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1. Introduction

Multivariate volatility models (MVM) are used for asset pricing, portfolio selection, option pric-

ing, hedging and risk management, see e.g. Bauwens, Laurent, and Rombouts (2006). MVM

include multivariate GARCH specifications (MGARCH), Multivariate Stochastic Volatility models

(MSV) and Multivariate Realized Covariance models (MRC); see McAleer (2005) and Silvennoinen

and Teräsvirta (2009) for MGARCH, Asai, McAleer, and Yu (2006) for MSV, and McAleer and

Medeiros (2008) for MRC.

A major challenge in MVM is the rapid increase in the number of parameters as the cross-

sectional dimension increases. Large cross-sections would be of interest in typical applications of

MVM. In unrestricted specifications, however, the number of parameters grows faster than the

cross-sectional dimension; this implies that parameters eventually outnumber observations in large

cross-sections, a situation where model-estimation becomes infeasible. This phenomenon is similar

to the deterioration of the rate of convergence for nonparametric estimators in higher dimensions,

see e.g. Linton (2009), and we refer to it as the ‘curse of dimensionality’ problem for MVM.1 This

curse of dimensionality problem has inspired the use of shrinkage estimators, estimation for sparse

covariance matrices and other non-parametric solutions, see e.g. Abadir, Distaso, and Zikes (2010)

and reference therein.

In this paper we discuss ‘structured’ – i.e. restricted – parametric MVM specifications which

mitigate or even solve the curse of dimensionality problem. The structure we consider is formal-

ized through weight matrices as in spatial models; in the present context proximity is induced

by economic common factors. Spatial models originated as a way to model the joint covariance

structure of data coming from different geographical areas, in a single time period; these ideas are

applied here for the modeling of conditional covariance matrices over time. Several approaches for

the definition of weight matrices are given; the simplest example corresponds to the definition of

neighbors as members of the same asset class.

Many empirical studies assume diagonal parameter matrices in MVM. These specifications do

not allow for covariance spillover and feedback effects, which are major aspects of interest. On the

contrary, structured specifications allow for covariance spillover and feedback effects from neighbors.

In this sense structured specifications can reflect the factor structure associated e.g. with the

classification of stocks into sectors.

Structured specifications differ from factor volatility models. In the latter, factors are not identi-

fied, while in the former they are associated to a precise structure derived from economic rationale.2

Structured specifications are hence easier to interpret, because factors are defined a-priori.

We discuss the identification of the proposed structured specification; necessary and sufficient

conditions for statistical identification are given. Quite obviously, identification has important

implications on inference. For unrestricted MGARCH processes, asymptotic properties of unre-

stricted (quasi-) likelihood-based inference have been discussed in Comte and Lieberman (2003),

1Note that for nonparametric estimation the rate of convergence of estimators becomes slower in higher dimensions,

while maintaining consistency. For MVM, instead, the curse of dimensionality is more extreme, because estimation

simply becomes infeasible in large cross-sections.
2In statistical factor analysis, the literature distinguishes between exploratory analysis, where no identifying as-

sumption is made, and confirmatory analysis, where factor loadings are restricted on the basis of a-priori restrictions.

Most factor models in MVM are of exploratory nature, and hence leave factor identification unspecified.
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Ling and McAleer (2003), Hafner and Preminger (2009b,a), and Francq and Zakoian (2010), inter

alia. These papers show that, under appropriate conditions, the (Quasi-) Maximum Likelihood Es-

timator (QMLE) is Locally Asymptotic Normal (LAN). Here we find that, when the identification

conditions are satisfied, the LAN asymptotic results extend directly to the structured specifications.

This allows to perform asymptotically χ2 (robust) Wald and Lagrange Multiplier (LM) tests.

Similarly to spatial econometrics, the specification of weight matrices is based on a-priori knowl-

edge. This knowledge concerns which units are connected, how distances are converted into weights

and the pre-determinedness of the weight structure with respect to the data being examined. Dif-

ferent classification criteria may suggest alternative weight matrices, and selecting the right weight

matrices hence becomes of practical importance. We indicate that the choice of weight matrices

can be addressed within nested model comparisons framework, with asymptotically χ2 (robust)

Wald and LM tests.

Alternatively, models can be compared via tests for equal predictive ability, see e.g. Diebold and

Mariano (1995). In order to investigate the finite sample properties of these tests and to evaluate

the effects of misspecification, we perform a small Monte Carlo study. Both misspecification of

the weight matrix and of homogeneity restrictions on the vector of parameters are considered. We

find that tests of predictive ability help to uncover both types of misspecification when the Data

Generating Process (DGP) is sufficiently far from the entertained model. When the DGP is not

too far from the entertained model, however, parsimonious (but misspecified) models are generally

preferred over more flexible (and correctly specified) parameterizations.

The curse of dimensionality problem for MVM is well recognized in the literature. Silvennoinen

and Teräsvirta (2009), for instance, provide a list of desiderata for an ideal MGARCH specification,

which applies to MVM more in general. The ideal specification should be: i) flexible enough to

allow for covariance spillover and feedback effects; ii) scalable, i.e. estimation should be feasible for

increasingly large cross-sections; iii) interpretable; iv) easy to estimate numerically. In particular the

last property requires that the calculation of the inverse and of the determinant of the conditional

covariance matrix should be fast and numerically stable.

We show that proximity structured specifications satisfy most – if not all – these requirements.

In fact, most of the structured specifications allow for spillover and feedback effects, i.e. they are

flexible. They also have a moderate number of parameters, which usually grows linearly with the

cross-sectional dimension; this makes these models scalable. Thanks to the fact that proximity is

derived from economic rationale, the corresponding parameters have a direct economic interpre-

tation. Finally, some structured specifications simplify the calculation of the inverse and of the

determinant of the conditional covariance matrix with respect to the unrestricted case; in some

cases this can lead to a substantial speed up of likelihood computations.

Spatial statistics has a long tradition in modeling unconditional variance matrices, see e.g. Cressie

(1993) and references therein. Spatial econometrics has steadily developed over the years, see e.g.

Anselin (1988) and reference therein. Applications of spatial models in economics can be found

in the literature of regional income growth, the microeconomics of product diffusion, the term

structure of interest rates, the analysis of interaction of policy makers in public economics. They

are used to account for error dependence in regression models, see e.g. Martellosio (2010), as well

as to model individual heterogeneity in panels, see Baltagi, Bresson, and Pirotte (2007), McAleer,

Medeiros, and Slottje (2008) and Pesaran and Tosetti (2011). Despite the wide use of spatial models
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for unconditional covariance structures, their use in modeling conditional covariances discussed in

this paper is novel.3

Spatial models are associated with the notion of distance between units. The concept of proximity

originated as a geographic concept; coming into economics, it has been associated with economic

distance and social proximity, see Conley and Dupor (2003), Pesaran, Schuermann, and Weiner

(2004). The simplest notion of proximity is the one inherited from regular lattice models. Case

(1991), for instance, classified units into groups, considering units as neighbors if they belong to the

same group. We apply this notion to an example of n stock returns, where neighbors are defined

as stocks from the same sector. The definition of neighbors is then extended to more general

situations, also allowing for the presence of covariates.

The rest of the paper is organized as follows. Section 2 gives the basic setup and the motivation.

Section 3 described the structured specifications proposed in this paper, which depend linearly

on weight matrices; the latter are discussed in Section 4. Section 5 discusses identification and

asymptotics. Section 6 presents a specification analysis of weight matrices and a Monte Carlo

study on the effects of misspecification. Section 7 reports an application to six stock returns from

the New York Stock Exchange (NYSE) and Section 8 reports concluding remarks. Appendix A

discusses properties of proximity matrices, while Appendix B reports proofs on identification.

A final word on notation: 1(condition) denotes the indicator function that takes value 1 if the

condition is true and value 0 otherwise; 1s is an s × 1 vector of ones; vec is the column-stacking

operator; ⊗ indicates Kronecker product, see Magnus and Neudecker (2007); diag(a) is the diagonal

matrix with vector a on the main diagonal, while diag(A1, . . . , An) indicates a block-diagonal matrix

with A1, . . . , An on the main diagonal; dg(A) indicates the column vector containing the diagonal

elements of A; corr(A) := diag(dgA)−1/2A diag(dgA)−1/2 for a positive definite (p.d.) matrix A;

(A)ij indicates element i, j of matrix A; A⊥ indicates a basis of the orthogonal complement of the

column space of A.

2. Motivation

We consider a cross-section of n time series yt := (y1,t : · · · : yn,t)′ over a time span t = 1, . . . , T .

For instance, yt may represent n stock returns at time t. Let Ft indicate the information set up

to and including time t, which is generated by the random variables in zt := (y′t : x
′
t)
′ where xt

contains additional random variables that are observed at time t. Let the conditional mean of yt

be some parametric function of zt−1, µt(zt−1) := Et−1(yt) := E(yt|Ft−1). We concentrate attention

to deviations from the conditional mean ut := yt − µt(zt−1), with Et−1(ut) = 0. Our interest

lies in the prediction of Σt = Et−1(utu
′
t). We assume that ut = Σ

1/2
t εt where εt is i.i.d. with 0

mean and variance matrix equal to In. The (quasi) Gaussian log-likelihood function is given by

ℓ(θ) := logL(θ) =
∑T

t=1 ℓt(θ), with ℓt(θ) := −1
2(log detΣt + u′tΣ

−1
t ut), and θ is the column vector

of model parameters.

3The authors experimented with selected structured specification in Caporin and Paruolo (2005a,b). After com-

pleting the first draft of the present paper in 2008, the authors became aware also of the Dynamic Equicorrelation

model (DECO) proposed in Engle and Kelly (2012), which can also be interpreted as a special case of a structured

specification.
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number of parameters

name vt ξt unrestricted structured

VEC vechΣt vechutu
′
t O(n4) O(n2)

BEKK vechΣt vechutu
′
t O(n2) O(n)

GO-GARCH dg(X−1ΣtX
−1′) X−1ut ⊙X−1ut O(n2) O(n)

CCC dg(Σt) ut ⊙ ut O(n2) O(n)

gen. cDCC

{
v1t := dgΣt

v2t := vechQt

{
ut ⊙ ut

vechu†tu
†′
t

O(n2) O(n)

VCC

{
v1t := dgΣt

v2t := vechRt

{
ut ⊙ ut

vech(corr(M
(t,h)
zz ))

O(n2) O(n)

SV log
(
dg(X−1ΣtX

−1′)
)

ηt O(n2) O(n)

MRV vechYt ζt O(n2) O(n)

Table 1. Examples of the dynamic equation vt = c̃ + Ãξt−1 + B̃vt−1, see eq. (1).

