1FHSd

(Z(−d),−) to the canonical inclusion (Het, V ) ⊂ H2d−1,d
] (X) we get a natural map

Ext1FHS1(1)(Z(0), TH (ESV(X))) → Ext1FHSd
(Z(−d),H2d−1,d

] (X))

which is an isomorphism by (3).

3.2 The generalized Albanese of Faltings and Wüstholz

Let U be a smooth algebraic scheme over C. Then it is possible to construct a smooth
compactification, i.e. ∃ j : U → X open embedding with X proper and smooth. Moreover
we can suppose that the complement Y := X \ U is a normal crossing divisor.4

Remark 3.6. There is a commutative diagram (See [Lek09, §3])

0 // H0(Xan,Ω1(log Y ))

a

��

// H1(U)C

id

��

// H1,1
dR(X)

b

��

// 0

0 // H1(Γ(Uan,Ω•)) // H1(U)C // H1,1
dR(U)

hence, by the snake lemma, Ker b ∼= Coker a. We identify these two C-vector spaces and we
denote both by K.

For any Z ⊂ K sub-vector space we define the C-linear map αZ : H1(X,O)∗ → Z∗ as
the dual of the canonical inclusion Z ⊂ H1(X,O).

Definition 3.7 (The generalized Albanese of Serre). We know that

H1(U)(1) = THodge([Div0
Y (X) → Pic0(X)])

and that the generalized Albanese of Serre is the Cartier dual of the above 1-motive, i.e.

[0 → Ser(U)] = [Div0
Y (X) → Pic0(X)]∨

4It is possible to replace C with a field k of characteristic zero. In that case we must assume that there
exists a k rational point in order to have FW(Z) defined over k.



Note that by construction Ser(U) is a semi-abelian group scheme corresponding to the
mixed Hodge structure H1(U)(1)∨ := HomMHS(H1(U)(1),Z(1)).

The universal vector extension of Ser(U) is

0 → ωPic0(X) → Ser(U)\ → Ser(U) → 0

this follows by the construction of Ser(U) as the Cartier dual of [Div0
Y (X) → Pic0(X)] and

[BVB09] lemma 2.2.4.
Recall that Lie(Pic0(X)) = H1(X,O), then ωPic0(X)(C) = H1(X,O)∗.

Definition 3.8 (The gen. Albanese of Faltings and Wüstholz). We define an algebraic
group FW(Z) (depending on U and the choice of the vector space Z) to be the vector
extension of Ser(U) by Z∗ defined by

αZ ∈ HomC(H1(X,O)∗, Z∗) ∼= HomC(ωPic0(X), Z
∗) ∼= Ext1(Ser(U), Z∗)

i.e. FW(Z) is the following push-forward

0 // H1(X,O)∗

αZ

��

// Ser(U)\

��

// Ser(U)

id

��

// 0

0 // Z∗ // FW(Z) // Ser(U) // 0

Proposition 3.9. With the above notation consider the formal Hodge structure (Het, V ) ∈
FHS1 represented by

H1(U)(1)∨

h

((RRRRRRRRRRRRR
// H0(Xan,Ω1(log Y ))∗

H1(Γ(Uan,Ω•))∗

a∗

OO

(This diagram is the dual of the left square in remark 3.6). Recall that K = Ker a. Then

FW(K)an ∼= Ext1FHS1
(Z(−1), (Het, V ))

Proof. It is a direct consequence of 2.10.
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