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Abstract. Developing learning methods which do not discriminate sub-
groups in the population is the central goal of algorithmic fairness. One
way to reach this goal is to learn a data representation that is expressive
enough to describe the data and fair enough to remove the possibility to
discriminate subgroups when a model is learned leveraging on the learned
representation. This problem is even more challenging when our data are
graphs, which nowadays are ubiquitous and allow to model entities and
relationships between them. In this work we measure fairness according
to demographic parity, requiring the probability of the possible model de-
cisions to be independent of the sensitive information. We investigate how
to impose this constraint in the different layers of a deep graph neural net-
work through the use of two different regularizers. The first one is based
on a simple convex relaxation, and the second one inspired by a Wasser-
stein distance formulation of demographic parity. We present experiments
on a real world dataset, showing the effectiveness of our proposal.

1 Introduction

During the last decade, the widespread distribution of automatic systems for
decision making is raising concerns that biases in the training data and model
inaccuracies can lead to decisions that treat historically discriminated groups un-
favourably [1–4]. As a consequence, machine learning models are often required
to meet fairness requirements, ensuring the correction and limitation of unfair
behaviours and for this reason, in literature, it is possible to find a plethora of
different methods to address this issue. These methods can be mainly divided in
three families [5]: methods in the first family change a pre-trained model in order
to make it more fair (while trying to maintain the classification performance); in
the second family we can find methods that enforce fairness directly during the
training phase; the third family of methods implements fairness by modifying
the data representation and then employs standard machine learning methods.
In this work, analogously to [6], we focus on methods which contemporary learn
a data representation, with one or more layers, and a desired model from the
data [7]. In this context we will exploit the concept of fair representation where
the fairness constraint is directly imposed in the representation layers in order to
remove the possibility to discriminate subgroups when the final model is learned,
leveraging on the learned representation.

This problem is even more challenging when we have to learn a fair repre-
sentation of graphs. Graphs allow us to model entities and their relationships.
Graphs data are naturally ubiquitous, for example in in social networks [8], or
constructed from (non)relational data [9]. Learn a data representation expressive
enough to describe the entities in the graph and then learn models leveraging on
this representation is a fundamental problem in Machine Learning. Many meth-
ods exists in literature [10–12] but most of them have several limitations [13]:
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some are transductive and do not handle unseen nodes and/or graphs, some are
not space-efficient and impractical for large graphs, and some lack support for
attributed graphs.

In this work, we will exploit the notion of demographic parity [14] to measure
the unfairness, which requires the probability of the possible model decisions to
be independent of the sensitive information. Then we will employ, for learn-
ing a graph representation, a recently developed Deep Graph Neural Network
(DGNN) [13] which addresses many issues of the methods available in literature
and has been shown to be very effective in practice. Finally, we will impose this
fairness constraint in the different layers of the DGNN, building a Deep Fair
Graph Neural Network (DFGNN), though the use of two different regularizers.
The first one is based on a convex relaxation of the the demographic parity [6].
The second one is based on a formulation of the the demographic parity based
on the Wasserstein distance [15] or, more precisely, the Sinkhorn distance [16],
which offers an efficient differentiable alternative to the heavy cost of evaluating
the Wasserstein distance directly.

Result on the Pokec1dataset [17], the most popular on-line social network in
Slovakia, will support our proposal.

2 Deep Fair Graph Neural Network

Let us consider a binary classification problem where a training graph GTr =
(V, E , X, s,y) is given, where V = {v1, . . . , vdd

} is the set of dd nodes, E ⊆ V ×V
is the set of edges, X ∈ Rdd×dx is the matrix of non-sensitive attributes (xi, the
i-th row of X, is the vector of attributes associated to the vertex vi), si ∈ {1, 2}
is the sensitive attribute2 associated to node vi, and yi ∈ {±1} is label associated
to node vi. Let us define the neighborhood of a vertex vi asN (vi) = {vj |(vi, vj) ∈
E}. The training set is composed by all the nodes in the training graph. The
goal is to learn a model h(Z), where, since in some jurisdictions the functional
form of h cannot depend, implicitly or explicitly [18], on s, we indicate Z its
input composed by v, E , x, and possibly s if legally possible. We consider
the challenging inductive setting, where two different graphs are taken, one for
training and one for testing. In other words, the test is the set of nodes from a
second graph GTe. A dataset, DTr = {(Zi, si, yi)|i ∈ {1, · · · , dd}}, is generated
from GTr and, analogously, DTe is generated from GTe.