⊙ is element-wise multiplication. gen. cDCC and VCC present two dynamic equa-

tions, one for v1t and one for v2t. gen. cDCC: u†t := diag(dgQt)
1/2 diag(v1t)

−1/2ut,

Σt = diag(v
1/2
1t ) corr(Qt) diag(v

1/2
1t ). VCC: Σt = diag(v

1/2
1t )Rt diag(v

1/2
1t ), M

(t,h)
zz :=

h−1
∑h−1

j=0 zt−jz
′
t−j , zt := diag(v1t)

−1/2ut. SV, stochastic volatility: ηt is indepen-

dent of εt. MRV: Gourieroux, Jasiak, and Sufana (2009) state directly the transition

probability of the Markov process Yt, which defines implicitly the mean-zero inno-

vation ζt.

Many volatility models present a dynamic equation for some vector vt containing (functions of)

variances and covariances in Σt of the type

vt = c̃+ Ãξt−1 + B̃vt−1 (1)

where ξt is either a function of ut or of some random vector ηt independent of εt. Table 1 reports

several special cases, which include many MGARCH, MSV and MRV models.

As a representative example, consider the following BEKK specification, see Engle and Kroner

(1995):

Σt = C +Aut−1u
′
t−1A

′ +BΣt−1B
′, (2)

where A, B and C are unrestricted n×n parameter matrices to be estimated, with C p.d.4 Taking

vecs and using properties of vec and vech operators, one finds that (2) is a special case of (1) with

vt := vechΣt and ξt := vechutu
′
t.

The total number of coefficients in (2) is 1
2n(n+1)+2n2 = O(n2), where O(nα) indicates the order

in terms of n, the cross-sectional dimension. Similar reasoning, applied to the models in Table 1,

leads to the numbers of parameters listed in the 4th column of Table 1, labeled ‘unrestricted number

of parameters’. Columns b and e in Table 2 illustrate the growth in the number of parameters,

assuming T = 1000 and varying n between 10 and 2000. Observe that estimation becomes infeasible

4See also McAleer, Chan, Hoti, and Lieberman (2008) for a motivation of the BEKK specification based on random

coefficient autoregressions.
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a b c d e f g

n 1000n 2.5n2 0.5n4 6n b/a c/a d/a

10 1·104 250 5·103 60 0.025 0.5 0.006

50 5·104 6250 3125·103 300 0.125 62.5 0.006

100 1·105 25·103 5·107 600 0.25 500 0.006

500 5·105 625·103 3125·107 3·103 1.25 62500 0.006

1000 1·106 25·105 5·1011 6·103 2.5 5·105 0.006

2000 2·106 1·107 8·1012 12·103 5 4·106 0.006

Table 2. Ratio of number of parameters to observations. Entries report number

of observations, number of parameters, or their ratio. n: cross-sectional dimension;

column a: number of data points for time series with T = 1000; columns b, c, d:

number of parameters of orders O(n2), O(n4), O(n); columns e, f, g: ratio of number

of parameters to sample size for columns b, c, d; if > 1, the model is not estimable

(more parameters than observations).

between 100 and 500; this illustrates the curse of dimensionality problem. Other columns in Table

2 illustrate the growth in the number of parameters in other models in Table 1; note that the curse

of dimensionality applies to any model with order α > 1.

3. Structured specifications

This section presents the structured specifications proposed in this paper. Structured specifica-

tions make use of weight matrices; a weight matrix W is a known square n×n matrix whose i, j-th

entry wij indicates the weight (a real number between 0 and 1) of variable j in the determination

of variable i. The diagonal entries are equal to 0 and the row-sums may be normalized to be equal

to 1. In the following, when different weight matrices are considered, we indicate them as W (h),

h = 0, 1, . . . ; more details on the definition and the specification of weight matrices are given Sec-

tion 4. In this section we define structured specifications assuming that at least one weight matrix

W is available.

3.1. Definition of structured specifications. Consider the example of a BEKK model, see (2),

and of a single weight matrix W . A structured specification is obtained by setting C = S−1V S−1′

and assuming A, B and S to be the following linear functions of the weight matrix W :

A = A0 +A1W, B = B0 +B1W, S = I − S1W, (3)

where: Aj := diag(α(j)), Bj := diag(β(j)), j = 0, 1, S1 := diag(s(1)), V := diag(v) are all diagonal

n× n matrices; and s(1), v, α(j), β(j), j = 0, 1 are n× 1 parameter vectors.

The matrices A, B, S in (3) are special cases of a proximity matrix, which we define as any

matrix of the form

Π =

k∑
h=0

diag(ψ(h))W (h), (4)

with W (0) = I, and where ψ(h) are n × 1 vectors of coefficients h = 0, . . . , p. Proximity matrices

and their properties are discussed in more detail in Appendix A.

In the following C = S−1V S−1′ with S a proximity matrix, see (4), and V a diagonal matrix will

be taken to be the leading example of structured specification for a positive definite matrix. For the
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generic parameter matrices Ã, B̃ in dynamic equations of the type (1), structured specifications

are taken to be proximity matrices, as in (4). In spatial econometrics, row-normalized and un-

normalized weight matrices are characterized by different behavior. This is not the case in (4),

because the row-normalization can be absorbed in the parameter vectors5 ψ(h).

3.2. Number of parameters. Note that the number of parameters in the structured BEKK

specification (3) is 6n = O(n), which grows linearly with n and is estimable also for large cross-

sections, see columns d and g in Table 2. It can be seen that the reduction in the order O(nα) is

from α = 4 or 2 for unrestricted specifications to α = 2 or 1 for structured ones. In case α = 2 for

the structured specification, the latter only mitigates the curse of dimensionality. When instead

α = 1 for the structured specification, the curse of dimensionality is solved, as the corresponding

structured specifications is scalable.

The structured specification C = S−1V S−1′ ensures that C is p.d. provided V := diag(v) has

positive elements vi on the main diagonal and S is invertible; the latter is the case provided the

diagonal elements in S1 := diag(s(1)) are different from the reciprocals of the nonzero eigenvalues

of W . The implied correlation structure can be quite articulate, despite being governed just by a

few coefficients. For example, the specification S−1V S−1′ for the covariance matrix of a vector u,

say, can generate negative correlations between pairs of ui. This can be seen, for instance, in the

simple case of S = I2 − ϕW with W = (e2 : e1), V = I2, where ei is the i-th column of I2; the

correlation ρ between u1 and u2 is 2ϕ/(1 + ϕ2), and one has −1 < ρ < 1 for −1 < ϕ < 1.

The form C = S−1V S−1′ mimics the form of the variance-covariance matrix of a SAR process,

see Cressie (1993), which posits (I−ϕW )u = ε with scalar ϕ, and errors ε with mean 0 and diagonal

covariance matrix V := diag(v). Provided S := I−ϕW is invertible, one can solve the equations for

u by computing ε = Su, from which one finds the SAR covariance structure E(uu′) = S−1V S−1′.

3.3. Interpretation. Despite a moderate number of parameters, and unlike the diagonal BEKK,

the structured BEKK specification allows for covariance spillover effects. In fact, consider the term

Aut−1u
′
t−1A

′ in (2), where

Aut−1 = diag(α(0))ut−1 + diag(α(1))Wut−1.

Observe that (Aut−1)i contains two terms: the first one (α
(0)
i ui,t−1) consists of the own-lag uit

term, while the second one is α
(1)
i w′

iut−1, a term that delivers the spatial effect from first order

neighbors. Here w′
i is the i-th row of Wn and w′

iut−1 is proportional to the average of ut−1 for

stocks in the same sector; hence w′
iui,t−1 represents spillover effects from other stocks in the sector

of unit i. Thus the term Aut−1u
′
t−1A

′ contains both diagonal effects and spillover effects from the

same sector.

A similar interpretation applies to the BΣt−1B
′ term in (2). In fact, let ei be the i-th column of

In; then (Σt)ij depends on(
BΣt−1B

′)
ij
= β

(0)
i β

(0)
j (Σt−1)ij + β

(0)
j β

(1)
i

(
w′
iΣt−1ej

)
+ β

(0)
i β

(1)
j

(
e′iΣt−1wj

)
+ β

(1)
j β

(1)
i

(
w′
iΣt−1wj

)
.

The first term contains the own lagged term of the conditional covariance (Σt−1)ij ; the second

term contains w′
iΣt−1ej which is the conditional covariance of the average from neighbors of unit i

(excluding asset i) with asset j at time t−1; the third term is similar to the second one, interchanging

i and j and finally w′
iΣt−1wj is the conditional covariance of the average neighbors to units i and j

5In case ψ(h) is restricted to have all equal elements, ψ(h) = ψh1n, then row-normalization becomes relevant.
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(excluding asset i and j). This breakdown clarifies covariance feedback from assets in neighbors of

units i and j onto (Σt)ij ; the first term represents a diagonal effect, and the last three are feedback

effects from the covariances of stocks i and j with their neighbors. This shows the flexibility of the

structured specification.

3.4. Homogeneous and heterogeneous specifications. The coefficients ψ(h) that appear in

(4) are not necessarily distinct. If they are, we call (4) an ‘heterogeneous’ specification; otherwise,

we call it ‘homogeneous’. We also consider the case in which ψ
(h)
i is equal to ψ

(h)
j for all j that

are neighbors to unit i with respect to W (h). We call the corresponding specification the ‘group-

homogeneous’ case. Note that the heterogeneous specification nests the group-homogeneous one,

which in turn nests the homogeneous one.

Restricted structured specifications can be obtained by considering the group-homogeneous spec-

ification, the homogeneous specification or zero-restrictions on a subset of the parameters in ψ(h).

Obviously, many sub-models can be constructed by combining restrictions of this type.

3.5. Computational gains. In this subsection we illustrate the possible gains in computational

speed involved by structured specifications over un-structured ones. We illustrate this property by

considering a standard CCC specification. In the CCC model, one specifies Σt = DtRDt, where

R is a correlation matrix, Dt = diag(ht) and vt := ht ⊙ ht satisfies the GARCH equation (1) with

ξ = ut ⊙ ut.

Evaluation of the log-likelihood requires the computation of Σ−1
t = D−1

t R−1D−1
t and of log detΣt =∑n

i=1 log vit+log detR. For the standard, un-structured specification, this requires the computation

of log detR and of R−1 using standards algorithms.

A possible structured specification is R = corr(C) = G−1CG−1 with C = S−1V S′−1, S = I−ϕW ,

V = ψI, G := diag(dg(C))1/2. For concreteness, we also specify W as Jn = (n − 1)−1(1n1
′
n − I).

In the structured specification, the computation of the inverse R−1 simplifies as follows:

R−1 = GC−1G = GSV −1S′G =
1

ψ
G (I − ϕW ) (I − ϕW )′G, (5)

which does not require the use of inversion routines. In the calculation of log detΣt, one finds

log detR = −
n∑
i=1

logCii − 2 log detS + n logψ (6)

Expression (6) does not involve simplifications for genericW , given that the r.h.s. contains log detS.

For the choice W = Jn, however, the expression of the determinant of S can be simplified; in fact,

let P := n−11n1
′
n, and note that one can re-write S as a linear combinations of P and I − P ,

S = I − ϕ
n−1(1n1

′
n − I) = (1 − ϕ)P + (1 + ϕ

n−1)(I − P ). Because P and I − P are orthogonal

projectors, one can apply Lemma 2.1-iii in Magnus (1982) to find

log detS = log (1− ϕ) + (n− 1) log

(
1 +

ϕ

n− 1

)
(7)

which involves just a scalar computation.

Table 3 reports the ratio between the average computing time of R−1 (respectively log detR)

using generic matrix routines and the average computing time using eq. (5),(respectively (6) and

(7)) for the structured specifications.6 For the computation of R−1 in the structured case of eq.

6We used version 7.9.0 of Matlab 64 bit for Windows, on a desktop personal computer with Intel processor EM64T

and 12Gb of RAM.
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n 10 50 100 500 1000

R−1 3.44 5.76 4.31 1.72 1.53

log detR 0.84 7.31 22.87 236.94 715.87

Table 3. Ratio between the mean computing times using generic matrix routines

and using eq.s (5), (6) and (7). R−1: ratio between mean computing times using

Matlab functions inv and using eq. (5). log detR: ratio between the mean com-

puting times using Matlab function det and using eq. (6) and (7). Means were

calculated over 200 replications.

G = 1 2 3

F = 1 1,2 3,4 5,6

2 7,8 9,10 11,12

Table 4. Example of a two-way classification of 12 assets, see Section 4. Entries

are labels of 12 stocks classified by the two factors F and G.

(5) we used the fact that in this model the diagonal elements of G are all equal. Table 3 shows

that the computational gains can be substantial. Interestingly, the computational gains seem to be

decreasing in n for R−1 and increasing in n for log detR. The actual magnitude of the computational

gains is, in general, hardware- and software-dependent.

4. Weight matrices

Any proximity-structured specification requires the availability of one or more weight matrices

W (h). In this section we discuss the definition of weight matrices in the context of MVM, where

weight matrices have dimension n when they describe proximity of vector ut, and have dimension n2

when they describe proximity of vecΣt. We also cover the more general case of weight matrices that

reflect a (possibly time-dependent) metric distance between units. The econometric specification

analysis of weight matrices is deferred to Section 6.

4.1. One classification criterion. Assume that there are n = 12 assets returns, classified on the

basis of each stock’s sector, represented by the factor F with levels 1 (goods sector) and 2 (service

sector). Stocks are labeled according to their position in the ut vector, and we assume that the

classification of stock labels detailed in Table 4 applies.

Next define a weight matrix W ∗ := (w∗
ij) which classifies asset returns i and j as neighbors if

the two stocks belong to the same sector, Fi = Fj

w∗
ij := 1 (Fi = Fj , i ̸= j) (8)

In the example of Table 4 one finds that W ∗ = 5diag(J6, J6) where Js := (s− 1)−1(1s1
′
s − Is).

Each row i in a weight matrix W ∗ represents the weights of the neighbors of unit i; the number

of neighbors may differ across rows. One can normalize W ∗ for the different row-sums by applying

the transformation

wij :=

{
w∗
ij/
∑n

j=1w
∗
ij

0

if
∑n

j=1w
∗
ij > 0

otherwise
, (9)
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which produces a normalized weight matrix W = (wij). Because the matrix W reflects the

classification criterion F , in the following we indicate it by WF . In the case of the example,

WF = diag(J6, J6), because all the rows of W ∗ have the same row-sums.

4.2. Several classification criteria. When more than one classification criterion is present, one

can construct weight matrices applying the same principles and techniques in use in Analysis of

Variance, ANOVA, see e.g. Wichura (2006).

In the example of the 12 assets in Table 4, consider a second classification criterion G representing

capitalization size, with levels 1, 2, 3 corresponding to ‘large’, ‘medium’ and ‘small’. Let WG be

the weight matrix constructed in the same way asWF when using classification criterion G in place

of F . One possible combination of the factors F and G can be obtained by considering a proximity

matrix S = diag(ψF )W
F + diag(ψG)W

G; here the effects of both factors are additive.

A more general combination of factors F and G can be obtained by considering each cell in Table

4 as level of the factor H := F × G; this allows to measure interactions between the two factors.

Specifically the level h of the factor H corresponds to the pair (i, j) for (F,G), with h = (k1−1)i+j,

where k1 (k2) is the number of distinct values of F (G). The combined factor H presents k1 · k2
intensities, and one can define a weight matrix corresponding to it, labeled WH , as detailed above

for factor F . Specifically, for the example in Table 4 one finds WH = diag(J2, J2, J2, J2, J2, J2).

This can be directly extended to the case of several factors, where we note that more refined

classifications obviously imply fewer units per group. This gives an implicit upper limit to the

number of factors one can consider in practice.

4.3. From stocks weights to covariances weights. The previous subsections have shown how

the classification of stocks gives rise to weight matricesWn for stock returns, where in this subsection

the subscript n to the weight matrix indicates its dimension. Here we show how these matrices can

then be used to derive weight matrices for stock returns (co-)variances.

Recall that the generic weight matrix for a single classification criterion is given by

Wn := diag(Jn1 , . . . , Jnk1
), (10)

where the ni stocks if class i are ordered consecutively for i = 1, . . . , k1.

When considering vec(Σt) or vec(utu
′
t), element number h in these vectors corresponds to a pair

of row- and column- indices (i, j), where h = (i − 1)n + j; let also (l,m) correspond to element

v = (l− 1)n+m. In order to construct weight matrices for the elements in vec(Σt), one may define

the un-normalized weight as

w∗
hv := 1(Fi = Fl, Fj = Fm, i ̸= l, j ̸= m), (11)

where we have used an expression similar to (8). Alternative weight matrices are obtained by

replacing w∗
hv in (11) with either one of the following expressions:

w
∗(1)
hv := 1 (Fi = Fl, i ̸= l, j = m) , w

∗(2)
hv := 1 (Fj = Fm, i = l, j ̸= m) . (12)

In words, (11) states that the pairs (i, j) and (l,m) are neighbors if sector pairs are the same and

no stock appears twice. The two weights in (12) require instead that either one of the two stocks is

the same. w
∗(1)
hv requires that the second stock in the pairs to be the same, while w

∗(2)
hv requires that

the first stock in the pairs to be the same; the remaining stock in the pair needs to be different.
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Note that the three cases in (11), (12) are mutually exclusive. One can then prove the following

theorem.

Theorem 1 (Weights in n and n2 dimensions). Let W
(j)
n2 be the weight matrix obtained by normal-

izing the weights w
∗(j)
hv in (12), j = 1, 2 and let W

(3)
n2 be the weight matrix obtained by normalizing

the weights in eq. (11). Finally let Wn be the weight matrix for stocks returns, as in (10). Then

one has

W
(1)
n2 = In ⊗Wn, W

(2)
n2 =Wn ⊗ In, W

(3)
n2 =Wn ⊗Wn.

In general the Kronecker product H⊗K is a weight matrix provided either H or K is a weight matrix

and the other matrix has non-negative entries with row sums equal to 1; this holds in particular

when H and K are both (normalized) weight matrices.

The first part of Theorem 1 can be applied to find the nesting relation between the structured-

BEKK and the structured-VEC specification. Assume that the matrices A, B in (2) satisfy the

restrictions (3). Taking vecs of equation (2), one finds

vec Σt = vec C + (A⊗A) vec
(
ut−1u

′
t−1

)
+ (B ⊗B) vecΣt−1,

where we have used standard properties of vecs. The matrices A⊗A and B⊗B are spatial matrices

of the type (4) with respect to the set of weight matrices W := {W (j)
n2 , j = 1, 2, 3} by Theorem 1.

We have hence proved the following corollary.

Corollary 2 (s-BEKK is nested within s-VEC). The structured-BEKK specification is nested within

the structured-VEC MGARCH specification.

4.4. Weight matrices using covariates. Weight matrices can be defined using covariates xt−1

(which are measurable with respect to Ft−1) into a weight matrix Wt, such as market value, book-

value, momentum, earnings/price, cash-flow/price, dividend yield, short- and long-term reversals.

Another set of covariates can be constructed as dissimilarity between sectors as represented by

appropriate columns in input-output matrices, as in Conley and Dupor (2003).

Let xi,t be a q×1 vector of indicators available at time t concerning assets i, which are measurable

with respect to Ft. For simplicity we assume that each entry in xi,t is non-negative and it is

normalized to be on a scale from 0 to 1. Next define the un-normalized weight matrixW ∗
t := (w∗

i,j,t)

with weights

w∗
i,j,t := (1− δi,j) exp

(
−s ∥xi,t−1 − xj,t−1∥rb

)
, b, r, s > 0, (13)

where δi,j is Kronecker’s index, b, r and s are positive constants and ∥a∥b :=
(∑q

i=1 |ai|
b
)1/b

. The

normalized weight matrix Wt := (wi,j,t) is obtained by row-normalization of W ∗
t , as in (9).