The model h is a composition of models m(r(Z)), where m : Rdr → Y is a
linear function and r(Z) ∈ Rdr . r is a function mapping the node, its attributes,
and its topological information in the graph into a vector, that we refer to as the
representation. Note that r can be a composition of functions too r : rdl

◦· · ·◦r2◦r1,
for example, in a deep architectures of dl layers. In other words, the function
r synthesizes the information needed to describe the node in the graph and to
learn an accurate model m. Moreover this representation should be, in some
sense, fair with respect to the sensitive feature. Specifically, we require that the
representation vector satisfies the demographic parity constraint [6, 14]. Namely
we require that

PZ{r(Z) ∈ C|s = 1} = PZ{r(Z) ∈ C|s = 2}, ∀C ⊆ Rdr , (1)

1We thank Peter Tiňo for its help in handling this dataset.
2In this paper, we will consider the case of a single binary valued sensitive attribute.
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that is, the two conditional distributions of the representation vector, the one for
nodes with s = 1 and the one with s = 2, should be the same. The accuracy and
the fairness of the final models h will be evaluated with the empirical Area Under
the Receiver Operating Characteristic curve [19] (AUROCy(h)), since more in-
formative in case of unbalanced datasets like Pokec, and the empirical Difference
of Demographic Parity [6] (DDP(h))

DDP(h)=
∣∣∣1/∣∣D1

∣∣∑
(Z,s,y)∈D1 [h(Z)>0]−1/

∣∣D2
∣∣∑

(Z,s,y)∈D2 [h(Z)>0]
∣∣∣ , (2)

where the Iverson bracket notation is exploited and Di = {(Z, s, y) ∈ D|s = i}
with i ∈ {1, 2} and D can be DTr (during the training phase) or DTe (in the test
phase). Another sanity check on the fairness of r(Z) is to measure the ability of
the same model m to learn s instead of y from r(Z) itself. Then the accuracy of
h in learning s is also measured (ACCs(h)). Note that imposing the demographic
parity in the representation (see Eq. (1)) implies the true DDP of the final model
to be zero and this is why imposing a fair representation is more powerful than
imposing the fairness of the model since any model built leveraging on a fair
representation will be consequently fair.

2.1 Deep Graph Neural Networks

In this paper, we consider the GraphSAGE DGNN model [13], since, contrarily
to other architectures in literature (e.g. [20]), it is designed to deal with large
graphs (such as social network graphs) and it allows to consider a fixed-size set
of neighbors. The representation of a node v at layer k is defined as:

rk,v = ReLU (Wk ·mean ({rk−1,v} ∪ {rk−1,u,∀u ∈ sample(N (v), ns)})) , (3)

where Wk is the matrix of parameters for the k-th layer, ReLU is the rectified
linear activation function, mean is the function returning the mean vector over
a set of vectors3, and sample is a function randomly sampling a subset of ns
elements in the set of neighbors N (v). We then stack multiple (dl) layers like
the one of Eq. (3). For more details about the network, we refer the reader
to the original paper [13]. The DGNN has been trained using the Mini Batch
Stochastic Gradient Descend, minimizing the empirical Binary Cross-Entropy
(BCE(h)).

2.2 Imposing the Demographic Parity

In this section we will propose different approaches for imposing the constraint
of Eq. (1) into the DGNN described in Section 2.1. In particular, we propose
to add a constraint, though the Tikhonov philosophy [7], as regularizer F(h) to
add in the cost function to be minimzed for training the DGNN, together with
the BCE(h), as follows

h∗ = arg minh(1− λ)BCE(h) + λF(h), (4)

where λ ∈ [0, 1] trades off accuracy and fairness as we will also see in Section 3.
The regularizers can act on the representation layers in two different ways.