Note that this definition of the weight matrix reduces to the one associated with a classification

criterion F when xi,t := Fi, for any choice of s > 0, r ≥ 0. Hence (13) provides a generalization on

how to define weight matrices. The choice of the exponential exp(−sxr) in (13) has the disadvantage

of producing positive real numbers for w∗
i,j,t for all values of x, even when x is very far from 0. This

implies that each row in W is full. In order to obtain more sparse weight matrices, one can replace

exp(−sxr) with exp(−sxr)1(x < c), that sets all weights equal to 0 for x ≥ c.

This discussion shows that any discrete or continuous, time-varying or time-invariant covariate

can be used to define weight matrices. In the rest of the paper we restrict attention to the time-

invariant case.
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5. Identification and asymptotics

In this section we discuss identification and asymptotics of structured specifications, where iden-

tification is understood in the sense of Rothenberg (1971). We first discuss identification con-

ditions for dynamic parameters A and B, and next we treat the positive definite specification

C = S−1V S−1′. Finally, we present (robust) Wald and LM tests of the restrictions associated with

structured specifications when identification holds.

5.1. Dynamic parameter matrices. Let Π indicate either matrix A or matrix B in the dynamic

equation (2), and assume that Π satisfies the proximity matrix specification in (4). Here Π is n×n
and ψ denotes the associated parameter vector in (4), with ψ := (ψ′

1 : · · · : ψ′
n)

′, ψi := (ψ
(0)
i : · · · :

ψ
(k)
i )′. With this definition, one finds vec(Π′) =Mψ whereM := diag(M1, . . . ,Mn) is n

2×n(k+1),

Mi := (W
(0)
i : · · · :W (k)

i ) and W
(h)′
i is the i-th row of W (h).

The parameter ψ corresponds to an heterogeneous specification; the group-homogeneous or the

homogeneous specifications correspond to linear restrictions on ψ of the generic type ψ = Hφ,

where H is a full column rank matrix. Indicate by nψ, nφ the dimensions of the parameter vectors

ψ and φ respectively, and partition the parameter vector in two parts, ψ and η.

Let ℓ(ψ, η) be the log-likelihood of the model, or the function to be optimized in model estimation.

We say that ψ is identified if ψ1 ̸= ψ2 implies ℓ(ψ1, ·) ̸= ℓ(ψ2, ·) with positive probability. If this

property holds only locally in an open set in the parameter space which includes the true value, we

say that ψ is locally identified. We use a similar terminology also in relation to the unrestricted

model, i.e. the model where Π is not restricted by (4).

Theorem 3 (Identification of dynamic parameter matrices). Let Π be globally (locally) identified

in the unrestricted model, where Π is either A or B, and let ψ be the parameters of the structured

specification; then a necessary and sufficient condition for the global (local) identification of ψ is

M is of full column rank nψ, (14)

where M := diag(M1, . . . ,Mn), Mi := (W
(0)
i : · · · :W (k)

i ) and W
(h)′
i is the i-th row of W (h).

Similarly, a necessary and sufficient condition for the global (local) identification of the restricted

structured parameter vector φ is

MH is of full column rank nφ. (15)

Note that for MGARCH models, only local identification applies. Remark that the matrices

in the rank conditions (14), (15) do not involve the parameters, but they are functions of the

constraints alone.

The identification conditions (14) or (15) are necessary and sufficient, i.e. they are ‘rank condi-

tions’. The corresponding ‘order conditions’ are found by requiring that the number of rows in W

in (14) and MH in (15) are greater or equal to the number of columns; this proves the following

corollary.

Corollary 4 (Number of weight matrices). A necessary but not sufficient condition (order condi-

tion) for the heterogeneous specification parameters ψ to be identified is

k ≤ n− 1. (16)
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For the restricted structured parameter φ, a necessary but not sufficient condition (order condition)

for identification is

nφ ≤ n2. (17)

5.2. Positive definite matrices. Consider the case where a symmetric and positive definite n×n
matrix C is identified in the unrestricted MVM model. We consider the structured specification

C = S−1V S−1′ with

S := I +
k∑

h=1

diag(ψ(h))W (h), V = diag(v), (18)

where v := σ ⊙ σ, σ := (σ1, . . . , σn)
′. Let ψ be the nψ × 1 parameter vector for the proximity

matrix S, defined similarly to Π above, and ψ := (ψ′
1 : · · · : ψ′

n)
′. ψi := (ψ

(0)
i : · · · : ψ(k)

i )′. Let σ be

the n× 1 parameter vector containing the square root of the diagonal elements of matrix V ; here

γ := (ψ′ : σ′)′ are the parameters of interest; let also η indicate the remaining parameters. Similarly

to above, we define the matrices M := diag(M1, . . . ,Mn), Mi := (W
(1)
i : · · · : W (k)

i ), where W
(h)′
i

is the i-th row of W (h); note that here, however, the matrix W (0) := I does not appear and that

hence M is n2 × nk.

We consider generic linear restrictions of the type

ψ = Hψφ+ hψ, σ = Hσζ + hσ, (19)

which result in linear constraints of the type γ = Hξ + h with ξ := (φ′ : ζ ′)′, h := (h′ψ : h′σ)
′ and

H = diag(Hψ,Hσ); in other words we require no cross-restrictions between ψ and σ. Let also nξ

indicate the number of elements in ξ.

In the following we say that a parameter vector is generically locally identified if it is locally

identified for all parameter values in an open set containing the true value except for a set of

Lebesgue measure 0, see e.g. Lucchetti (2006). Using results in the latter paper, we can prove the

following Theorem 5. In the statements below, Kn represents the commutation matrix of order n

and G is the matrix that satisfies vec(diag(a)) = Ga for any vector a, see Magnus (1988), Magnus

and Neudecker (2007).7

Theorem 5 (Identification of positive definite structured matrices). Let C be a symmetric, positive

definite locally (generically) identified parameter in the unrestricted model; then a necessary but not

sufficient condition for γ to be locally identified is

2k ≤ n− 1. (20)

A necessary and sufficient condition for γ to be locally generically identified is that eq. (20) holds

and

rank

(
Uψ 0

Uσ TσD̃n

)
= n2 + n(n− 1)/2, (21)

where D̃n is a n2 × n(n − 1)/2 matrix whose columns for a basis for space of vectors of the form

vecA, where A is any n× n skew-symmetric matrix8, qψ = vec In, qσ = 0, Nψ := KnM , Nσ := G,

7For instance, one has the representations G =
∑n

i=1(eie
′
i ⊗ ei) =

∑n
i=1(ei ⊗ eie

′
i).

8For instance one can take D̃n = (D1 : · · · : Dn−1) with Dj := ej ⊗ Fj − Fj ⊗ ej , Fj := (ej+1 : · · · : en).
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nψ := nk, nσ := n. Moreover, for a = ψ, σ the following notation is employed:

Ua :=


R′
a

(
N ′
a,1 ⊗ In

)
...

R′
a

(
N ′
a,na

⊗ In
)

R′
a

(
N ′
a,0 ⊗ In

)

 , Tσ :=


R′
σ (In ⊗Nσ,1)

...

R′
σ (In ⊗Nσ,nσ)

R′
σ (In ⊗Nσ,0)

 ,

where, for i = 1, . . . , na, the n× n matrix Na,i is such that vec(Na,i) equals the i-th column of Na,

while Na,0 is such that vec(Na,0) := qa and Ra := Na⊥.

For the restricted parameter vector ξ, the order condition is replaced by

2nξ ≤ n(n+ 1). (22)

The rank condition for ξ to be locally generically identified is that eq. (21) holds with a = φ, ζ and

Nφ := KnMHψ, Nζ := GHσ, qφ := vec In +KnMhψ, qζ := Ghσ.

We note that the matrix in the rank condition (21) does not involve the parameters, but it is a

function of the constraints alone.

5.3. Asymptotics. This subsection shows how asymptotic results derived for unrestricted MVM

specification extend to structured ones when the conditions of identification hold. For unrestricted

MGARCH processes, the LAN property of the QMLE for unstructured BEKK models has been

discussed in Comte and Lieberman (2003). Hafner and Preminger (2009a,b) treat the VEC speci-

fication and Factor MGARCH. Ling and McAleer (2003) and Francq and Zakoian (2010) cover the

CCC specification.

In the rest of this subsection we adopt notation similar to Davidson and MacKinnon (1993)

Chapter 8. Let ℓ(θ) :=
∑T

t=1 ℓt(θ), g(θ) := ∂ℓ(θ)/∂θ′, gt(θ) := ∂ℓt(θ)/∂θ, G (θ) := (g1(θ) : · · · :
gT (θ))

′, H(θ) := ∂2ℓ(θ)/∂θ∂θ′, Ht(θ) := ∂2ℓt(θ)/∂θ∂θ
′, and indicate the unrestricted and the

structured QMLE of the d × 1 vector of parameters θ as θ̂ and θ̃. Assume for simplicity, that

zt is strictly stationary and ergodic. Structured specifications involve smooth (i.e. continuously

differentiable) restrictions, which are indicated here in implicit form as r(θ) = 0, where r(θ) is a

q× 1 vector, and in explicit form as θ = θ(ρ), where ρ is an m× 1 vector of parameters, d = m+ q.

We also indicate the first order derivatives matrices of the constraints as R′(a) := ∂r(θ)/∂θ′|θ=a
and Q(b) := ∂θ(ρ)/∂ρ′|ρ=b. Let θ0 be the true value of θ, and indicate as g0 = g(θ0), ĝ = g(θ̂),

g̃ = g(θ̃) and similarly for other quantities.

Assume that θ̂ is a consistent solution to the QML problem, and that the classical conditions

for LAN of the QMLE are satisfied. These results are usually based on a first order approximation

of the score in a neighborhood of θ0, where gt,0 has mean E(gt,0) = 0 and nonsingular variance

J0 := E(gt,0g
′
t,0) < ∞, and the expected hessian H0 := E(Ht,0) is nonsingular;9 this corresponds

to the identification of the unstructured MVM. Using the first order approximation of the score,

one obtains T 1/2(θ̂ − θ0) ≃ −H−1
0 (T−1/2g0)

w→ N(0, V ), with V := H−1
0 J0H−1

0 .

Under these conditions and the full column rank of Q(θ) for θ in a neighborhood of θ0 (which

is implied by the rank conditions for identification), the same consistency and LAN results apply

to the structured QMLE estimator θ̃, see e.g. Billingsley (1961) Section 3. Specifically, there

exists a consistent root θ̃ of the constrained structured specification with probability tending to

9Here E is with respect to the probability measure indexed by θ0. In the following ≃ indicates quantities that are

equal up to a term that tends to 0 in probability and
w→ indicates weak convergence.
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1, and T 1/2(θ̃ − θ0) is asymptotically normal. Again these results are obtained using a first-order

approximation for the (restricted) score.

In this framework, one can derive (robust) Wald and LM tests of the restrictions implied by the

structured specification, in the spirit of Bollerslev and Wooldridge (1992);10 this is illustrated in the

rest of this section. Wald tests can be constructed by applying the delta-method to the function

r(θ). In fact, one has T 1/2(r̂ − r0) ≃ −T−1/2R′
0H

−1
0 g0

w→ N(0, R′
0V R0) and a robust Wald test

statistic is given by T r̂′(R̂′V̂ R̂)−1r̂
w→ χ2(q), where V̂ = TĤ−1Ĝ′ĜĤ−1 is a consistent estimate

of V , see e.g. Davidson and MacKinnon (1993). Under correct specification of the likelihood, the

standard Bartlett identity H0 = −J0 holds, V = J −1
0 , and also the non-robust Wald test statistics

built with V̂ = TĤ−1or V̂ = T (Ĝ′Ĝ)−1 are asymptotically χ2(q) distributed.

Similarly, one can define robust LM tests as appropriate quadratic forms in g̃. Standard deriva-

tions (see e.g. Davidson and MacKinnon (1993) eq. (8.72)-(8.75)) and the first-order expansion

of the score imply that T−1/2g̃ ≃ T−1/2R0F
′
0g0, F

′
0 := (R′

0H
−1
0 R0)

−1R′
0H

−1
0 , where T−1/2g0

w→
N(0,J0). Hence T−1/2F̃ ′g̃ ≃ T−1/2F ′

0g0
w→ N(0, U) with U = F ′

0J0F0, and a robust LM test sta-

tistics can be defined as T−1g̃′F̃ Ũ−1F̃ ′g̃, where Ũ = T−1F̃ ′G̃′G̃F̃ , with F̃ ′ = (R̃′H̃−1R̃)−1R̃′H̃−1.

Similarly to the Wald test case, under correct specification of the likelihood, the standard Bartlett

identity H0 = −J0 holds, U = (R′
0H

−1
0 R0)

−1, and also the non-robust LM test statistics built with

Ũ = T−1(R̃′H̃−1R̃)−1 or Ũ = T−1(R̃′(G̃′G̃)−1R̃)−1 are asymptotically χ2(q) distributed.

Note that in the calculation of the LM test statistics one can use that R′(θ(ρ))Q(ρ) = 0 which

holds by the chain rule of differentiation. Under identification Q̃ is of full column rank; hence one

can compute R̃ from Q̃ as R̃ = Q̃⊥; see Paruolo (1997) on various ways to compute a basis of the

orthogonal complement. This observation can be applied, for instance, to the specification (18),

which is in explicit form.

6. Specification of weight matrices

In this section we discuss the econometric specification analysis of weight matrices. Two ap-

proaches are entertained; the first one employs Wald and LM test for nested model comparisons,

using results from the previous section. The second approach is based on tests of equal predictive

ability. Finally, we investigate the effects of possible misspecification of the weight matrix on model

selection via tests of equal predictive ability through a small Monte Carlo.

6.1. Likelihood-based specification tests. In applications, the researcher may entertain the

specification of two or more weight matrices Wi. The specification of proximity matrices (4) allows

to include several Wi matrices, as long as the identification conditions discussed in Section 5 are

satisfied. This allows to nest different specifications of Wi matrices within a single structured prox-

imity matrix. Under identification, the MVM model can be estimated including the weight matrix

W ∗ along with other weight matrices in (4); a Wald test can then be constructed by restricting

the parameters ψ∗ that multiply W ∗ within (4) to zero. This procedure delivers Wald-type spec-

ification tests on W ∗ within a given structured specification. An alternative procedure is to first

estimate a model with one choice of weight matrix, and then use a Lagrange Multiplier (LM) test

to ascertain if an additional weight matrix W ∗ is needed to express the proximity structure of the

model. Under identification, this approach also provides a viable specification analysis procedure.

10See also Silvapulle and Silvapulle (1995) Section 2.1 and reference therein.
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Hence, when the number of Wi matrices is moderate, one can test which Wi matrices to retain

using either Wald or LM tests within a nested hypothesis-testing framework. This contrasts with

the specification of weight matrices in the spatial econometrics literature, where this problem has

been addressed via the definition of J-type tests for non-nested alternatives, see the spatial J test

discussed in Kelejian (2008); see also Burridge and Fingleton (2010) for small-sample alternatives.

6.2. Tests of equal predictive ability. An alternative approach is to compare the predictive

ability of models with different weight matrices. This is the approach also taken the empirical

application of Section 7.

In order to illustrate this approach we designed a small Monte Carlo experiment. We generated

data on six variables using a structured BEKK model, see eq. (3). For simplicity, we refer to each

simulated variable as an asset return. The conditional expectation of the time series were set to

zero. The six variables were specified to belong to two groups of size three, with normalized weight

matrixW equal toW = diag(J3, J3). The intercept C was set to the identity matrix, A and B were

chosen as proximity matrices which ensure that the unconditional covariance is positive definite.

The values of the parameters were chosen as follows:

DGP1 a0 = (0.06, 0.08, 0.10, 0.26, 0.28, 0.30)′, a1 = (0.10, 0.08, 0.06, 0.20, 0.18, 0.16)′,

b0 = (0.74, 0.76, 0.78, 0.44, 0.46, 0.48)′, b1 = (0.12, 0.10, 0.08, 0.22, 0.20, 0.18)′;

DGP2 a0 = (0.06, 0.08, 0.10, 0.06, 0.08, 0.10)′, a1 = (0.10, 0.08, 0.06, 0.10, 0.08, 0.06)′,

b0 = (0.84, 0.86, 0.88, 0.84, 0.86, 0.88)′, b1 = (0.12, 0.10, 0.08, 0.12, 0.10, 0.08)′.

In DGP1 the dynamic parameters of the two groups are quite different, while heterogeneity

within groups is small. In DGP2 the dynamic parameters of the two groups are identical. Also for

DGP2, the degree of heterogeneity within groups is small. We simulated series of 1500 observations

using Gaussian innovations, setting T = 2000 and discarding the initial 500 observations, to avoid

influence from initial values. Using the simulated series, we fitted the following models:

M1: the correctly specified Structured BEKK model, with an heterogeneous specification;

M2: a structured BEKK model with homogeneous parameter matrices, using the correct W =

diag(J3, J3) matrix;

M3: a structured BEKK model with heterogeneous parameter matrices, but with misspecifica-

tion in the groups definition; here asset 4 was erroneously associated with the first group.

The (misspecified) weight matrix used in estimation was W ∗ := diag(J4, J2);

M4: a structured BEKK model with homogeneous parameter matrices that combines the mis-

specifications of M2 and M3.

Note that in model M2 the misspecification comes from the restriction of equal parameters for

assets belonging to the same group. In model M3, it comes from the wrong classification into

groups. Model M4 combines both types of misspecification.

Because the models are not all nested, we chose to evaluate the performance of M1, M2, M3 and

M4 using their forecasts. The models were estimated on the first 1250 simulated data, and model

forecasts were evaluated on the last 250 observations, using the 250 one-step-ahead covariance

forecasts. Models were not re-estimated in the forecast periods.11

11Calculations in this and the following sections were performed in GAUSS 9. Sample GAUSS programmes for

the implementation of a selection of the models in this paper are available at the corresponding author’s web page.
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DGP1 DGP2

Comparison AG L1 L2 L3 AG L1 L2 L3

M1 is better than M2 0.008 0.170 0.131 0.008 0.006 0.025 0.072 0.078

M1 is worse than M2 0.026 0.502 0.746 0.727 0.039 0.864 0.832 0.435

M1 is better than M3 0.735 0.997 0.999 0.206 0.249 0.915 0.933 0.479

M1 is worse than M3 0.000 0.000 0.000 0.007 0.003 0.020 0.018 0.099

M1 is better than M4 0.826 0.998 0.999 0.152 0.322 0.222 0.203 0.299

M1 is worse than M4 0.000 0.000 0.001 0.017 0.415 0.556 0.709 0.174

Table 5. Frequency of model selection in bivariate model comparisons. AG:

Amisano and Giacomini (2007) test. Li: Diebold and Mariano (1995) test with

loss function Li in eq. (23), i = 1, 2, 3.

Covariance forecasts were compared to the true conditional covariance matrix by means of the

loss functions proposed in Laurent, Rombouts, and Violante (2012):

L1 = tr
(
(Σt −Ht)

′ (Σt −Ht)
)
, L2 = tr

(
H−1
t Σt

)
− log |H−1

t Σt| − n, (23)

L3 =
1

6
tr
(
Σ3
t −H3

t

)
− 1

2
tr
(
H2
t (Σt −Ht)

)
, (24)

where Σt denotes the true conditional covariance matrix and Ht is the forecasted conditional co-

variance. The first loss function L1 is the Frobenius norm and represents the mean squared error

loss for matrices. The second loss function L2 is the loss of James and Stein (1961) and penalizes

under-predictions. Finally, the third loss function L3 penalizes (co-)variance over-predictions.

We tested equality of predictive ability applying the Diebold-Mariano test, DM, to the loss

functions in eq. (23). We also compared models by means of the forecast test proposed in Amisano

and Giacomini (2007), AG. The AG test compares forecast performances in terms of a Gaussian

likelihood of competing models using the one-step-ahead covariance forecasts produced by the

different models.

The results are reported in Table 5. For DGP1, the misclassification of asset 4 is well detected

by loss functions L1 and L2, and M1 is preferred to M3 and to M4 with high frequency. A similar

performance is displayed by the AG test, while the Loss Functions L3 indicates equivalence between

M1 and M3 or M4 in over 75% of cases. The comparison of models M1 and M2 shows that, given

the small heterogeneity within group, the group-homogeneous model M2 is preferred to M1 in the

majority of case by all three loss functions, while the AG tests leads to the equivalence between

the two models more than 95% of the times. Overall, DGP1 appears to be a case where model

misspecification is detectable both via the AG and DM tests.