On way is to impose the constraint just on the last layer of the representation,

3In the original work [13] mean can be substituted with any aggregation operator.
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namely F(h) = F(r). The other way is to impose the constraint on each layer of
the representation, namely F(h) = F(r1, · · · , rdl

).
We propose two different regularizers. The first one is based on the work

of [6], where a convex approximation and relaxation of the constraint of Eq. (1)
is proposed. Analogously to [6], here we propose the following regularizers

F(r) = 1/dr

∑dr

i=1

∣∣∣1/∣∣D1
∣∣∑

(Z,s,y)∈D1 ri(Z)−1/
∣∣D2

∣∣∑
(Z,s,y)∈D2 ri(Z)

∣∣∣ , (5)

which means that the average output, conditioned to the sensitive features, of
each element of the representation vector should be the same independently from
the sensitive features.

The second approach that we propose, requires the definition of the following
probability density functions4

p1(t) = PZ{r(Z) = t|s = 1}, p2(t) = PZ{r(Z) = t|s = 2}, t ∈ Rdr . (6)

Then we impose that the two empirical counterparts of these distributions, re-
spectively p̂1(t) and p̂2(t), should be close to each other with respect to the
Wasserstein distance [15]

F(r) = W(p̂1, p̂2). (7)

Note that if W(p1, p2) = 0 we also have that the constraint of Eq. (1) is satisfied.
Note also that Eq. (7) is hard to impose since it is computationally expensive.
For this reason we will use the Sinkhorn distance [16], which offers an efficient
differentiable alternative to the heavy cost of evaluating the Wasserstein distance
directly.

Finally, for F(r1, · · · , rdl
), namely for imposing the fairness constraint to all

the layers of the network, we simply apply the same regularizers of Eqns. (5)
and (7) to each layer composing the representation.

3 Results and Discussion

In this section, we present the results of our experiments on the Pokec dataset [21].
Pokec was the most popular on-line social network in Slovakia. The released
dataset contains anonymized data of the whole network. Profile data includes
gender, age, marital status, and other information. We selected the sub-network
composed by the users with a specified gender, age, and marital status (we dis-
carded the other users). We choose the marital status as the target feature – or
node label – and the gender as the sensitive attribute. We then randomly split
the users in 2 halves assigning them to DTr (training set) and DTe (test set). As
stated in Section 2, we deal with this problem in the inductive setting, in contrast
with the semi-supervised learning one [20], in which it is assumed to know the
whole network structure beforehand. We thus train our model on the training
network, that comprehends nodes and relationships only about the users in DTr.
We then predict the target feature for the nodes in DTe. We consider a graph
neural network with two GraphSAGE layers with uniform sampling of ns = 25
neighbouring nodes, and with 128 hidden neurons. The output fully connected
layer has size 2 with a softmax activation function.

The results of our experiments are reported in Fig. 1, 2, and 3, and described
in their captions and legends. From these results it is possible to observe that:

4Note that this definition is formally correct only if r(Z) assumes values in a finite set.
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Fig. 1: AUROCy and DDP varying λ and the epochs with the regularizer of
Eq. (5) which acts (Left) on the last layer or (Right) on each layer of the repre-
sentation. The sensitive feature is in the functional form of the model.
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Fig. 2: AUROCy and DDP varying λ and the epochs with the regularizer of
Eq. (7) which acts (Left) on the last layer or (Right) on each layer of the repre-
sentation. The sensitive feature is in the functional form of the model.

• adding the constraint, both Eq. (5) or Eq. (7), remarkably improves the
fairness (DDP) of the solution without compromising its accuracy (AUROCy);

• applying the constraint to all the representation layers is more effective
than applying it just to the last layer (without compromising its accuracy);

• the new constraint Eq. (7) is more effective than the known one of Eq. (5);
• not exploiting the sensitive feature in the functional form generates models

that are fairer and less accurate. As expected – also in this scenario – the
model generated using λ = 0.9 is the most fair and it keeps a good accuracy;

• measuring fairness with the ACCs, instead of the DDP, shows that the
sensitive feature reconstruction error is larger when the constraint is active;

• in the first epochs fairness decreases without compromising the accuracy;
the user can decide to stop the training as soon as the model respects the
desired trade-off between accuracy and fairness.

Even if the results are quite promising, this work is just a fist step toward
the solution of the problem of learning fair models for graphs since the proposed
approach should be tested on different datasets and the methods should be
supported by deeper theoretical insights (e.g. consistency in terms of accuracy
and fairness).
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