Next consider DGP2, where the dynamic parameters are the same in the two groups. The loss

functions L1 and L2 still preferM1 toM3 more than 90% of the cases. However, in the comparison

betweenM1 toM4 where both forms of misspecifications are included, the correctly specified model

is selected only with frequency between 20% to 30% by all three loss function, and the misspecified

model M4 is signaled as the preferred model by L1 and L2 in over 50% of the replications. The

AG test has a similar behavior. The results for DGP2 show that there are configurations where

misspecification is hard to detect via the AG and DM tests.
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sc sc-M sc-CS dg dg-M dg-CS res full

C11 0.09 0.11 0.10 0.26 0.41 0.37 0.13 0.17

C21 0.03 0.06 0.05 0.11 0.05 0.07 0.05 0.08

C22 0.10 0.12 0.11 0.30 0.17 0.21 0.24 0.26

C31 0.03 0.05 0.04 0.06 0.05 0.06 0.07 0.06

C32 0.03 0.06 0.05 0.06 0.06 0.10 0.13 0.15

C33 0.08 0.10 0.09 0.09 0.09 0.11 0.17 0.16

C41 0.02 0.04 0.03 0.05 0.02 0.01 0.03 0.04

C42 0.03 0.05 0.03 0.05 0.05 0.04 0.09 0.13

C43 0.04 0.06 0.06 0.04 0.05 0.06 0.09 0.10

C44 0.07 0.08 0.06 0.05 0.05 0.04 0.06 0.08

C51 0.04 0.06 0.05 0.08 0.06 0.02 0.10 0.14

C52 0.03 0.06 0.04 0.09 0.06 0.07 0.09 0.11

C53 0.02 0.04 0.03 0.03 0.03 0.04 0.07 0.07

C54 0.01 0.03 0.02 0.02 0.02 0.01 0.02 0.05

C55 0.08 0.10 0.09 0.14 0.13 0.12 0.13 0.15

C61 0.02 0.05 0.02 0.04 0.01 0.04 0.02 0.04

C62 0.02 0.05 0.03 0.05 0.04 0.05 0.05 0.05

C63 0.02 0.04 0.01 0.02 0.02 0.02 0.04 0.04

C64 0.01 0.03 0.01 0.01 0.02 0.02 0.03 0.04

C65 0.02 0.04 0.02 0.03 0.01 0.02 0.02 0.04

C66 0.07 0.09 0.07 0.05 0.05 0.05 0.05 0.05

Table 6. Elements of the symmetric matrix Ĉ; italics denote insignificant param-

eter estimates at the 0.01 level.

This limited Monte Carlo study shows that tests of equal predictive ability can help to select the

appropriate weight matrices. The forecast criteria using loss functions Li appear to favor parameter

parsimony also when these restrictions are not present in the DGP, provided the true parameter

values are not too heterogeneous.

7. An empirical application

This section presents an empirical application to six industrial stocks from the NYSE. The data,

taken from Datastream, include logarithmic daily total returns of the following six Industrials

companies: Honeywell International, Boeing, Caterpillar, General Dynamics, Raytheon, and Wey-

erhauser. We selected daily observations from January 2, 1997 to December 30, 2005 as estimation

sample, and January to December 2006 as out-of-sample period. This gave 2265 observations in

estimation and 251 observations out-of-sample. As a simple conditional mean specification, we

fitted a constant to each series and considered the demeaned time series as ut.

We estimated various BEKK specifications, see (2). The matrix C was always left unrestricted.

For the parameter matrices A and B we considered various specifications, including structured ones.

We considered the weight matrix WM = J6 = 1
5(161

′
6 − I6), which represents a common sector-

effect for all the six assets. We also defined the weight matrix WC where neighbors correspond

to companies active or competing in at least one subsector of the Industrial sector; for example,
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sc sc-M dg dg-M sc sc-M dg dg-M

α
(0)
1 0.200 0.200 0.309 0.458 β

(0)
1 0.974 0.973 0.932 0.853

α
(0)
2 0.177 0.121 β

(0)
2 0.952 0.977

α
(0)
3 0.231 0.234 β

(0)
3 0.966 0.967

α
(0)
4 0.141 0.131 β

(0)
4 0.985 0.987

α
(0)
5 0.328 0.314 β

(0)
5 0.942 0.945

α
(0)
6 0.205 0.198 β

(0)
6 0.975 0.976

α
(1)
1 0.024 -0.269 β

(1)
1 -0.012 0.108

α
(1)
2 0.068 β

(1)
2 -0.019

α
(1)
3 -0.060 β

(1)
3 0.003

α
(1)
4 -0.038 β

(1)
4 -0.001

α
(1)
5 -0.019 β

(1)
5 0.009

α
(1)
6 0.009 β

(1)
6 0.003

Table 7. Parameter estimates of matrices Â and B̂ for selected specifications. Ital-

ics denote insignificant parameter estimates at the 0.01 level.

Honeywell and Boeing are both active in the Defence subsector. We also considered a weight

matrix WS which defines companies within the same supply chain as neighbors (e.g. companies

characterised by vertical or horizontal integration). For example, Boeing and Caterpillar have joint

contracts in the Defence subsector. The resulting matrices WC and WS were given by

WC =



1/3 1/3 1/3

1/3 1/3 1/3

1

1/2 1/2

1/2 1/2

1


, WS =



1

1

1/3 1/3 1/3

1/2 1/2

1


,

where 0 entries are omitted for readability.

Using the weight matrices WM , WC , WS , the following BEKK specifications were estimated:

sc (scalar): A = α
(0)
1 I6, B = β

(0)
1 I6;

sc-M (scalar, structured with weight matrix WM ): A = α
(0)
1 I6+α

(1)
1 WM , B = β

(0)
1 I6+β

(1)
1 WM ;

sc-CS (scalar. structured with weight matrices WC and WS): A = α
(0)
1 I6 + α

(1)
1 WC + α

(2)
1 WS ,

B = β
(0)
1 I6 + β

(1)
1 WC + β

(2)
1 WS ;

dg (diagonal): A = diag(α(0)), B = diag(β(0));

dg-M (diagonal, structured with weight matrix WM ): A = diag(α(0)) + diag(α(1))WM , B =

diag(β(0)) + diag(β(1))WM ;

dg-CS (diagonal, structured with weight matricesWC andWS): A = diag(α(0))+diag(α(1))WC+

diag(α(2))WS , B = diag(β(0)) + diag(β(1))WC + diag(β(2))WS ;

res (restricted): the parameter matrices A and B have off-diagonal zero restrictions correspond-

ing to 0 entries in WS +WC ;

full : A, B unrestricted.

The idea in the res specification is to impose no spillover and feedback effects across companies

which are not economically linked. The parameters of the various specifications are (subsets) of
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Figure 1. Ordered values of |1− λi| where λi are the eigenvalues of Â⊗ Â+B̂⊗B̂,

i = 1, . . . , 36.

the vectors α(j) = (α
(j)
1 : · · · : α(j)

6 )′, β(j) = (β
(j)
1 : · · · : β(j)6 )′ ∈ R6, j = 0, 1, and 2. Tables 6

and 7 report a subset of the estimated parameters, where italics indicate insignificant coefficients

at the 1% level. Standard errors were calculated using the robust sandwich variance estimator, see

Section 5.3.

Table 6 reports the elements in matrix Ĉ; it shows that all off-diagonal elements are significant

for the scalar specifications; some coefficients are insignificant for the diagonal ones. In particular

the dg-M model has many insignificant intercepts for the covariance terms, which could be further

restricted to 0. This suggests that failing to account for spillover and feedback effects may induce

spuriously significant intercept terms in some covariance dynamic equations. The full model and

the res model, on the other hand, have many insignificant coefficient also on the diagonal of C; this

may reflect the fact that these specifications are possibly over-parameterized.

Table 7 contains the coefficients in A, B for some structured specifications; it shows the changes

induced by the introduction of the various weight matrices. Structured specifications estimates

vary across assets, and they are generally significant. Estimated β
(j)
i coefficients are usually lower

and the α
(j)
i coefficients are usually higher for the structured specifications.

The persistence in the conditional covariance dynamics is associated with the eigenvalues λi

of Â ⊗ Â + B̂ ⊗ B̂. In Fig. 1 we report the 36 ordered values of |1− λi| where |·| indicates the

modulus. It is seen that structured specifications are characterized by less dynamic persistence when

compared with the corresponding unstructured restricted specifications. The full model shows the

least persistence, even though the largest eigenvalues are closer to 1. This suggests that the more

restricted models imply persistent dynamics in more dimension, a possibly undesirable feature.

Table 8 reports results on model fit in term of the (pseudo) Gaussian log-likelihood. The table

reports the number of model parameters as well as the number of significant parameters using a

1% level. We observe that in larger models most parameters are not significant, while in more

restricted models most coefficients are significant.
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log-Lik par sig. par. res dg-CS dg-M dg sc-CS sc-M sc

full -15128.3 93 14 -0.870 0.403 0.716 1.244 1.596 2.051 1.796

res -15258.4 71 13 2.915 3.267 4.508 4.626 5.358 4.925

dg-CS -15372.8 55 18 0.896 2.764 3.097 4.137 3.596

dg-M -15396.9 45 20 1.627 2.452 3.722 3.051

dg -15481.9 33 26 1.936 3.940 3.052

sc-CS -15549.1 27 22 7.369 4.092

sc-M -15556.0 25 25 -5.013

sc -15564.1 23 20

Table 8. AG test statistic computed with sandwich variance estimator. Italics

identify cases where the null hypothesis is rejected at the 1% level. A negative

sign denotes preference for the column model whereas a positive sign a preference

for the row model. The first column reports the log-likelihood value, the second

contains the number of parameters in the models, and the third column the number

of statistically significant parameters at 1% level.

res dg-CS dg-M dg sc-CS sc-M sc

full 0.661 3.851 4.149 3.699 3.575 4.071 3.764

res 4.426 4.607 3.844 2.938 3.379 3.090

dg-CS 0.816 0.481 0.823 1.345 1.028

dg-M -0.295 0.504 1.119 0.744

dg 0.926 1.774 1.24

sc-CS 6.964 1.529

sc-M -3.215

Table 9. DM test statistic computed with loss function L1. Italics identify cases

where the null hypothesis of equal performance is rejected at the 1% level. A negative

sign denotes preference for the column model whereas a positive sign a preference

for the row model.

We next compared models via the AG and DM forecast tests, as in Section 6. Because the true

covariance matrix is not available, we replaced it with the outer product of realized returns in the

calculations of the DM tests. This choice allows to compute L1 and L3 but not L2, which requires

Σt to be nonsingular. In the following we report results only for L1; results for L3 were similar.

Tables 8 and 9 report results for the AG and DM tests, where models are listed according to their

number of parameters, from largest to smallest. For both the AG and DM tests, the larger full and

res models are preferred. In models with a larger cross-section, it may not be possible to estimate

them, due to the curse of dimensionality problem; in this case the structured specifications may be

the largest estimable models. This situation corresponds to starting from the row corresponding to

the dg-CS model; in this case, one would select the dg-CS structured specification as the preferred

model.

To further compare the models’ forecasting abilities, we also considered a portfolio allocation

framework, along the lines of indirect model comparison methods, see Patton and Sheppard (2009),

and Caporin and McAleer (2012). We consider two specific portfolios, the equally weighted (EW)
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res dg-CS dg-M dg sc-CS sc-M sc

full 1.477 4.518 4.140 2.605 2.304 3.367 2.561

res 5.557 4.979 2.944 2.221 4.135 2.500

dg-CS -1.679 -2.608 -2.480 -1.439 -2.258

dg-M -2.239 -2.272 -0.425 -2.028

dg -1.337 4.573 -0.328

sc-CS 4.778 1.434

sc-M -3.542

Table 10. AG test results for EW strategies. Italics identify cases where the null

hypothesis of equal performance is rejected at the 1% level. A negative sign denotes

preference for the column model whereas a positive sign a preference for the row

model.

res dg-CS dg-M dg sc-CS sc-M sc

full -0.759 -0.458 -1.287 -2.106 -1.663 -0.508 -1.948

res 0.338 -0.928 -2.789 -1.974 0.502 -2.419

dg-CS -0.936 -3.474 -1.712 0.086 -2.184

dg-M -1.788 -0.781 1.201 -1.296

dg 1.632 3.453 0.935

sc-CS 5.719 -2.687

sc-M -6.272

Table 11. AG test results for GMV strategies. Italics identify cases where the null

hypothesis of equal performance is rejected at the 1% level. A negative sign denotes

preference for the column model whereas a positive sign a preference for the row

model.

portfolio (weights are equal to 1/6 for each asset), and the global minimum variance portfolio

(GMV), with weights equal to Σ−1
t 16(1

′
6Σ

−1
t 16)

−1. When comparing the EW and the GMV port-

folios, differences across models depend only on the dissimilarities across covariance specifications.

For both the GMV and EW cases and for all specifications we computed the portfolio predicted

variance as a measure of portfolio risk, and then we used this quantity to evaluate the AG test.

Results are collected in Tables 10 and 11. The results for EW and GMV strategies appear to

be different. For EW strategies, the full and res model outperform the remaining models. In case

these two larger models are not estimable, the medium size models are worse than the parsimonious

structured sc-CS specification. This suggests that there is a prize for shrinkage in this case. Note

that also here structured specifications are selected as the preferred model. For GMV strategies,

the large models - full and res - are inferior to the more parsimonious specifications. In this case

the selected specification is the sc-M model, again a structured specification.

An alternative approach to compare forecasts is to use a utility function. We assume a power

utility function U = (W 1−ϕ)/(1 − ϕ) with risk aversion parameter ϕ. We fix the initial wealth

at W = 1 and graphically compare utilities over time, setting the wealth equal to the cumulated

returns of the GMV portfolio, using each model prediction for Σt. The portfolios are rotated daily

according to the covariance forecasts of each model, and we assume no transaction costs.
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Figure 2. log(Uj/Ufull), where Uj is the utility associated with the cumulated

wealth produced by GMV portfolio using the predictions of model j. The scale

of the graph is for CRRA parameter equal to 5; different CRRA values simply

imply a re-scaling and do not affect the relative performance of the models.

Figure 2 reports the log of the ratio between the utilities of each model and the utility associated

with the predictions of the full model.12 We note the absence of a stable ordering across models.

This evidence is in line with the Monte Carlo evidence in Clements, Doolan, Hurn, and Becker

(2009), who report that economic loss functions that rely on portfolio returns and on investor

utility have weaker power to distinguish between competing forecasts. Overall, the empirical results

suggest that the proposed structured specifications are a promising modelling option, especially for

situations when large models are not estimable due to the curse of dimensionality problem.

8. Conclusions

In this paper we have shown how structured specification can be defined in a number of MVM

models, using weight matrices to condense information coming from other returns series. Structured

specifications form an interesting modelling option for volatility models, because they provide both

flexible and parsimonious parameterizations, allowing for variance spillover and feedback effects.

Moreover, they are characterized by a number of parameters that grows linearly with the cross-

sectional dimension; at the same time, parameters have a direct economic interpretation that

reflects the chosen notion of economic proximity. An empirical application shows how the relative

performance of the different specification depends on the criterion used in the forecast evaluation

and it highlights the potential of the structured specification, especially for situations when large

models are not estimable, due to the curse of dimensionality problem.

Acknowledgement

Partial financial support from Italian MUR Grant Cofin2006-13-1140 (both authors) and Danish

Social Science Research Council Grant 2114-04-0001 (second author) are gratefully acknowledged.

12The utility function depends on a risk-aversion coefficient, which only impacts the scale of the graph, but not the

ordering of the models. In fact, logU = (1− ϕ) logW − log(1− ϕ), and hence log(Uj/Ufull) = (1− ϕ) log(Wj/Wfull).



23

We thank, without implicating, the following people for useful comments on previous versions

of the paper: the Editor Esfandiar Maasoumi, two anonymous referees, John Aldrich, Chris-

tian Brownlees, Niels Haldrup, Grant Hillier, Joel Hasbrouck, Søren Johansen, Federico Martel-

losio, Michael McAleer, Rasmus Søndergaard Pedersen, Christophe Planas, Anders Rahbek, Timo
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A. Appendix: proximity matrices

This Appendix provides definitions and properties of proximity matrices, as well as the proof of

Theorem 1 in Section 4. In the following Definition 7 of proximity matrices Sn weight matrices can

be taken to be row-normalized without loss of generality; we hence assume that weight matrices

are row-normalized. We employ the following notation: R, R+ , R0+ are the set of all, positive and

nonnegative real numbers; J := {0, 1} is the binary set containing only 0 and 1; An×m indicates the

set of all matrices of dimensions n×m whose entries belong to the set A; An := An×1.

Definition 6 (Classes of weight and stochastic matrices). Define the following classes of n × n

matrices:

• the class of extended stochastic matrices Un := {W ∈ Rn×n0+ :W1n ∈ Jn,W ̸= 0};
• the class of extended weight matrices Vn := {W ∈ Un : dg(W ) = 0};
• the class of stochastic matrices Pn := {W ∈ Un :W1n = 1n};
• the class of weight matrices Wn := Pn ∩ Vn.

Observe that Definition 6 implies Vn,Pn ⊂ Un and Wn ⊂ Pn,Vn. We next define the class

of proximity matrices Sn as (a generalization of) the class containing linear combinations of the

identity and weight matrices W := {Wi}ki=1 with Wi ∈ Wn or Vn.

Definition 7 (Proximity matrices). Let W:={Wi}ki=0 with W0 := In and Wi ∈ Wn or Vn be a given

set of (possibly extended) weight matrices for i ≥ 1. We define the class of proximity matrices S(W)

defined as the set {A ∈ Rn×n : A =
∑k

i=0AiWi, Ai = diag(ai), ai ∈ Rn, ∀i}.We indicate the subclass

of homogeneous proximity matrices SHn (W) as the elements in Sn(W) with ai = αi1n for all i.
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In the following we omit the argument W in Sn unless needed for clarity. Note that by con-

struction SH ⊂ S and that if A ∈ An then I − A ∈ An, An = SHn ,S. We next consider convex

combinations and product of weight matrices. The latter is motivated by the fact that in some

special cases, given a certain weight matrix W that represents first-order neighbors, W j represents

j-th order neighbors, see e.g. Paruolo (1998). The former is of interest because one may wish to

consider an ‘average’ weight matrix c1W1 + c2W2 of two weight matrices W1 and W2, with scalar

coefficients cj . It turns out, see the following Theorem 8, thatW j are not in general weight matrices

while c1W1 + c2W2 is.

Formally, we say that a class A is closed with respect to convex combinations if
∑k

i=1 ciWi ∈ A
for 0 ≤ ci ≤ 1,

∑k
i=1 ci = 1 when Wi ∈ A for all i = 1, . . . , k. Similarly we say that a class A is

closed with respect to matrix multiplication if
∏k
i=1Wi ∈ A when Wi ∈ A for all i = 1, . . . , k.

Theorem 8 (Convex combinations and matrix products). Let An indicate one of the classes Un,
Vn, Pn, Wn, and let Wi ∈ An, i = 1, . . . , k. Then the following properties hold:

(i) An is closed with respect to convex combinations for An = Wn, Pn but not for An = Un, Vn.
(ii) An is closed with respect of matrix multiplication for An = Pn but not for An = Un, Vn, Wn.

Proof of Theorem 8. Both statements are well known for An = Pn, see e.g. Seneta (1981),

Chapter 4; hence we only consider the remaining classes.

Proof of (i). Let An = Wn; one has W :=
∑k

i=1 ciWi ∈ Rn×n0+ . Post-multiplying by 1n one has∑k
i=1 ciWi1n =

∑k
i=1 ci1n = (

∑k
i=1 ci)1n = 1n. Similarly one finds dg(W ) =

∑k
i=1 ci dg(Wi) =∑k

i=1 ci0 = 0, which completes the proof for An = Wn.

A counterexample for An = Vn is given by W1 = (0 : e1), W2 = (e2 : 0), c1 = c2 = 1
2 , for which

W :=
∑2

i=1 ciWi =
1
2(e2 : e1); despite W1, W2 ∈ V2, W12 = 1

212 /∈ J2, and hence W /∈ V2. This

also implies that (i) does not hold for An = Un, given that Vn ⊂ Un.
Proof of (ii). A counterexample for An = Wn is obtained choosing W1 =W2 = J3 =

1
2(131

′
3 − I3),

for which W := W1W2 = 1
4(131

′
3 + I3), so that dg(W ) = 1

213 ̸= 0 and hence W /∈ Wn despite

W1,W2 ∈ Wn. This also implies that (ii) does not hold for An = Vn because Wn ⊂ Vn.
A counterexample for An = Un is given by W1 = W2 = 1

2(e2 : e1 : e1 + e2) ∈ Un; one finds

W :=W1W2 =
1
4(e1 : e2 : e1 + e2) so that W13 =

1
2(e1 + e2) /∈ J3 and hence W /∈ U3. �

We next analyze properties of Kronecker products of weight matrices in the following Theorem 9.

A motivation for this interest is given by the observation that when xjt, j = 1, 2, are independent

Markov Chains (MC) with n discrete states and transition probabilities given by the stochastic

matrices Pj ∈ Pn, then (x1t, x2t) is still a MC with n2 discrete states and transition probabilities

given by the entries in P1 ⊗ P2, when the ordered pairs (l,m) are placed in lexicographic order.

This observation shows that P1⊗P2 ∈ Pn2 and the next theorem states, inter alia, that this is true

also substituting Pn with Wn.

Theorem 9 (Kronecker products of weight matrices). Let An, Bn indicate one of the classes Un,
Vn, Pn, Wn; moreover let H, K denote generic n × n matrices; then the following properties of

Kronecker products hold.

(i) Let W1 ∈ An, W2 ∈ Bn; then W1 ⊗W2 ∈ Bn2 and W2 ⊗W1 ∈ Bn2 for (Am,Bm) = (Um,Um),
(Um,Vm), (Vm,Vm), (Pm,Pm), (Pm,Wn), (Wm,Wm).

(ii) Conversely, let H⊗K ∈ Bn2 or K⊗H ∈ Bn2; this implies H = cW1 and K = 1
cW2, c ∈ R\{0},

where W1 ∈ An,W2 ∈ Bn for (An,Bn) = (Un,Un), (Un,Vn), (Pn,Pn), (Pn,Wn).
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Proof of Theorem 9(i). Consider W := W1 ⊗W2, and observe that W ∈ Rn
2×n2

0+ for any pair

(An,Bn) in the statement. Let ai :=Wi1n, i = 1, 2; one finds

W1n2 = (W1 ⊗W2)1n2 = vec (W21n1
′
nW

′
1) = vec (a2a

′
1) =: b. (25)

If (An,Bn) = (Pn,Pn), (Pn,Wn) then ai = 1n i = 1, 2 and hence b = vec 1n1
′
n = 1n2 . This proves

(i) for (An,Bn) = (Pn,Pn). When (An,Bn) = (Pn,Wn) we also need to check that dgW = 0; this

follows because

dg(W1 ⊗W2) = dgW1 ⊗ dgW2 (26)

and dgW2 = 0 because W2 ∈ Wn. The same argument holds when W1 ∈ Wn and W2 ∈ Pn, simply

using dgW1 = 0. This proves (i) for (An,Bn) = (Pn,Wn) and also for (An,Bn) = (Wn,Wn).

Next consider (25) when (An,Bn) = (Un,Un), (Un,Vn), and hence ai ∈ Jn, i = 1, 2. This implies

a2a
′
1 ∈ Jn×n and b ∈ Jn2

, which proves (i) for (An,Bn) = (Un,Un). When (An,Bn) = (Un,Vn) we
also need to check that dgW = 0; this follows by (26) noting that dgW2 = 0 because W2 ∈ Vn.
The same argument holds when W1 ∈ Vn and W2 ∈ Un, simply using dgW1 = 0. This proves (i)

for (An,Bn) = (Un,Vn), (Vn,Vn).
Proof of (ii). Consider

(H ⊗K)1n2 = vec (K1n1
′
nH) =: vecA =: vec (a1a

′
2) =: b, (27)

where a1 := K1n, a2 := H1n. We note that A := a1a
′
2 has rank 1 with rank decomposition A = b1b

′
2

which satisfies b1 = ca1, b2 = c−1a2 for a nonzero real scalar c.

If H ⊗K ∈ Bn2 , for Bn = Un,Vn then b ∈ Jn2
by definition. This implies that b1 and b2 can be

chosen in Jn, so that one has b1 := c−1a1, b2 := ca2 ∈ Jn. This shows that c−1K1n, cH1n ∈ Jn, and
proves (ii) for (An,Bn) = (Un,Un). We also observe that dg(H ⊗K) = 0 implies either dgH = 0

or dgK = 0 or both by (26); this proves (ii) for (An,Bn) = (Un,Vn).
If H⊗K ∈ Bn2 with Bn2 = Pn2 ,Wn2 , then b = 1n2 and a1 and a2 can be chosen equal to c−11n,

c1n. This shows that c
−1K1n, cH1n = 1n. This proves (ii) for (An,Bn) = (Pn,Pn).

We also observe that dg(H⊗K) = 0 implies either dgH = 0 or dgK = 0 or both thanks to (26).

This proves (ii) for (An,Bn) = (Pn,Wn). Finally note that the same arguments used to prove (ii)

can be applied interchanging the order of H and K in the Kronecker product. �
The next proposition states similar properties for S,SH , which are the key in proving that a

structured BEKK is a special case of a structured VEC specification.

Theorem 10 (Kronecker products of proximity matrices). Let A,B ∈ An (W), where An indicates

one of the classes S, SH and W:={Wi}ki=0 with W0 = In and Wi ∈ Wn or Vn for i ≥ 1; then

A ⊗ B ∈ An2 (W∗) with W∗ := {W ∗
h}mh=0, W

∗
h := Wi ⊗Wj, h := (k + 1)i + j, m := (k + 1)2 − 1,

where W ∗
0 = In2 and W ∗

h ∈ Wn2 or Vn2 for h ≥ 1.

Proof of Theorem 10. Let A =
∑k

i=0AiWi and B =
∑k

i=0BiWi be the representations of A and

B in terms of the set of weight matrices W := {Wi}ki=0. One has

A⊗B =

k∑
i,j=0

AiWi ⊗BjWj =

k∑
i,j=0

(Ai ⊗Bj) (Wi ⊗Wj) =

m∑
h=0

ChW
∗
h , (28)

where Ch := Ai⊗Bj andW ∗
h :=Wi⊗Wj for h = (k+1)i+j. By Theorem 9(i), one hasW ∗

h ∈ Wn2

or Vn2 unless h = 0, for which W ∗
0 = W0 ⊗W0 = In ⊗ In = In2 . Hence W∗ := {W ∗

h}mh=0 is a set

of weight matrices in Wn2 or Vn2 for h ≥ 1. This proves the statement when A,B ∈ SH(W), i.e.
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if Ai = αiIn and Bi = βiIn are scalar matrices. In order to prove the statement for A,B ∈ S(W)

let A =
∑k

i=0AiWi and B =
∑k

i=0BiWi with Ai =: diag(ai), Bi =: diag(bi), and denote ch :=

ai ⊗ bj ∈ Rn2
. One has Ch := Ai ⊗Bj = diag(ai)⊗ diag(bj) = diag(ai ⊗ bj) =: diag(ch), and hence

A⊗B in (28) belongs to the class S(W∗), see Definition 7. �
We end this subsection with the proof of Theorem 1, which specializes the result of Theorem 10

to the case of the matrices in Subsection 4.3.

Proof of Theorem 1 . Element w∗
hv in (11) is equal to 1(Fi = Fl, i ̸= l)1(Fj = Fm, j ̸= m) and

n2∑
v=1

w∗
hv =

n∑
l=1

n∑
m=1

1(Fi = Fl, i ̸= l)1(Fj = Fm, j ̸= m)

=
n∑
l=1

1(Fi = Fl, i ̸= l)
n∑

m=1

1(Fj = Fm, j ̸= m) = (ni − 1)(nj − 1).

Hence

whv =
w∗
hv∑n2

v=1w
∗
hv

=
1

(ni − 1)
1(Fi = Fl, i ̸= l)

1

(nj − 1)
1(Fj = Fm, j ̸= m).

On the other hand (Wn ⊗Wn)hv = w♢
ilw

♢
jm where w♢

ij := (W )ij ; hence, using (8), one sees that

whv = w♢
ilw

♢
jm. This proves that W

(3)
n2 = Wn ⊗Wn. The proofs for W

(j)
n2 , j = 1, 2 follow along

similar lines. Finally the proof of the statement concerning the general Kronecker product H ⊗K

is given in Theorem 10 above. �

B. Appendix: identification

This Appendix reports proofs of Theorems 3 and 5 of Section 5. Proof of Theorem 3. We

indicate by Πj , ψj and φj different values of the parameters Π, ψ and φ, j = 1, 2. Because Π is

identified by assumption, one has Π1 − Π2 ̸= 0 implies ℓ1 ̸= ℓ2 with positive probability, where ℓj

is the log-likelihood function evaluated at Πj .

We next show that Π1 −Π2 ̸= 0 if and only if ψ1 − ψ2 ̸= 0 under the condition (14) that M has

full column rank. In fact vecΠ′
j = Mψj + c, so that vec(Π1 − Π2)

′ = M(ψ1 − ψ2). Hence when

M has full column rank Π1 − Π2 ̸= 0 if and only if ψ1 − ψ2 ̸= 0, which shows that ψ is identified.

Conversely, if M does not have full column rank, one has that 0 =M(ψ1 −ψ2) for all a := ψ1 −ψ2

that lie in the right null space of M . Hence ψ1 is observationally equivalent to all vectors of the

form ψ1 + a with a in this null space, and hence ψ is not identified.

The proof for φ is identical to the one of ψ, replacing M with MH. �
Proof of Theorem 5. Observe that C = S−1V S−1′ can be written as

SCS′ = DD′, (29)

where DD′ = V , D = diag(σ), vi = σ2i > 0. This shows that the specification C = S−1V S−1′

is a special case of the so-called A-B model in structural VAR models, see Lucchetti (2006) and

references therein. Observe also that, by taking the vec of S in (18) and of D, one has

vec(S) = Kn vec(S
′) = KnMψ + vec I, vecD = Gσ. (30)

One then applies the results in section 4.1 in Lucchetti (2006); the rank condition (21) here is

simply a restatement of his eq. (26) on page 248. The order conditions are obtained requiring that

the number of restricted parameters is not greater than the number of unrestricted parameters. �


