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Abstract. In a discrete-time setting, we study arbitrage concepts in the presence of convex

trading constraints. We show that solvability of portfolio optimization problems is equivalent

to absence of arbitrage of the first kind, a condition weaker than classical absence of arbitrage

opportunities. We center our analysis on this characterization of market viability and derive

versions of the fundamental theorems of asset pricing based on portfolio optimization arguments.

By considering specifically a discrete-time setup, we simplify existing results and proofs that rely

on semimartingale theory, thus allowing for a clear understanding of the foundational economic

concepts involved. We exemplify these concepts, as well as some unexpected situations, in the

context of one-period factor models with arbitrage opportunities under borrowing constraints.

1. Introduction

The notions of arbitrage, market viability and state-price deflators are deeply connected

and play a foundational role in financial economics and mathematical finance. Starting from

the seminal works [Ros77, Ros78], the connections between these three concepts represent the

essence of the fundamental theorem of asset pricing.1 In frictionless discrete-time financial

markets, if no trading restrictions are imposed, the appropriate no-arbitrage concept takes the

classical form of absence of arbitrage opportunities (no classical arbitrage). By the fundamental

theorem of asset pricing of [HK79, HP81] (extended to general probability spaces in [DMW90]),

this is equivalent to the existence of an equivalent martingale measure, whose density acts as a

state-price deflator. Moreover, always in the absence of trading restrictions, the results of [RS06]

imply that no classical arbitrage is equivalent to market viability, intended as the solvability of

portfolio optimization problems. No classical arbitrage thus represents the minimal economically

meaningful no-arbitrage requirement for a frictionless discrete-time financial market.

In the presence of trading restrictions, these results continue to hold true as long as the set

of constrained strategies is a cone, provided that equivalent martingale measures are replaced

by equivalent supermartingale measures (see [FS16, Theorem 9.9] and Theorem 2.12 below).

However, many practically relevant trading restrictions, such as borrowing constraints or the

possibility of limited short sales, correspond to convex non-conic constraints. In this case, as it

Department of Mathematics “Tullio Levi - Civita”, University of Padova, Italy.
E-mail addresses: fontana@math.unipd.it; runggal@math.unipd.it.
Date: September 19, 2020.
Key words and phrases. Trading constraints; market viability; arbitrage of the first kind; numéraire portfolio.
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will be shown below, market viability is no longer equivalent to no classical arbitrage, but rather

to the weaker condition of no arbitrage of the first kind (NA1). Under convex trading restrictions,

NA1 represents therefore the minimal economically meaningful concept of no-arbitrage and is

equivalent to the existence of a numéraire portfolio or, more generally, a supermartingale deflator.

The NA1 condition, introduced under this terminology in [Kar10], corresponds to the ab-

sence of positive payoffs that can be super-replicated with an arbitrarily small initial capital

and is equivalent to the no unbounded profit with bounded risk condition studied in the seminal

work [KK07] (see also [Fon15] for an analysis of no-arbitrage conditions equivalent to NA1).

In continuous-time, a complete theory based on NA1 has been developed in a general semi-

martingale setting starting with [KK07], also allowing for convex (non-conic) constraints. The

connection between NA1 and market viability has been characterized in [CDM15] in an uncon-

strained semimartingale setting (see also [CCFM17] for further results in this direction).

Scarce attention has, however, been specifically paid to NA1 in discrete-time models, despite

their widespread use in economic theory. This is also due to the fact that, for discrete-time

markets with conic constraints, there is no distinction between NA1 and no classical arbitrage

(see Remark 2.3 below). To the best of our knowledge, the only works that specifically address

discrete-time models by relying on no-arbitrage requirements weaker than no classical arbitrage

are [ES01] and [KS09]. In a one-period model on a finite probability space, [ES01] show that

limited forms of arbitrage may coexist with market equilibrium under convex constraints (see

Remark 2.7 below for a more detailed discussion). Closer to our setting, [KS09] derive the

central results of [KK07] on the numéraire portfolio in a one-period setting.

The present paper intends to fill this gap in the literature, in the framework of general

discrete-time models with convex (not necessarily conic) constraints. Compared to [ES01, KS09],

we develop a complete theory of asset pricing based on NA1, also in the case of multi-period

models with random convex constraints. We prove that market viability is equivalent to NA1,

thereby showing that no classical arbitrage may pose unnecessary restrictions in the case of

non-conic constraints. Building our analysis on this central result, we derive versions of the

fundamental theorem of asset pricing, study the valuation of contingent claims and discuss non-

trivial examples of our theory in the context of general factor models. We make a systematic

effort to provide direct and self-contained proofs based on portfolio optimization arguments.

The simplicity of the discrete-time structure allows for a clear understanding of the economic

concepts involved, avoiding the technicalities of the continuous-time semimartingale setup.

The paper is divided into three sections, whose contents and contributions can be outlined as

follows. In Section 2, we consider a general one-period setting. Extending the analysis of [KS09],

we prove the equivalence between NA1 and the solvability of portfolio optimization problems

(market viability), thus establishing the minimality of NA1 from an economic standpoint. This

enables us to obtain a direct proof of the characterization of NA1 in terms of the existence

of the numéraire portfolio or, more generally, a deflator. We show that NA1 leads to a dual

representation of super-hedging values and a characterization of attainable claims, and permits

to rely on several well-known hedging approaches in constrained incomplete markets, even in

the presence of arbitrage opportunities. Besides its pedagogical value, the one-period setting

introduces several techniques that will be important for the analysis of the multi-period case.
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Section 3 illustrates the theory in the context of factor models with borrowing constraints.

We introduce a general factor model, where a single factor is responsible of potential arbitrage

opportunities. In this setting, the NA1 condition and the set of arbitrage opportunities admit

explicit descriptions in terms of the factor loadings. When NA1 holds but no classical arbitrage

does not, we show the existence of a maximal arbitrage strategy. These results can be easily

visualized in a two-dimensional setting, which enables us to provide examples of situations

where, despite the existence of arbitrage opportunities, it is not necessarily optimal to invest in

them. The analysis of this section clarifies the interplay between the support of the asset returns

distribution, their dependence structure and the borrowing constraints.

Finally, Section 4 generalizes the central results of Section 2 to a multi-period setting with

random convex constraints. We derive several new characterizations of NA1, showing that it

holds globally if and only if it holds in each single trading period, and prove its equivalence to

market viability. The most general result on the solvability of portfolio optimization problems in

discrete-time was obtained in [RS06], relying on no classical arbitrage. Our Theorem 4.5 extends

this result by introducing trading restrictions and weakening the no-arbitrage requirement to

the minimal condition of NA1 (in turn, our proofs of Theorems 2.5 and 4.5 are inspired from

[RS06]). By generalizing the one-period analysis, we then give an easy proof of the equivalence

between NA1, the existence of the numéraire portfolio and the existence of a supermartingale

deflator, for general discrete-time models with random convex constraints.

We close this introduction by briefly reviewing some related literature, limiting ourselves to

selected contributions that are specifically connected with the present discussion. Relying on

the concept of no classical arbitrage, the fundamental theorem of asset pricing with constraints

on the amounts invested in the risky assets is proved in [PT99] in the case of conic constraints

(see also [KP00, Pha00] for valuation and hedging problems in that setting) and in [Bra97] in

the case of convex constraints. The specific case of short-sale constraints is treated in the earlier

work [JK95]. General forms of conic constraints have been considered in [Nap03], extending

the analysis of [PT99]. In the case of convex constraints on the fractions of wealth invested, as

considered in the present work, versions of the fundamental theorem of asset pricing based on the

usual notion of no classical arbitrage are given in [CPT01, EST04, Rok05]. In comparison to the

latter contributions, we choose to work with the weaker concept of NA1, due to its equivalence

to market viability. In an unconstrained setting, the connection between no classical arbitrage

and market viability is studied in [RS05, RS06], generalized in [Nut16] under model uncertainty.

In the presence of model uncertainty and convex portfolio constraints, [BZ17] prove a version of

the fundamental theorem of asset pricing based on a robust generalization of the notion of no

classical arbitrage. Finally, we mention the recent work [BCL19], where super-hedging has been

studied under a weak no-arbitrage condition, called absence of immediate profits. However, the

latter condition does not suffice to ensure market viability.

2. The single-period setting

We consider a general financial market in a one-period economy, where d risky assets are

traded, together with a riskless asset with constant price equal to one. We assume that asset

prices are discounted with respect to a baseline security and are represented by the vector
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St = (S1
t , . . . , S

d
t )> ∈ Rd+, for t = 0, 1, expressed in terms of returns as

Si1 = Si0(1 +Ri), for all i = 1, . . . , d,

whereR = (R1, . . . , Rd)> is a d-dimensional random vector on a given probability space (Ω,F , P )

such that Ri ≥ −1 a.s., for all i = 1, . . . , d. We denote by S the support of the distribution of R,

namely the smallest closed set A ⊂ Rd such that P (R ∈ A) = 1 (see [FS16, Proposition 1.45]).

We also denote by L the smallest linear subspace of Rd containing S and by L⊥ its orthogonal

complement in Rd. The orthogonal projection of a vector x ∈ Rd on L is denoted by pL(x).

2.1. Trading restrictions. Trading strategies are denoted by vectors π ∈ Rd. We write V π
t (v)

for the wealth at time t generated by strategy π starting from initial capital v > 0, with

V π
0 (v) = v and V π

1 (v) = v(1 + 〈π,R〉),

where 〈·, ·〉 denotes the scalar product in Rd. With this notation, a trading strategy π represents

fractions of wealth held in the d risky assets, with the remaining fraction 1 − 〈π,1〉 being held

in the riskless asset. For i = 1, . . . , d, a negative value of πi corresponds to a short position

in the i-th risky asset, whenever short sales are allowed. Similarly, 〈π,1〉 < 1 corresponds to

a positive investment in the riskless asset, while 〈π,1〉 > 1 corresponds to borrowing from the

riskless asset.

Note that V π
t (v) = vV π

t (1), for all v > 0 and t = 0, 1. In the following, we shall use the

notation V π
t := V π

t (1). A trading strategy π is said to be admissible if V π
1 ≥ 0 a.s. Denoting by

Θadm the set of all admissible trading strategies, it holds that (see, e.g., [KS99, Lemma 4.3])

Θadm = {π ∈ Rd : 〈π, z〉 ≥ −1 for all z ∈ S}.

In the terminology of [KK07, KS09], the set Θadm corresponds to the natural constraints ensuring

non-negative wealth. Observe that, with the present parametrization, the notion of admissibility

does not depend on the initial capital.

Besides the natural constraints, we assume that market participants face additional trading

restrictions, represented by a convex closed set Θc ⊆ Rd. Realistic examples of trading restric-

tions include the following situations (see also [CPT01, Section 4] for additional examples):

(i) prohibition of short-selling: Θc = Rd+;

(ii) prohibition of short-selling and borrowing: Θc = ∆d, where ∆d := {π ∈ Rd+ : 〈π,1〉 ≤ 1};
(iii) limits to borrowing: Θc = {π ∈ Rd : 〈π,1〉 ≤ c}, for some c ≥ 1;

(iv) limited positions in the risky assets: Θc =
∏d
i=1[−αi, βi], for some αi, βi > 0, i = 1, . . . , d.

Market participants are restricted to choose strategies belonging to the set Θ := Θadm ∩Θc. We

refer to such strategies as allowed strategies. Observe that, as illustrated by examples (ii) and

(iii) above, trading restrictions on the riskless asset can be enforced by specifying through the

set Θc suitable restrictions on the total fraction of wealth held in the d risky assets.

In general, the financial market may contain redundant assets, meaning that different combi-

nations of assets may generate identical portfolio returns. This happens whenever L⊥ is strictly

bigger than {0}. Indeed, ρ ∈ L⊥ if and only if 〈π,R〉 = 〈π + ρ,R〉 a.s. for every π ∈ Θ. In

other words, investing according to a strategy ρ ∈ L⊥ does not produce any loss or profit and,

therefore, does not alter the outcome of any other allowed strategy π. For this reason, we shall
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assume that investors are always allowed to choose trading strategies in the set L⊥, meaning

that L⊥ ⊂ Θc. In turn, this implies that L⊥ ⊂ Θ.

To the convex closed set Θ, we associate its recession cone Θ̂, defined as the set of all vectors

y ∈ Rd such that π + λy ∈ Θ for every λ ≥ 0 and π ∈ Θ (see [Roc70, Chapter 8]). The set

Θ̂ has a clear financial interpretation: it represents the set of all allowed strategies that can be

arbitrarily scaled and added to any other strategy π ∈ Θ without violating admissibility and

trading restrictions. The cone Θ̂ is closed and, by [Roc70, Corollary 8.3.2], it holds that

Θ̂ =
{
π ∈ Rd : a−1π ∈ Θ for all a > 0

}
=
⋂
a>0

aΘ.

As a consequence of the fact that L⊥ is a linear subspace of Θ, it holds that L⊥ ⊆ Θ̂. In turn,

the latter property can be easily seen to imply that pL(Θ) ⊆ Θ, i.e., pL(π) ∈ Θ for all π ∈ Θ.

2.2. Arbitrage concepts. We proceed to recall two important notions of arbitrage. First, we

define the set2

Iarb :=
{
π ∈ Rd : 〈π, z〉 ≥ 0 for all z ∈ S

}
\ L⊥.

Under trading restrictions, the set of arbitrage opportunities is given by Iarb ∩ Θ and consists

of all allowed strategies π that generate a non-negative and non-null return (see also [KS09,

Definition 3.5]). We say that no classical arbitrage holds if Iarb ∩Θ = ∅.
We now recall a second and stronger notion of arbitrage (see [Kar10, Definition 1]). To this

effect, we define as follows the super-hedging value v(ξ) of a non-negative random variable ξ:

(2.1) v(ξ) := inf
{
v > 0 : ∃ π ∈ Θ such that v(1 + 〈π,R〉) ≥ ξ a.s.

}
.

In the next definition, we denote by L0
+ the family of non-negative random variables on (Ω,F).

Definition 2.1. A random variable ξ ∈ L0
+ with P (ξ > 0) > 0 is an arbitrage of the first kind

if v(ξ) = 0. We say that no arbitrage of the first kind (NA1) holds if v(ξ) = 0 implies ξ = 0 a.s.

An arbitrage of the first kind consists of a non-negative non-null payoff that can be super-

replicated starting from an arbitrarily small initial capital. Observe that NA1 is weaker than no

classical arbitrage, as will be explicitly illustrated by the examples considered in Section 3. The

next proposition provides three equivalent formulations of the NA1 condition.

Proposition 2.2. The following are equivalent:

(i) the NA1 condition holds;

(ii) Iarb ∩ Θ̂ = ∅;
(iii) Θ̂ = L⊥;

(iv) the set Θ ∩ L is bounded (and, hence, compact).

Proof. (i)⇒ (ii): by way of contradiction, suppose that NA1 holds and there exists π ∈ Iarb∩Θ̂.

Then ξ := 〈π,R〉 ∈ L0
+ and P (ξ > 0) > 0. For every v > 0, it holds that π/v ∈ Θ and

2The definition of the set Iarb is coherent with the classical definition of arbitrage (see [FS16, Definition 1.2]).
Indeed, Iarb 6= ∅ if and only if there exists a portfolio (ϑ0, ϑ) ∈ R×Rd such that ϑ0 + 〈ϑ, S0〉 = 0, ϑ0 + 〈ϑ, S1〉 ≥ 0
a.s. and P (ϑ0 + 〈ϑ, S1〉 > 0) > 0, with ϑ0 and ϑ denoting respectively the number of shares of the riskless asset
and of the d risky assets. Assuming without loss of generality that Si0 > 0, for all i = 1, . . . , d, this equivalence
follows in a straightforward way by setting ϑi = πi/S

i
0, for i = 1, . . . , d, and ϑ0 = −〈π,1〉. This shows that

absence of arbitrage can be equivalently understood as a property of the returns R or of the price couple (S0, S1).
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v(1 + 〈π/v,R〉) > ξ a.s. This implies that v(ξ) = 0, yielding a contradiction to NA1.

(ii) ⇒ (iii): we already know that L⊥ ⊆ Θ̂. Conversely, since Θ̂ ⊆
⋂
a>0 aΘadm, every element

π ∈ Θ̂ satisfies 〈π,R〉 ≥ 0 a.s. Condition (ii) then implies 〈π,R〉 = 0 a.s., so that π ∈ L⊥.

(iii) ⇒ (iv): the set Θ ∩ L is non-empty, closed and convex. Hence, by [Roc70, Theorem 8.4],

Θ ∩ L is bounded if and only if its recession cone Θ̂ ∩ L consists of the zero vector alone. Since

Θ̂ ∩ L = Θ̂ ∩ L, condition (iii) implies that Θ̂ ∩ L = {0}, thus establishing property (iv).

(iv) ⇒ (i): by way of contradiction, let ξ ∈ L0
+ with P (ξ > 0) > 0 and suppose that, for all

n ∈ N, there exists πn ∈ Θ such that n−1(1 + 〈πn, R〉) ≥ ξ a.s. In this case, it holds that

1 + 〈pL(πn), R〉 ≥ nξ a.s., for all n ∈ N. Since P (ξ > 0) > 0 and pL(πn) ∈ Θ ∩ L, for every

n ∈ N, this contradicts the boundedness of the set Θ ∩ L. �

The properties stated in Proposition 2.2 admit natural and direct interpretations, which can

be formulated as follows:

(ii) there do not exist arbitrage opportunities that can be arbitrarily scaled;

(iii) all allowed strategies that can be arbitrarily scaled reduce to trivial strategies;

(iv) all allowed strategies not containing degeneracies are bounded.

As shown in Sections 2.3 and 2.4 below, the compactness property (iv) is fundamental, since

it allows solving optimal portfolio and hedging problems under NA1, even when no classical

arbitrage fails to hold. The equivalence (i)⇔ (iv) is therefore the most important novel insight

provided by Proposition 2.2. The condition Iarb ∩ Θ̂ = ∅ appears in [KK07, KS09] under the

name no unbounded increasing profit (NUIP), where the unboundedness refers to the fact that

the arbitrage profit generated by an element of Iarb∩ Θ̂ can be scaled to arbitrarily large values.

Remark 2.3. Under conic trading restrictions, no classical arbitrage holds if and only if there

are no arbitrages of the first kind. This simply follows from the observation that, if Θc is a

cone, then Iarb ∩ Θ̂ = Iarb ∩Θ. This implies that the two arbitrage concepts differ only in the

presence of additional restrictions beyond conic (and, in particular, natural) constraints.

Remark 2.4 (On relative arbitrage). The arbitrage concepts introduced so far have been im-

plicitly defined with respect to the riskless asset with constant price equal to one. More generally,

in the spirit of [FK09, Definition 6.1], a strategy π ∈ Θ is said to be an arbitrage opportunity rel-

ative to θ ∈ Θ if P (V π
1 ≥ V θ

1 ) = 1 and P (V π
1 > V θ

1 ) > 0 or, equivalently, if π−θ ∈ Iarb∩ (Θ−θ).
If θ ∈ Θ̂c, then Iarb∩ (Θ−θ) = ∅ implies no classical arbitrage (i.e., Iarb∩Θ = ∅). Conversely, if

−θ ∈ Θ̂c, then Iarb ∩Θ = ∅ implies Iarb ∩ (Θ− θ) = ∅. It follows that, for every θ ∈ Θ̂c ∩ (−Θ̂c),

no classical arbitrage coincides with absence of arbitrage opportunities relative to θ.3 However,

there is no general implication between the two conditions Iarb ∩Θ = ∅ and Iarb ∩ (Θ− θ) = ∅.
Observe that, unlike arbitrage opportunities, the notion of arbitrage of the first kind is universal,

in the sense that it does not depend on a reference strategy θ (see Definition 2.1). The relation

between NA1 and relative arbitrage is further discussed in Remark 2.11.

2.3. Market viability and fundamental theorems. The economic relevance of the NA1

condition is explained by its equivalence with the solvability of optimal portfolio problems, as

shown in the next theorem. We denote by U the set of all random utility functions, consisting

3The condition θ ∈ Θ̂c ∩ (−Θ̂c) amounts to saying that arbitrary long and short positions in the portfolio θ are
not precluded by the trading restrictions represented by Θc. This condition is conceptually equivalent to the
requirement appearing in the definition of numéraire adopted in [KST16] (see Definition 10 therein).
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of all functions U : Ω× R+ → R ∪ {−∞} such that U(·, x) is F-measurable and bounded from

below, for every x > 0, and U(ω, ·) is continuous, strictly increasing and concave, for a.e. ω ∈ Ω.4

Besides allowing for the possibility of random endowments or state-dependent preferences, the

extension to random utility functions will be needed in the proof of Theorem 2.9 as well as for

the solution of certain hedging and valuation problems (see the last part of Section 2.4).

Theorem 2.5. The following are equivalent:

(i) the NA1 condition holds;

(ii) for every U ∈ U such that supπ∈Θ E[U+(V π
1 )] < +∞, there exists an allowed strategy

π∗ ∈ Θ ∩ L such that

(2.2) E
[
U(V π∗

1 )
]

= sup
π∈Θ

E
[
U(V π

1 )
]
.

Proof. (i) ⇒ (ii): note first that (2.2) can be equivalently stated by maximizing over Θ ∩ L,

since for every π ∈ Θ it holds that 〈π,R〉 = 〈pL(π), R〉 a.s. By Proposition 2.2, NA1 implies

that Θ̂ ∩ L = Θ̂ ∩ L = {0}. Hence, in view of [Roc70, Theorem 27.3], it suffices to show that

the proper concave function u : Θ∩L → R defined by u : Θ∩L 3 π 7→ u(π) := E[U(1 + 〈π,R〉)]
is upper semi-continuous. To this effect, we adapt some of the arguments of [RS06, Lemma 2.3]

(see also [Nut16, Lemma 2.8]). Since the set Θ∩L is bounded under NA1 (see Proposition 2.2),

there exists a bounded polyhedral set P ⊂ span(Θ ∩ L) such that Θ ∩ L ⊆ P (see, e.g., [Roc70,

Theorem 20.4]). Denote by {p1, . . . , pN} the set of extreme points of P. Since a linear function

defined on a polyhedral set attains its maximum on the set of extreme points, it holds that

〈π,R〉 ≤ max
j=1,...,N

〈pj , R〉, for all π ∈ Θ ∩ L.

By monotonicity of U , this implies that

U+(1 + 〈π,R〉) ≤
N∑
j=1

U+(1 + 〈pj , R〉) =: ζ, for all π ∈ Θ ∩ L.

We proceed to show that E[ζ] < +∞. Since U(1) is bounded from below, we can assume without

loss of generality that U(1) ≥ 0. We recall from [RS06, Lemma 2.2] the inequality

(2.3) U+(λx) ≤ 2λ
(
U+(x) + U(2)

)
, for all x > 0 and λ ≥ 1.

Let φ be an element of the relative interior of Θ∩L and εj ∈ (0, 1] such that φ+εj(pj−φ) ∈ Θ∩L,

for all j = 1, . . . , N . By inequality (2.3) and monotonicity of U , together with the fact that

φ ∈ Θ ∩ L ⊆ Θadm, we obtain

(2.4)

U+
(
1 + 〈pj , R〉

)
= U+

(
1 + 〈φ,R〉+ 〈pj − φ,R〉

)
≤ 2

εj

(
U+
(
εj(1 + 〈φ,R〉) + εj〈pj − φ,R〉

)
+ U(2)

)
≤ 2

εj

(
U+
(
1 + 〈φ+ εj(pj − φ), R〉

)
+ U(2)

)
.

Due to the assumption that supπ∈Θ E[U+(V π
1 )] < +∞, the first term on the last line of (2.4) is

integrable, for each j = 1, . . . , N . The same assumption implies that E[U(1)] < +∞, from which

E[U(2)] < +∞ follows by concavity of U . This proves that the random variable ζ is integrable.

4For simplicity of notation, we shall omit to denote explicitly the dependence of U on ω in the following.
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Let now (πn)n∈N be a sequence in Θ∩L converging to some element π0 ∈ Θ∩L. An application

of Fatou’s lemma, together with the continuity of U , yields that

lim sup
n→+∞

u(πn) ≤ E
[
lim sup
n→+∞

U(1 + 〈πn, R〉)
]

= u(π0),

thus proving the upper semi-continuity of the function u.

(ii)⇒ (i): by way of contradiction, let π∗ ∈ Θ ∩ L be the maximizer in (2.2) and suppose that

NA1 fails to hold. By Proposition 2.2, there exists θ ∈ Iarb ∩ Θ̂. It holds that π∗ + θ ∈ Θ ∩ L
and E[U(V π∗+θ

1 )] > E[U(V π∗
1 )], thus contradicting the optimality of π∗. �

The above theorem asserts the equivalence between NA1 and market viability, intended as the

existence of an optimal strategy for every well-posed expected utility maximization problem. In

particular, the proof makes clear that one of the crucial consequences of NA1 is the compactness

of the set Θ ∩ L of non-redundant allowed strategies (see Proposition 2.2).

Remark 2.6. The proof of Theorem 2.5 relies on the fact that, under NA1, the set Θ ∩ L
and the function u have no common directions of recession. The relevance of this property in

expected utility maximization problems has been first recognized in the early work [Ber74].

Remark 2.7. In discrete-time models without trading constraints, it is well-known that market

viability is equivalent to no classical arbitrage (see [RS05, RS06] and [FS16, Theorem 3.3]). In

view of Remark 2.3, the same holds true in the case of conic constraints. In the case of convex

non-conic constraints, Theorem 2.5 shows that market viability is equivalent to the weaker NA1

condition. From an economic standpoint, this result implies that assuming no classical arbitrage

may pose unnecessary restrictions on the model. In the special case of a finite probability space,

this insight already appeared in [ES01], where the authors proved the equivalence between the

existence of a solution to optimal portfolio problems and the validity of a condition called by the

authors no unlimited arbitrage. Translated in our context, no unlimited arbitrage corresponds

to the existence of a strategy θ ∈ Θ such that there are no arbitrage opportunities relative

to θ, in the sense of Remark 2.4. As shown in Remark 2.11 below, this is equivalent to NA1

and, therefore, the results of [ES01] can be recovered as a special case.5 In continuous-time

semimartingale models, the connection between NA1 and the solvability of expected utility

maximization problems is discussed in [KK07] and [CDM15] (in an Itô process setting, earlier

results in this direction have been obtained in [LW00]).

The NA1 condition admits an equivalent characterization in terms of the existence of a (su-

permartingale) deflator or of a numéraire portfolio, defined as follows.

Definition 2.8. A random variable Z ∈ L0
+ with P (Z > 0) = 1 is said to be a deflator if

(2.5) E[Z V π
1 ] ≤ 1, for all π ∈ Θ.

The set of all deflators is denoted by D.

An allowed trading strategy ρ ∈ Θ is said to be a numéraire portfolio if 1/V ρ
1 ∈ D, meaning that

(2.6) E[V π
1 /V

ρ
1 ] ≤ 1, for all π ∈ Θ.

5The finiteness condition appearing in part (ii) of Theorem 2.5 is always satisfied on a finite probability space.
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It is well-known (see, e.g., [Bec01]) that a numéraire portfolio is unique in the sense that if ρ1

and ρ2 satisfy (2.6), then ρ1 − ρ2 ∈ L⊥. The numéraire portfolio is therefore uniquely defined

on Θ ∩ L. The next theorem shows that NA1 is necessary and sufficient for the existence of

the numéraire portfolio. In a general semimartingale setting, the corresponding result has been

proved in [KK07]. In the present context, Theorem 2.5 enables us to give a short and simple

proof based on log-utility maximization, thus highlighting the central role of market viability.

Besides simplifying the techniques employed in [KS09, Lemma 6.2 and Theorem 6.3], our proof

can be easily generalized to the multi-period setting, as will be shown in Section 4.

Theorem 2.9. The following are equivalent:

(i) the NA1 condition holds;

(ii) D 6= ∅;
(iii) there exists the numéraire portfolio.

Moreover, ρ ∈ Θ is the numéraire portfolio if and only if it is relatively log-optimal, in the sense

that it satisfies E[log(V π
1 /V

ρ
1 )] ≤ 0, for all π ∈ Θ.

Proof. (i) ⇒ (iii): as a preliminary, similarly as in [Kar09, KS09], let (fn)n be a family of

functions such that fn : Rd → (0, 1] and E[log(1+‖R‖)fn(R)] < +∞, for each n ∈ N, and fn ↗ 1

as n→ +∞. A specific choice is for instance given by fn(x) = 1{‖x‖≤1} + 1{‖x‖>1}‖x‖−1/n. For

each n ∈ N, define the function (ω, x) 7→ Un(ω, x) := log(x)fn(R(ω)), for (ω, x) ∈ Ω× (0,+∞),

with Un(ω, 0) := limx↓0 Un(ω, x) = −∞. For each n ∈ N, it holds that Un ∈ U and

(2.7) E
[
U+
n (1 + 〈π,R〉)

]
≤ ‖π‖+ E

[
log(1 + ‖R‖)fn(R)

]
< +∞, for all π ∈ Θ.

If NA1 holds, Proposition 2.2 implies that Θ ∩ L is bounded and, therefore, it holds that

supπ∈Θ E[U+
n (1 + 〈π,R〉)] < +∞. For each n ∈ N, Theorem 2.5 gives then the existence of

an element ρn ∈ Θ ∩ L which is the maximizer in (2.2) for U = Un. For an arbitrary element

π ∈ Θ and ε ∈ (0, 1), let πε := επ + (1 − ε)ρn ∈ Θ. The optimality of ρn together with the

elementary inequality log(x) ≥ (x− 1)/x, for x > 0, implies that

0 ≥ 1

ε

(
E
[
Un(1 + 〈πε, R〉)

]
− E

[
Un(1 + 〈ρn, R〉)

])
=

1

ε
E
[
log(V πε

1 /V ρn

1 )fn(R)
]
≥ E

[
〈π − ρn, R〉

1 + 〈ρn, R〉+ ε〈π − ρn, R〉
fn(R)

]
.(2.8)

Noting that x
y+εx ≥

x
y+x/2 ≥ −2, for all ε ∈ (0, 1/2), y > 0 and x ≥ −y, we can let ε ↘ 0 and

apply Fatou’s lemma, thus obtaining

(2.9) E
[
〈π − ρn, R〉
1 + 〈ρn, R〉

fn(R)

]
≤ 0, for all π ∈ Θ and n ∈ N.

Since Θ∩L is compact (see Proposition 2.2), we may assume that the sequence (ρn)n∈N converges

to some ρ ∈ Θ∩L as n→ +∞. Therefore, since 〈π−ρn, R〉/(1+〈ρn, R〉) ≥ −1 a.s. and recalling

that fn ↗ 1 as n→ +∞, another application of Fatou’s lemma gives that

E
[
〈π − ρ,R〉
1 + 〈ρ,R〉

]
≤ 0, for all π ∈ Θ.

Equivalently, it holds that E[V π
1 /V

ρ
1 ] ≤ 1, for all π ∈ Θ. In view of Definition 2.8, we have thus

shown that NA1 implies the existence of the numéraire portfolio.

(iii)⇒ (ii): this implication is immediate by Definition 2.8.
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(ii) ⇒ (i): let Z ∈ D and consider a random variable ξ ∈ L0
+ with P (ξ > 0) > 0 such that, for

every n ∈ N, there exists πn ∈ Θ such that V πn
1 (1/n) ≥ ξ a.s. Definition (2.8) implies that

E[Z ξ] ≤ E
[
Z V πn

1 (1/n)
]

=
1

n
E
[
Z V πn

1

]
≤ 1

n
, for all n ∈ N.

Since Z > 0 a.s., letting n→ +∞ yields that ξ = 0 a.s., thus proving the validity of NA1.

It remains to prove the last assertion of the theorem. If ρ ∈ Θ satisfies (2.6), then its relative

log-optimality is a direct consequence of Jensen’s inequality. Conversely, if ρ ∈ Θ is relatively

log-optimal, then (2.6) follows by the same arguments used in (2.8)-(2.9). �

Remark 2.10. If there exists a log-optimal portfolio, i.e., an allowed strategy ρ ∈ Θ satisfying

E[log(V π
1 )] ≤ E[log(V ρ

1 )] < +∞, for all π ∈ Θ, then ρ is also relatively log-optimal and, therefore,

coincides with the numéraire portfolio. The numéraire property of the log-optimal portfolio can

also be directly deduced from the proof of Theorem 2.9. In applications, computing the log-

optimal portfolio typically represents a simple way to determine the numéraire portfolio (see for

instance Examples 2.14 and 3.11).

Remark 2.11. NA1 is equivalent to the existence of a strategy θ ∈ Θ with V θ
1 > 0 a.s. such that

there are no arbitrage opportunities relative to θ, in the sense of Remark 2.4. Indeed, suppose

there exists θ ∈ Θ with V θ
1 > 0 a.s. and let π ∈ Θ̂. Then π + θ is an arbitrage opportunity

relative to θ if and only if π ∈ Iarb. Conversely, if NA1 holds, then there do not exist arbitrage

opportunities relative to the numéraire portfolio ρ, as a consequence of (2.6). However, absence

of arbitrage opportunities relative to some strategy θ ∈ Θ with V θ
1 > 0 a.s. does not suffice to

conclude that θ is the numéraire portfolio (see Example 3.10 for an explicit counterexample).

Theorems 2.5 and 2.9 represent the central results of arbitrage theory based on NA1. For

completeness, we now state the fundamental theorem of asset pricing based on no classical

arbitrage, in the general version of [Rok05, Theorem 4] specialised for a one-period setting. We

give a simple proof inspired by [KaS09, Proposition 2.1.5] and [Kar09, Theorem 3.7], which in

turn follow an original idea of [Rog94]. Similarly to Theorem 2.9, the proof is based on utility

maximization arguments. For a set A ⊆ Rd, we denote by coneA its conic hull.

Theorem 2.12. Suppose that the set cone Θ is closed. Then no classical arbitrage holds if and

only if there exists a probability measure Q ∼ P such that EQ[V π
1 ] ≤ 1, for all π ∈ cone Θ.

Proof. Observe first that Iarb ∩ Θ = ∅ if and only if Iarb ∩ (cone Θ) = ∅. In turn, this implies

that no classical arbitrage holds if and only if Iarb∩C = ∅, where C := (cone Θ)∩L. Define the

proper convex function f : C 3 π 7→ f(π) := E′[exp(−1−〈π,R〉)], where E′ denotes expectation

with respect to the probability measure P ′ defined by dP ′/dP = e−‖R‖
2
/E[e−‖R‖

2
]. By Fatou’s

lemma, the function f is lower semi-continuous. Since C is closed by assumption, [Roc70,

Theorem 27.3] implies that the function f admits a minimizer π∗ ∈ C if it has no directions of

recession in common with the cone C. By [Roc70, Theorem 8.5], this amounts to verifying that

(2.10) f̂(π) := lim
γ→+∞

f(γπ)

γ
> 0, for all π ∈ C \ {0}.
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We now show that (2.10) is always satisfied under no classical arbitrage. Arguing by contradic-

tion, let π ∈ C \ {0} such that f̂(π) ≤ 0. In this case, by Fatou’s lemma, it holds that

0 ≥ f̂(π) ≥ E′
[

lim inf
γ→+∞

e−1−γ〈π,R〉

γ

]
≥ E′

[
lim inf
γ→+∞

e−1−γ〈π,R〉

γ
1{〈π,R〉<0}

]
.

This implies that necessarily 〈π,R〉 ≥ 0 a.s. Since π ∈ L, this contradicts no classical arbitrage.

[Roc70, Theorem 27.3] then yields the existence of an element π∗ ∈ C such that f(π∗) ≤ f(π), for

all π ∈ C. The definition of P ′ implies that differentiation and integration can be interchanged,

so that the gradient of the function f at π∗ is given by ∇f(π∗) = −E′[exp(−1 − 〈π∗, R〉)R].

Therefore, since C is a cone and f is finite on C, [Roc70, Theorem 27.4] implies that

0 ≥
〈
π,−∇f(π∗)

〉
= E′

[
e−1−〈π∗,R〉〈π,R〉

]
.

Setting dQ/dP = e−V
π∗
1 −‖R‖2/E[e−V

π∗
1 −‖R‖2 ] yields a probability measure Q ∼ P such that

EQ[V π
1 ] ≤ 1, for all π ∈ C and, hence, for all π ∈ cone Θ.

Conversely, suppose there exists a probability measure Q ∼ P such that EQ[V π
1 ] ≤ 1, for all

π ∈ cone Θ. Then, for every π ∈ Θ, it holds that EQ[〈π,R〉] ≤ 0. If π ∈ Iarb ∩ Θ, this implies

that 〈π,R〉 ≤ 0 Q-a.s. However, since Q ∼ P , this contradicts the fact that π ∈ Iarb. �

Remark 2.13. Theorem 2.12 does not hold without the assumption of closedness of cone Θ.6

Indeed, one can construct a counterexample along the lines of [Rok05, Example 1] where no clas-

sical arbitrage holds but there does not exist a probability measure Q ∼ P such that EQ[V π
1 ] ≤ 1,

for all π ∈ cone Θ. Observe that, in comparison to no classical arbitrage, NA1 has the additional

advantage of not requiring any extra technical condition on the model.

The probability measure Q appearing in Theorem 2.12 represents an equivalent supermartin-

gale measure (ESMM). If NA1 holds and the numéraire portfolio ρ satisfies E[1/V ρ
1 ] = 1, then

an ESMM Q can be defined by setting dQ/dP = 1/V ρ
1 . However, this is not always possible,

even when cone Θ is closed and no classical arbitrage holds, as the following simple example

illustrates (see also [Bec01, Example 6] for a related example in an unconstrained setting).

Example 2.14. Let d = 1 and suppose that R = eY − 1, with Y ∼ N (0, 1). In this case, it

holds that S = [−1,+∞) and Θadm = [0, 1] (i.e., short-selling and borrowing from the riskless

asset are prohibited). Suppose that Θc = [0, c], for some c ∈ [0, 1], so that Θ = [0, c]. Clearly,

no classical arbitrage holds and, therefore, there exists an ESMM Q. For instance, it can be

easily checked that dQ/dP = exp(αY − α2/2) defines an ESMM, for any α ≤ −1/2. However,

if c < 1/2, the numéraire portfolio ρ cannot be used to construct an ESMM, since E[1/V ρ
1 ] < 1.

Indeed, it can be easily checked that the function h : [0, 1] → R defined by h(π) := E[log(V π
1 )]

is finite-valued, strictly concave and achieves its maximum at 1/2, so that h′(π) > 0 for all

π < 1/2. Therefore, if c < 1/2, the log-optimal portfolio and, therefore, the numéraire portfolio

ρ (see Remark 2.10) are given by ρ = c and it holds that h′(ρ) > 0 or, equivalently, E[1/V ρ
1 ] < 1.

2.4. Hedging and valuation of contingent claims. The pricing of contingent claims is

traditionally based on the paradigm of no classical arbitrage. In this section, we show that

6The same assumption is required in the fundamental theorem of asset pricing in the formulation of [CPT01].
[Rok05, Theorem 4] requires the closedness of pL(cone Θ), the set of all vectors in Rd that are projections onto L
of elements of cone Θ. In our setting, since L⊥ ⊆ Θ̂, it holds that pL(cone Θ) = (cone Θ) ∩ L. This implies that
pL(cone Θ) is closed if and only if cone Θ is closed.
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the weaker NA1 condition suffices to develop a general and effective theory for the hedging

and valuation of contingent claims in the presence of convex constraints. We first prove the

fundamental super-hedging duality. Recall that for a random variable ξ ∈ L0
+ (contingent

claim) its super-hedging value v(ξ) is defined as in (2.1), with the usual convention inf ∅ = +∞.

Theorem 2.15. Suppose that NA1 holds and let ξ ∈ L0
+. Then

(2.11) v(ξ) = sup
Z∈D

E[Zξ].

Moreover, there exists a pair (v, π) ∈ R+×Θ such that ξ = V π
1 (v) a.s. and E[Zξ] = v, for some

Z ∈ D, if and only if there exists an element Z∗ ∈ D such that E[Z∗ξ] = supZ∈D E[Zξ] < +∞.

Proof. Let V(ξ) := {v > 0 : ∃ π ∈ Θ such that vV π
1 ≥ ξ a.s.} and C := {V π

1 : π ∈ Θ ∩ L} − L0
+.

If v ∈ V(ξ), there exists π ∈ Θ such that vV π
1 ≥ ξ a.s. Then, for every Z ∈ D it holds that

E[Zξ] ≤ v E[ZV π
1 ] ≤ v.

By taking the supremum over all Z ∈ D and the infimum over all v ∈ V(ξ), we obtain that

v(ξ) ≥ supZ∈D E[Zξ] =: v∗. The converse inequality is trivial if v∗ = +∞. Assuming therefore

that 0 < v∗ < +∞, we will show that v(ξ) > v∗ cannot hold. Indeed, if v(ξ) > v∗, then ξ /∈ v∗C.
Let ρ be the numéraire portfolio (which exists by Theorem 2.9). Being closed in L0 (see Lemma

2.16 below) and bounded in L1, the set v∗C/V ρ
1 is closed in L1. Therefore, by the Hahn-Banach

theorem (see, e.g., [FS16, Theorem A.58]), there exists a bounded random variable Z̄ such that

(2.12) +∞ >
1

v∗
E
[
Z̄
ξ

V ρ
1

]
> sup

X∈C
E
[
Z̄
X

V ρ
1

]
=: s.

Since −n1{Z̄<0} ∈ C, for all n ≥ 0, inequality (2.12) implies that Z̄ ≥ 0 a.s. and P (Z̄ > 0) > 0.

Moreover, since 1 ∈ C, it holds that s > 0. For ε ∈ (0, 1), we define

(2.13) Zε :=

(
ε+ (1− ε) Z̄

s

)
1

V ρ
1

.

It holds that P (Zε > 0) = 1 and, for every π ∈ Θ,

E[ZεV π
1 ] = εE

[
V π

1

V ρ
1

]
+

1− ε
s

E
[
Z̄
V π

1

V ρ
1

]
≤ 1,

thus showing that Zε ∈ D, for all ε ∈ (0, 1). Moreover, for a sufficiently small ε, (2.12) together

with (2.13) implies that E[Zεξ] > v∗ = supZ∈D E[Zξ], which is absurd. Therefore, we must have

ξ ∈ v∗C , thus proving that v(ξ) ≤ v∗ = supZ∈D E[Zξ].

To prove the last assertion of the theorem, observe that the first part of the proof yields that

v∗V π
1 ≥ ξ a.s., for some π ∈ Θ. If there exists Z∗ ∈ D such that v∗ = E[Z∗ξ], then we have that

v∗ = E[Z∗ξ] ≤ v∗E[Z∗V π
1 ] ≤ v∗.

Since Z∗ > 0 a.s., this implies that ξ = V π
1 (v∗) a.s. Conversely, if ξ = V π

1 (v) a.s. for some (v, π) ∈
R+ ×Θ with v = E[Z∗ξ], for some Z∗ ∈ D, then (2.5) implies that E[Z∗ξ] = supZ∈D E[Zξ]. �

Lemma 2.16. If NA1 holds, then the set C := {V π
1 : π ∈ Θ ∩ L} − L0

+ is closed in L0.

Proof. Let (Xn)n∈N ⊆ C be a sequence converging in L0 to a random variable X as n→ +∞. For

each n ∈ N, it holds that Xn = 1+〈πn, R〉−An, for (πn, An) ∈ (Θ∩L)×L0
+. By Proposition 2.2,

NA1 implies that the set Θ∩L is compact and, therefore, there exists a subsequence (πnm)m∈N
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converging to an element π ∈ Θ∩L. In turn, this implies that the sequence (Anm)m∈N converges

in probability to a random variable A ∈ L0
+, thus proving the closedness of C in L0. �

Whenever the quantity supZ∈D E[Zξ] is finite, it provides the super-hedging value of ξ. In

a general semimartingale setting, the duality relation (2.11) has been stated in [KK07, Section

4.7]. We contribute by providing a transparent and self-contained proof in a one-period setting.

In addition, Theorem 2.15 provides a necessary and sufficient condition for the attainability of a

contingent claim ξ. When perfect hedging is not possible, one may resort to several alternative

hedging approaches, which are all feasible under NA1 even if no classical arbitrage fails to hold.

A first possibility is represented by hedging with minimal shortfall risk, corresponding to

(2.14) E
[
`(ξ − vV π

1 )
]

= min ! over all (v, π) ∈ (0, v0]×Θ,

for some initial capital v0 > 0, where ` : R→ R is an increasing convex loss function such that

`(x) = 0, for all x ≤ 0, and E[`(ξ)] < +∞ (see [FS16, Section 8.2]). Problem (2.14) can be solved

by first minimizing E[`(ξ − Y )] over all random variables Y ∈ L0
+ such that supZ∈D E[ZY ] ≤ v0

and then considering the pair (v(Y ∗), π∗) which super-replicates the minimizing random variable

Y ∗ (if ` is strictly increasing on [0,+∞), then v(Y ∗) = v0). As long as NA1 holds, the feasibility

of this approach is ensured by Theorem 2.15.

An alternative way to hedge and compute the value of a contingent claim ξ is provided by

utility indifference valuation. For a given utility function u and an initial capital v > 0, this

corresponds to finding the solution p = p(ξ) to the equation

(2.15) sup
π∈Θ

E
[
u(vV π

1 )
]

= sup
π∈Θ

E
[
u((v − p)V π

1 + ξ)
]
.

Defining Uηp (x, ω) := u((v − ηp)x + ηξ(ω)), for η ∈ {0, 1}, Theorem 2.5 with U = Uηp shows

that NA1 is sufficient for the solvability of the two maximization problems appearing in (2.15).

Whenever it exists, p(ξ) represents a (buyer) value for ξ, while the strategy π∗ that achieves the

supremum on the right-hand side of (2.15) with p = p(ξ) provides a hedging strategy for ξ.

As a variant of the latter approach, one can consider marginal utility indifference valuation,

in the sense of [Dav97]. This corresponds to finding the value p = p′(ξ) which solves

lim
η↓0

E[Uηp (V π∗
1 )]− E[U0

p (V π∗
1 )]

η
= 0.

where Uη is defined as above, for η ∈ [0, 1], and π∗ ∈ Θ is the strategy solving problem (2.2)

with U = u. Similarly as in [FR13], if NA1 holds and u(x) = log(x), it can be shown that

(2.16) p′(ξ) = E[ξ/V ρ
1 ],

as long as the expectation is finite, where ρ denotes the numéraire portfolio (see Theorem 2.9).

In the context of the Benchmark Approach (see [BP03, PH06]), formula (2.16) corresponds to

the well-known real-world pricing formula, which is applicable as long as NA1 is satisfied.

3. Factor models with arbitrage under borrowing constraints

In this section, we study the arbitrage concepts discussed above in the context of a one-period

factor model, under constraints on the fraction of wealth that can be borrowed/invested on the

riskless asset. We start from a general model and then consider more specific cases.
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3.1. A general factor model. In the setting of Section 2, we assume that asset returns are

generated by the factor model

(3.1) R = QY,

where Q ∈ Rd×` and Y = (Y1, . . . , Y`)
> is an `-dimensional random vector with independent

components, for some ` ∈ N. A non-diagonal matrix Q permits to introduce general correlation

structures among the d asset returns. Without loss of generality, we assume that rank(Q) = d.

Under this assumption, it holds that L⊥ = {0}.

Remark 3.1. Multi-factor models are widely employed in financial economics and econometrics,

the Arbitrage Pricing Theory of [Ros76] and its extensions representing some of the most notable

instances (see [BF17, Chapter 5], [CK95] and [CLM97, Chapter 6] for overviews on the topic).

Multi-factor asset pricing models can always be written in the form (3.1), modulo the assumption

of independent factors.7 To this effect, recall first that the random vector R represents the excess

returns of d risky assets with respect to a baseline security, usually chosen as a riskless asset.

Multi-factor models are typically stated in the form

(3.2) R = E[R] +BF + ε,

where E[R] is the vector of risk premia, F is a k-dimensional random vector of common risk

factors, for some k < d, B ∈ Rd×k is the matrix of factor loadings and ε is a d-dimensional

random vector of idiosyncratic (asset-specific) risk factors. Depending on the modeling choices,

F can represent a vector of economic factors or statistical factors. In the standard formulation

(see, e.g., [Ing87, Chapter 7]), all components of F and ε are assumed to be uncorrelated. Notice

now that factor model (3.2) can be written in the form (3.1) by setting Q = (E[R], B, Id) and

Y = (1, F>, ε>)>, where Id denotes the (d × d) identity matrix. In the special case of absence

of idiosyncratic risk, the vector Y can be directly identified with F . Equation (3.1) therefore

provides the simplest unifying representation of multi-factor asset pricing models.

For k = 1, . . . , `, we denote by Yk the support of Yk and let yinf
k := inf Yk and ysup

k := supYk.
In this section, we work under the following standing assumption:

(3.3) yinf
1 = 0, ysup

1 = +∞ and yinf
k < 0 < ysup

k , for all k = 2, . . . , `.

As will become clear in the sequel, condition (3.3) corresponds to viewing the first factor Y1

as the driving force of possible arbitrage opportunities, while the remaining factors cannot be

exploited to generate arbitrage.8 In the context of the factor model (3.1)-(3.3), the following

lemma gives a necessary and sufficient condition to ensure positive asset prices. For i = 1, . . . , d

and k = 1, . . . , `, we denote by qi,k the element on the i-th row and k-th column of Q.

7Under this assumption, representation (3.1) enables us to reduce the analysis to ` independent sources of ran-
domness. We stress that any correlation structure among the asset returns R can be generated by a suitable
specification of the matrix Q.
8The only requirement in order to allow for arbitrage opportunities is the existence of a linear combination of
factors with positive support. The assumption that Y 1 has positive support is only made for convention.
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Lemma 3.2. In the context of the model of this section, for each i = 1, . . . , d, it holds that

Ri ≥ −1 a.s. if and only if the following condition is satisfied:

(3.4) qi,1 ≥ 0 and
∑̀
k=2

(
q+
i,ky

inf
k − q−i,ky

sup
k

)
≥ −1,

with the convention 0× (−∞) = 0 and 0× (+∞) = 0.

Proof. Condition (3.4) is obviously sufficient to ensure that Ri ≥ −1 a.s., for all i = 1, . . . , d.

Conversely, let i ∈ {1, . . . , d} and suppose that Ri ≥ −1 a.s. For all n ∈ N and k = 1, . . . , `, let

yinf
k (n) :=

(
yinf
k +

1

n

)
∨ (−n) and ysup

k (n) :=
(
ysup
k − 1

n

)
∧ n,

where x ∨ z := max{x, z} and x ∧ z := min{x, z}, for any (x, z) ∈ R2. With this notation, it

holds that P (Yk ≤ yinf
k (n)) > 0 and P (Yk ≥ ysup

k (n)) > 0, for all n ∈ N and k = 1, . . . , `. Let

K+
i := {k ∈ {1, . . . , `} : qi,k ≥ 0} and K−i := {1, . . . , `} \K+

i . Since
∑`

k=1 qi,kYk ≥ −1 a.s. and

due to the independence of the factors {Y1, . . . , Y`}, it holds that

0 < P

(
Yk ≤ yinf

k (n) and Yj ≥ ysup
j (n); ∀k ∈ K+

i , ∀j ∈ K
−
i

)
= P

( ∑
k∈K+

i

qi,kYk ≥ −1−
∑
j∈K−i

qi,jYj and Yk ≤ yinf
k (n) and Yj ≥ ysup

j (n); ∀k ∈ K+
i ,∀j ∈ K

−
i

)
.

In turn, this necessarily implies that
∑

k∈K+
i
qi,ky

inf
k (n) ≥ −1 −

∑
j∈K−i

qi,jy
sup
j (n), for each

n ∈ N. Condition (3.4) follows by letting n→ +∞ and using condition (3.3). �

In particular, condition (3.4) requires that qi,k ≥ 0 if ysup
k = +∞ and qi,k ≤ 0 if yinf

k = −∞,

for all i = 1, . . . , d and k = 1, . . . , `. Observe that condition (3.4) relates the support of the

random factors to the dependence structure of the asset returns, represented by the off-diagonal

elements of Q. Arguing similarly as in Lemma 3.2, it can be shown that the set Θadm of

admissible strategies can be represented as follows:

(3.5) Θadm =

{
π ∈ Rd : π>Q•,1 ≥ 0 and

∑̀
k=2

(
(π>Q•,k)

+yinf
k − (π>Q•,k)

−ysup
k

)
≥ −1

}
,

where Q•,k denotes the k-th column of the matrix Q, with the same convention as in (3.4).

We now introduce additional trading restrictions, as considered in Section 2.1. More specifi-

cally, we assume the presence of borrowing constraints:

(3.6) Θc := {π ∈ Rd : 〈π,1〉 ≤ c},

for some fixed c > 0. If c ∈ (0, 1), this corresponds to requiring that at least a proportion 1− c
of the initial wealth is invested in the riskless asset, while, if c ≥ 1, at most a proportion c − 1

of the initial wealth can be borrowed from the riskless asset. Note that, since the set Θc is not

a cone, the notions of arbitrage opportunity and arbitrage of the first kind differ (see Remark

2.3). As in Section 2.1, the set Θ of allowed strategies is defined as Θ := Θadm ∩Θc.

The following proposition summarizes the arbitrage properties of the factor model under

consideration, in the presence of borrowing constraints. We denote by R(Q>) the range of the

matrix Q> and by ek the k-th vector of the canonical basis of R`, for k = 1, . . . , `.
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Proposition 3.3. In the context of the model of this section, the following hold:

(i) there are arbitrage opportunities if and only if e1 ∈ R(Q>). In that case, it holds that

(3.7) Iarb ∩Θ =
{
λ(QQ>)−1Q•,1 : λ > 0 and λ〈(QQ>)−1Q•,1,1〉 ≤ c

}
;

(ii) if e1 ∈ R(Q>), then NA1 holds if and only if 〈(QQ>)−1Q•,1,1〉 > 0.

Proof. (i): let π ∈ Rd such that 〈π,QY 〉 ≥ 0 a.s. The same argument used to prove Lemma 3.2

and representation (3.5) implies that the vector π satisfies π>Q•,1 ≥ 0 and

∑̀
k=2

(
(π>Q•,k)

+yinf
k − (π>Q•,k)

−ysup
k

)
≥ 0.

Recalling condition (3.3), this implies that π>Q•,k = 0, for all k = 2, . . . , `. It follows that

〈π,QY 〉 ≥ 0 a.s. if and only if Q>π = λe1, for some λ ≥ 0. Since rank(Q) = d, it holds that

Iarb = {λ(QQ>)−1Qe1 : λ > 0}, from which representation (3.7) of the set Iarb ∩ Θ follows

directly from the definition of the set Θc in (3.6).

(ii): by Proposition 2.2, NA1 holds if and only if Iarb∩ Θ̂ = ∅. Representation (3.7) implies that

Iarb ∩ Θ̂ = ∅ if and only if 〈(QQ>)−1Q•,1,1〉 > 0. �

Remark 3.4. The vector (QQ>)−1Q•,1 corresponds to the strategy replicating the factor Y1.

While exact replication of Y1 may be precluded by borrowing constraints, (3.7) shows that any

allowed strategy that replicates a positive fraction of Y1 is an arbitrage opportunity. The factor

Y1 can be (super-)replicated at zero cost if 〈(QQ>)−1Q•,1,1〉 ≤ 0, in which case NA1 fails.

Remark 3.5. The proof of Proposition 3.3 shows that a strategy π ∈ Iarb ∩ Θ necessarily

satisfies π>Q•,k = 0, for all k = 2, . . . , `. When ` = d, this corresponds to a set of d − 1 linear

equations in d variables. This set defines a line in Rd, which we call arbitrage line. This concept

will be illustrated in the two-dimensional model considered in Section 3.3.

In view of Theorem 2.5, NA1 ensures the well-posedness of optimal portfolio problems. In the

presence of arbitrage opportunities, the borrowing constraint (3.6) is binding for every optimal

allowed strategy. This is a direct consequence of the following simple result.

Lemma 3.6. In the context of the model of this section, suppose that e1 ∈ R(Q>) and NA1

holds. Then, for every π ∈ Θ, there exists an element π̂ ∈ Θ such that

〈π̂, QY 〉 ≥ 〈π,QY 〉 a.s. and 〈π̂,1〉 = c.

Moreover, there exists a strategy πmax, explicitly given by

(3.8) πmax =
c

〈(QQ>)−1Q•,1,1〉
(QQ>)−1Q•,1,

such that 〈πmax,1〉 = c and 〈πmax, QY 〉 ≥ 〈π,QY 〉 a.s., for all π ∈ Iarb ∩Θ.

Proof. Let π be an arbitrary allowed strategy. Letting λ := (c−〈π,1〉)〈(QQ>)−1Q•,1,1〉−1 ≥ 0,

define the strategy π̂ := π + λ(QQ>)−1Q•,1. Clearly, it holds that 〈π̂,1〉 = c and, in addition,

〈π̂, QY 〉 = 〈π,QY 〉 + λe>1 Q
>(QQ>)−1QY = 〈π,QY 〉 + λY1 ≥ 〈π,QY 〉 a.s. The second part of

the lemma follows as a direct consequence of the characterization (3.7) of the set Iarb ∩Θ. �

We call maximal arbitrage strategy the strategy πmax given in (3.8). Whenever NA1 fails to

hold (i.e., 〈(QQ>)−1Q•,1,1〉 ≤ 0), a maximal arbitrage strategy does not exist, because arbitrage
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opportunities can be arbitrarily scaled. Note that πmax is not necessarily the optimal strategy

in an expected utility maximization problem of type (2.2). Similarly, πmax does not necessarily

coincide with the numéraire portfolio ρ. This will be explicitly illustrated in Examples 3.9–3.11.

Remark 3.7 (On relative arbitrage). (1) In the context of the model of this section, let us

assume that NA1 holds and e1 ∈ R(Q>). Then, for θ ∈ Θ, there exist arbitrage opportunities

relative to θ if and only if 〈θ,1〉 < c. Indeed, if 〈θ,1〉 < c, then the existence of an arbitrage

opportunity relative to θ follows from Lemma 3.6. Conversely, suppose that 〈θ,1〉 = c and let

π ∈ Rd with π − θ ∈ Iarb. By Proposition 3.3, this holds if and only if π − θ = η(QQ>)−1Q•,1,

for some η > 0. However, since 〈π,1〉 = 〈θ,1〉 + η〈(QQ>)−1Q•,1,1〉 > c, the strategy π is not

an allowed trading strategy. This shows that there cannot exist arbitrage opportunities relative

to θ if 〈θ,1〉 = c. In particular, there do not exist arbitrage opportunities relative to πmax.

(2) One can also study the existence of arbitrage opportunities relative to the market portfolio

πmkt defined by πmkt
i := Si0/〈S0,1〉, for i = 1, . . . , d (see [FK09, Section 2]). As a consequence of

part (1) of this remark, arbitrage opportunities relative to the market exist if and only if c > 1.

The financial intuition is that, if c > 1, then it is possible to invest the whole initial capital v in

the market portfolio, borrow an amount v(c− 1) from the riskless asset and invest that amount

in the strategy πmax, thus improving the performance of the market portfolio. The strategy

π∗ ∈ Θ which best outperforms the market portfolio is given by π∗ = πmkt + c−1
c πmax.

3.2. The case of a unit triangular matrix Q. Let us consider the special case where Q is

a (d × d) upper triangular matrix with qi,i = 1, for all i = 1, . . . , d. In this case, the results

presented in Section 3.1 can be stated explicitly in terms of the elements of Q. First, condition

(3.4) ensuring the positivity of asset prices can be rewritten in the following recursive form:

(3.9) yinf
d ≥ −1 and yinf

i ≥ −1−
d∑

k=i+1

(
q+
i,ky

inf
k − q−i,ky

sup
k

)
, for all i = 1, . . . , d− 1.

In view of (3.5), the set Θadm of admissible strategies takes the form

(3.10)

Θadm =

{
π ∈ Rd : π1 ≥ 0 and

d∑
k=2

((
k−1∑
i=1

πiqi,k + πk

)+

yinf
k −

(
k−1∑
i=1

πiqi,k + πk

)−
ysup
k

)
≥ −1

}
.

Since rank(Q) = d, the condition e1 ∈ R(Q>) is automatically satisfied and, therefore, there

exist arbitrage opportunities (see Proposition 3.3). More specifically, it holds that

(3.11) Iarb ∩Θ =
{
λQ−1

1,• : λ > 0 and λ〈Q−1
1,•,1〉 ≤ c

}
,

where Q−1
1,• denotes the first row of the matrix Q−1, written as a column vector. The following

lemma gives an explicit representation of the vector Q−1
1,•, which determines all the arbitrage

properties of the model under consideration.

Lemma 3.8. In the context of the model of this section, suppose that Q is a unit triangular

matrix. Then, for all k = 1, . . . , d, it holds that Q−1
1,k = αk, where αk is defined by

α1 := 1 and αk :=
∑

J∈A(k)

(−1)|J |−1

|J |−1∏
l=1

qjl,jl+1
, for k = 2, . . . , d,
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where A(k) denotes the family of all subsets J = {j1, . . . , jr} ⊆ {1, . . . , k}, with r ≤ k, such that

j1 = 1, jr = k and jl < jl+1, for all l = 1, . . . , r − 1, and |J | denotes the cardinality of J .

Proof. The vector Q−1
1,• is the unique solution π ∈ Rd to the linear system Q>π = e1. Since Q is

a unit triangular matrix, the solution π is characterized by π1 = 1 and by the recursive relation

(3.12) πk = −
k−1∑
i=1

πiqi,k, for all k = 2, . . . , d.

To prove the lemma, it suffices to show that the vector α = (α1, . . . , αd)
> satisfies (3.12). To

this effect, notice that, for every k = 2, . . . , d,

−
k−1∑
i=1

αiqi,k = −q1,k −
k−1∑
i=2

∑
J∈A(i)

(−1)|J |−1

|J |−1∏
l=1

qjl,jl+1
qi,k = αk.

This shows that α = (α1, . . . , αd)
> satisfies (3.12) and, therefore, it holds that Q−1

1,• = α. �

In view of (3.11), the vector α introduced in Lemma 3.8 generates all arbitrage strategies,

up to a multiplicative factor depending on the borrowing constraint c. More precisely, every

arbitrage strategy π is necessarily of the form π = λα, with λ > 0 satisfying λ〈α,1〉 ≤ c, and is

such that V π
1 = 1 + λY1. Furthermore, by (3.12), all such strategies π belong to the arbitrage

line (see Remark 3.5). As an example, for d = 4, all arbitrage strategies are proportional to

α =


1

−q1,2

−q1,3 + q1,2 q2,3

−q1,4 + q1,2 q2,4 + q1,3 q3,4 − q1,2 q2,3 q3,4

 .

In the model considered in this subsection, the condition characterizing the validity of NA1

takes the simple form 〈Q−1
1,•,1〉 > 0 (see Proposition 3.3). As a consequence of Lemma 3.8, this

implies the following explicit characterization of NA1:

(3.13) NA1 holds ⇐⇒ 1 +
∑

J⊆{1,...,d}

(−1)|J |−1

|J |−1∏
l=1

qjl,jl+1
> 0,

where the summation is taken over all sets J = {j1, . . . , jr}, with 2 ≤ r ≤ d, such that j1 = 1

and jl < jl+1, for all l = 1, . . . , r− 1. In view of (3.8), the same quantity appearing on the right

of (3.13) represents the denominator of the maximal arbitrage strategy πmax.

3.3. A two-dimensional example with arbitrage. We now present a two-dimensional model

that allows for a geometric visualization of the concepts introduced above. Let d = 2 and consider

a pair (Y1, Y2) of independent random variables such that Y1 = [0,+∞) and yinf
2 < 0 < ysup

2 .

Let

Q =

(
1 γ

0 1

)
,

with γ ∈ R, and suppose that the asset returns (R1, R2) are generated as in (3.1). To ensure

positive asset prices, condition (3.9) needs to be satisfied. In this example, the largest possible
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support of the distribution of the random factor Y2 is given by
yinf

2 = −1 and ysup
2 = +∞, if γ ∈ [0, 1);

yinf
2 = −1/γ and ysup

2 = +∞, if γ ≥ 1;

yinf
2 = −1 and ysup

2 = −1/γ, if γ < 0.

In view of (3.10), a strategy π = (π1, π2) is admissible if and only if

(3.14)


π1 ≥ 0 and − γπ1 ≤ π2 ≤ 1− γπ1, if γ ∈ [0, 1);

π1 ≥ 0 and − γπ1 ≤ π2 ≤ γ − γπ1, if γ ≥ 1;

π1 ≥ 0 and γ − γπ1 ≤ π2 ≤ 1− γπ1, if γ < 0.

In this two-dimensional setting, the borrowing constraint (3.6) takes the form π1 + π2 ≤ c.

Together with (3.14), this constraint determines the set Θ of allowed strategies. Regardless of

the values of γ and c, arbitrage opportunities always exist. More specifically, it holds that

(3.15) Iarb ∩Θ =
{
π ∈ R2 : π1 > 0, π2 = −γπ1 and π1(1− γ) ≤ c

}
6= ∅.

The arbitrage line (see Remark 3.5) is described by the equation π2 = −γπ1. Figure 1 provides

a visualization of the set Θ, with the arbitrage line highlighted in red.

π1

π2

π2 = 1− γπ1

π2 = c− π1

1

c

( c
1−γ ,−

cγ
1−γ ) π2 = −γπ1

Figure 1. Geometric illustration of the set Θ (yellow area), for c = 2.5 and γ = 0.5.

The NA1 condition is satisfied if and only if 〈Q−1
1,•,1〉 > 0. Therefore, we have that

NA1 holds ⇐⇒ γ < 1.

Indeed, from (3.15) we have that Iarb ∩ Θ̂ = ∅ if and only if γ < 1. Graphically, this condition

corresponds to requesting that the arbitrage line intersects the borrowing constraint line (see

Figure 1), i.e., the line of equation π2 = c − π1. Observe also that the set Θ is compact if and

only if such an intersection occurs (compare with condition (iv) in Proposition 2.2).
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For γ < 1, all arbitrage strategies are contained in the line segment passing through the origin

and the point (πmax
1 , πmax

2 ) characterizing the maximal arbitrage strategy and given by

(3.16) πmax
1 =

c

1− γ
and πmax

2 = − cγ

1− γ
,

as follows from (3.8). Graphically, the strategy πmax corresponds to the point of intersection

between the arbitrage line and the borrowing constraint line. If the two lines do not intersect,

then every arbitrage opportunity can be arbitrarily scaled (i.e., NA1 fails to hold).

In view of Theorem 2.9, the numéraire portfolio ρ exists if and only if γ < 1. The numéraire

portfolio may or may not coincide with the maximal arbitrage strategy πmax, depending on the

distributional properties of Y1 and Y2. For illustration, we present three simple examples.

Example 3.9. Let γ ∈ [0, 1) and suppose that E[Y2] = 0. In this case, it holds that ρ = πmax.

Indeed, let π = (π1, π2) be an arbitrary strategy satisfying (3.14) and π1 + π2 ≤ c. By Lemma

3.6, there exists a strategy of the form π̂ = (π̂1, c− π̂1) such that V π̂
1 ≥ V π

1 a.s. Due to (3.14), it

necessarily holds that 0 ≤ π̂1 ≤ c/(1− γ). Therefore, using the independence of Y1 and Y2 and

the fact that E[Y2] = 0, we have that

E
[
V π

1

V πmax

1

]
≤ E

[
V π̂

1

V πmax

1

]
= E

[
1 + π̂1Y1

1 + c
1−γY1

]
≤ 1,

where the last inequality follows from the fact that Y1 ≥ 0 a.s. This shows that the numéraire

portfolio ρ coincides with the maximal arbitrage strategy πmax given in (3.16).

Example 3.10. Let γ = 1/2 and c = 1. Suppose that Y1 ∼ Exp(1) and 1 + Y2 ∼ Exp(β), with

β > 0. In this case, for suitable values of β, the maximal arbitrage strategy is not the numéraire

portfolio. Indeed, considering the strategy (0, 1) ∈ Θ, we have that

E

[
V

(0,1)
1

V πmax

1

]
= E

[
1 + Y2

1 + 2Y1

]
=

1

β
E
[

1

1 + 2Y1

]
=

√
e

2β

∫ +∞

1/2

e−x

x
dx ≈ 0.461

β
.

For any sufficiently small value of β, it holds that E[V
(0,1)

1 /V πmax

1 ] > 1 and, therefore, the

strategy πmax cannot be the numéraire portfolio in that case. Furthermore, since V πmax

1 ≥ V π
1

a.s. for all π ∈ Iarb ∩ Θ (see Lemma 3.6), the numéraire portfolio ρ does not belong to the set

of arbitrage opportunities (i.e., ρ /∈ Iarb ∩Θ).9 In view of Remark 2.10, the log-optimal strategy

ρ is therefore not an arbitrage strategy. Moreover, since the trading constraint (3.6) is binding

for ρ (as a consequence of Lemma 3.6), it is not allowed to improve the strategy ρ by adding to

it a fraction of any arbitrage strategy.

This example shows that, even in the presence of arbitrage, it is not necessarily optimal to

invest in an arbitrage opportunity. The financial intuition is that, for a logarithmic investor and

sufficiently small β, the risk-reward profile of the strategy ρ is more attractive than any arbitrage

opportunity. Indeed, in the present example every allowed strategy π = (π1, π2) satisfies

V π
1 = 1 + π1Y

1 + (π1/2 + π2)Y 2.

Since π1/2 + π2 ≥ 0 by (3.14), losses can only occur on the event {Y 2 < 0}, which happens

with probability 1 − exp(−β). In view of (3.15), arbitrage strategies satisfy π1/2 + π2 = 0

9Taking for instance β = 0.3 in the example under consideration, the numéraire portfolio ρ can be numerically
computed as ρ ≈ (1.335,−0.335) 6= (2,−1) = πmax.
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and therefore eliminate the influence of the risk factor Y 2, with consequently no risk of losses.

On the contrary, for sufficiently small β the log-optimal strategy ρ does not belong to the set

Iarb, thus implying a positive exposure to the factor Y 2. The financial explanation is that the

log-optimal strategy can tolerate the risk of losses in order to profit from potentially large values

of Y 2, which are most likely for small values of β.

Example 3.11. Let γ < 0 and suppose that E[Y1] < +∞ and E[Y2] < +∞. Under these

assumptions, the log-optimal portfolio π∗ exists and, therefore, it coincides with the numéraire

portfolio ρ. Lemma 3.6 together with (3.14) implies that π∗ is of the form (π∗1, c − π∗1), with

π∗1 ∈ D(c, γ) := [ (c−1)+

1−γ , c−γ1−γ ]. Consider the function g : D(c, γ)→ R defined by

g(π1) := E
[
log
(
V

(π1,c−π1)
1

)]
= E

[
log
(
1 + π1

(
Y1 + (γ − 1)Y2

)
+ cY2

)]
,

for π1 ∈ D(c, γ). Since the function g is concave and πmax
1 = c/(1 − γ) belongs to the interior

of the interval D(c, γ), the log-optimal portfolio π∗ is given by πmax if and only if g′(πmax
1 ) = 0.

The latter condition is equivalent to

(3.17) E

[
Y1

1 + c
1−γY1

]
= (1− γ)E

[
Y2

1 + c
1−γY1

]
.

In the present example, ρ = πmax holds if and only if condition (3.17) is satisfied. In particular,

unlike in Example 3.9 where γ ∈ [0, 1), note that (3.17) cannot be satisfied if E[Y2] = 0.

4. The multi-period setting

In this section, we extend the analysis of Section 2 to the multi-period case. We allow for

convex trading constraints evolving randomly over time and prove that NA1 holds in a dynamic

setting if and only if it holds in each single trading period. This fundamental fact enables us to

address the multi-period case by relying on arguments similar to those employed in Section 2. For

brevity of presentation, we prove multi-period versions of only the central results characterizing

market viability and NA1, the remaining results and remarks admitting analogous extensions.

4.1. Setting and trading restrictions. Let (Ω,F ,F, P ) be a filtered probability space, where

F = (Ft)t=0,1,...,T and F0 is the trivial σ-field completed by the P -nullsets of F , for a fixed

time horizon T ∈ N. Similarly to Section 2, we consider d risky assets and a riskless asset with

constant price equal to one. The discounted prices of the d risky assets are represented by the

d-dimensional adapted process S = (St)t=0,1,...,T . For each i = 1, . . . , d, we assume that

Sit = Sit−1(1 +Rit), for all t = 1, . . . , T,

where each random variable Rit is Ft-measurable, satisfies Rit ≥ −1 a.s. and represents the return

of asset i on the period [t − 1, t]. For each t = 1, . . . , T , we denote by St the Ft−1-conditional

support of the random vector Rt = (R1
t , . . . , R

d
t )
> (i.e., the support of a regular version of the

Ft−1-conditional distribution of Rt, see [BCL19, Definition 2.2]). We also denote by Lt the

smallest linear subspace of Rd containing St and by L⊥t its orthogonal complement. Conditional

expectations are to be understood in the generalized sense (see, e.g., [HWY92, Section 1.4]).
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A set-valued process A = (At)t=1,...,T is said to be predictable if, for each t = 1, . . . , T , the

correspondence (set-valued mapping) At from Ω to Rd is Ft−1-measurable.10 The processes

S = (St)t=1,...,T , L = (Lt)t=1,...,T and L⊥ = (L⊥t )t=1,...,T are all predictable (see [BCL19, Lemma

2.4] and [RW98, Exercise 14.12-(d)]). For each t = 1, . . . , T , the orthogonal projection of a vector

x ∈ Rd on Lt is denoted by pLt(x) and it is Ft−1-measurable (see [RW98, Exercise 14.17]).

We describe trading strategies via predictable processes π = (πt)t=1,...,T , with πt = (π1
t , . . . , π

d
t )>

representing fractions of wealth held in the d risky assets between time t − 1 and time t. We

denote by V π
t (v) the wealth at time t generated by strategy π starting from capital v > 0, with

V π
0 (v) = v and V π

t (v) = v

t∏
k=1

(1 + 〈πk, Rk〉), for t = 1, . . . , T.

As in Section 2.1, we define V π
t := V π

t (1). A predictable strategy π is said to be admissible if

V π
t ≥ 0 a.s., for all t = 1, . . . , T . Equivalently, introducing the random set

(4.1) Θadm,t := {π ∈ Rd : 〈π, z〉 ≥ −1 for all z ∈ St}, for t = 1, . . . , T,

a predictable strategy π is admissible if and only if πt ∈ Θadm,t holds a.s. for all t = 1, . . . , T .

Note that, for every (ω, t) ∈ Ω×{1, . . . , T}, the set Θadm,t(ω) is a non-empty, closed and convex

subset of Rd. Arguing similarly as in [RW98, Exercise 14.12-(e)], it can be shown that the

predictability of S implies that the set-valued process Θadm = (Θadm,t)t=1,...,T is predictable.

Trading constraints are modelled through a set-valued predictable process Θc = (Θc,t)t=1,...,T

such that Θc,t(ω) is a convex closed subset of Rd, for all (ω, t) ∈ Ω × {1, . . . , T}. Similarly as

in Section 2.1, we assume that L⊥t (ω) ⊂ Θc,t(ω), for all (ω, t) ∈ Ω × {1, . . . , T}. The family

of allowed strategies is given by all Rd-valued predictable processes π = (πt)t=1,...,T such that

πt belongs a.s. to Θt := Θadm,t ∩ Θc,t, for all t = 1, . . . , T . Note that, as a consequence of

[RW98, Proposition 14.11], the set-valued process Θ = (Θt)t=1,...,T is predictable. For brevity of

notation, we shall simply write π ∈ Θ to denote that a trading strategy π is allowed. For each

(ω, t) ∈ Ω× {1, . . . , T}, the set Θ̂t(ω) is defined as the recession cone of Θt(ω). The set-valued

process Θ̂ = (Θ̂t)t=1,...,T is predictable, as a consequence of the predictability of Θ together with

[RW98, Exercise 14.21], and admits the same financial interpretation as the recession cone Θ̂

introduced in a single-period setting in Section 2.1.

Remark 4.1. Trading constraints evolving randomly over time arise naturally as a consequence

of the admissibility requirement and are not purely motivated by mathematical generality, as

pointed out also in [KK07]. Indeed, admissibility requires that, for each t = 1 . . . , T , the strategy

πt is chosen at time t− 1 in such a way that 〈πt, Rt〉 ≥ −1 a.s., conditionally on the information

available up to time t−1. Therefore, as becomes apparent from (4.1), the randomness of Θadm,t

is due to the fact that the Ft−1-conditional support St of Rt and, therefore, the set of admissible

strategies πt may depend on the realizations of the asset returns (R1, . . . , Rt−1). Consequently,

even in the presence of deterministic trading constraints Θc, the set-valued process Θ of allowed

strategies is a deterministic process only in the special case where the asset returns (Rt)t=1,...,T

form a sequence of serially independent random vectors.

10We recall that a correspondence At from Ω to Rd is Ft−1-measurable if, for every open subset G ⊂ Rd, it holds
that {ω ∈ Ω : At(ω) ∩G 6= ∅} ∈ Ft−1, see [RW98, Definition 14.1].
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4.2. Arbitrage concepts. An allowed strategy π ∈ Θ is said to be an arbitrage opportunity if

(4.2) P (V π
T ≥ 1) = 1 and P (V π

T > 1) > 0.

We say that no classical arbitrage holds if there does not exist a strategy π ∈ Θ satisfying

(4.2). For t = 1, . . . , T , we denote by L0
+(Ft) the family of non-negative Ft-measurable random

variables. Definition 2.1 can be naturally extended to a multi-period setting as follows.

Definition 4.2. A random variable ξ ∈ L0
+(FT ) with P (ξ > 0) > 0 is said to be an arbitrage

of the first kind if v(ξ) = 0, where v(ξ) := inf{v > 0 : ∃ π ∈ Θ such that V π
T (v) ≥ ξ a.s.}.

No arbitrage of the first kind (NA1) holds if, for every ξ ∈ L0
+(FT ), v(ξ) = 0 implies ξ = 0 a.s.

As a preliminary to the statement of the next proposition, we define, for each t = 1, . . . , T ,

Iarb,t := {π ∈ Rd : 〈π, z〉 ≥ 0 for all z ∈ St} \ L⊥t .

By [RW98, Exercise 14.12-(e)], the random set Iarb,t is Ft−1-measurable, for all t = 1, . . . , T .

For a random variable ζ ∈ L0
+(Ft), we define its super-hedging value at time t− 1 by

vt−1(ζ) := ess inf
{
x ∈ L0

+(Ft−1) : ∃ h ∈ L0(Ft−1; Θt) such that x(1 + 〈h,Rt〉) ≥ ζ a.s.
}
,

where L0(Ft−1; Θt) denotes the family of Ft−1-measurable random vectors h : Ω→ Rd such that

P (h ∈ Θt) = 1.

For the usual concept of no classical arbitrage, it is well-known that absence of arbitrage in

a multi-period setting is equivalent to absence of arbitrage opportunities in each single trading

period (see, e.g., [FS16, Proposition 5.11]). In the next proposition, we prove that an analogous

property holds for NA1 and we also provide several equivalent characterizations.

Proposition 4.3. The following are equivalent:

(i) the NA1 condition holds;

(ii) there does not exist a strategy π ∈ Θ̂ satisfying (4.2);

(iii) for every t = 1, . . . , T and ζ ∈ L0
+(Ft), vt−1(ζ) = 0 a.s. implies ζ = 0 a.s.;

(iv) Iarb,t ∩ Θ̂t = ∅ a.s., for all t = 1, . . . , T ;

(v) Θ̂t = L⊥t a.s., for all t = 1, . . . , T ;

(vi) the set Θt ∩ Lt is a.s. bounded (and, hence, compact), for all t = 1, . . . , T .

Proof. (i)⇒ (iii): by way of contradiction, assume that NA1 holds and suppose that, for some

t = 1, . . . , T , there exists ζ ∈ L0
+(Ft) such that vt−1(ζ) = 0 a.s. and P (ζ > 0) > 0. In this case,

for every v > 0, one can find h ∈ L0(Ft−1; Θt) such that v(1 + 〈h,Rt〉) ≥ ζ a.s. Define then the

strategy π = (πs)s=1,...,T by πs := h if s = t and πs := 0 otherwise. With this definition, it holds

that π ∈ Θ and V π
T (v) = v(1 + 〈h,Rt〉) ≥ ζ a.s., contradicting the validity of NA1.

(iii) ⇒ (iv): we adapt to the present setting the arguments of [KK07, Section 5]. By way of

contradiction, assume that (iii) holds and let P (Iarb,t ∩ Θ̂t 6= ∅) > 0, for some t = 1, . . . , T . For

each n ∈ N, define the Ft−1-measurable random set

Inarb,t :=

{
π ∈ Rd : 〈π, z〉 ≥ 0 for all z ∈ St and E

[
〈π,Rt〉

1 + 〈π,Rt〉

∣∣∣∣Ft−1

]
≥ 1/n

}
⊂ Iarb,t.

We have that Iarb,t ∩ Θ̂t 6= ∅ if and only if Inarb,t ∩ Θ̂t 6= ∅ for all large enough n ∈ N (see [KK07,

Lemma 5.1]). Hence, there exists a sufficiently large n ∈ N such that P (Inarb,t ∩ Θ̂t 6= ∅) > 0. It
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can be easily checked that the set Inarb,t(ω)∩Θ̂t(ω) is closed and convex, for all ω ∈ Ω. Therefore,

by [RW98, Corollary 14.6], there exists an Ft−1-measurable random vector πnt : Ω→ Rd such that

πnt (ω) ∈ Inarb,t(ω)∩ Θ̂t(ω) when Inarb,t(ω)∩ Θ̂t(ω) 6= ∅ and πnt (ω) = 0 when Inarb,t(ω)∩ Θ̂t(ω) = ∅.
The random variable ζ := 〈πnt , Rt〉 belongs to L0

+(Ft) and satisfies P (ζ > 0) > 0. Moreover,

since πnt ∈ Θ̂t a.s., it holds that πnt /v ∈ Θt a.s., for all v > 0. Noting that v(1 + 〈πnt /v,Rt〉) > ζ

a.s., this implies that vt−1(ζ) = 0 a.s., thus contradicting property (iii).

(ii) ⇔ (iv): this equivalence follows by the same arguments used in [FS16, Proposition 5.11],

together with the construction of πnt performed in the previous step of the proof.

(iv)⇒ (v)⇒ (vi): these implications can be proved as in Proposition 2.2.

(vi)⇒ (i): by way of contradiction, let ξ ∈ L0
+(FT ) with P (ξ > 0) > 0 and suppose that, for all

n ∈ N, there exists an allowed strategy πn ∈ Θ such that V πn

T (1/n) ≥ ξ a.s. Then, it holds that

1 +
∏T
t=1〈pLt(πnt ), Rt〉 ≥ nξ a.s., for all n ∈ N. Similarly as in the proof of Proposition 2.2, the

fact that P (ξ > 0) > 0 contradicts the a.s. boundedness of the sets Θt∩Lt, for t = 1, . . . , T . �

Proposition 4.3 shows that, in a multi-period setting, NA1 is equivalent to the absence of

arbitrarily scalable arbitrage opportunities (property (ii)) as well as to the absence of arbitrage

of the first kind in each single trading period (property (iii)). Properties (iv)–(vi) can be

interpreted similarly to the analogous properties discussed in Section 2.2. Note also that NA1 is

equivalent to no classical arbitrage if the constraint process Θc is cone-valued (see Remark 2.3).

Remark 4.4. Property (vi) in Proposition 4.3 implies that, for each t = 1, . . . , T , there exists

an Ft−1-measurable random variable Ht such that ‖π‖ ≤ Ht a.s., for all π ∈ L0(Ft−1; Θt ∩ Lt).
The Ft−1-measurability of Ht follows from the closedness and Ft−1-measurability of Θt ∩ Lt.

4.3. Market viability and fundamental theorems. We proceed to characterize NA1 in

terms of the solvability of portfolio optimization problems, extending Theorem 2.5 to the multi-

period setting. In view of Proposition 4.3, the NA1 condition admits a local description. By

employing a dynamic programming approach, this allows reducing a portfolio optimization prob-

lem to a sequence of one-period problems, to which we can apply techniques analogous to those

used in the proof of Theorem 2.5. This approach is inspired by [RS06], where the implication

(i) ⇒ (ii) of the following theorem has been proved under no classical arbitrage for an uncon-

strained market. In comparison to [RS06], we allow for convex trading constraints and base our

analysis on the minimal NA1 condition. Similarly as in Section 2.3, we denote by U the set of

all functions U : Ω × R+ → R ∪ {−∞} such that U(·, x) is FT -measurable and bounded from

below, for every x > 0, and U(ω, ·) is continuous, strictly increasing and concave, for a.e. ω ∈ Ω.

Theorem 4.5. The following are equivalent:

(i) the NA1 condition holds;

(ii) for every U ∈ U such that supπ∈Θ E[U+(V π
T )] < +∞, there exists an allowed strategy

π∗ ∈ Θ ∩ L such that

E
[
U(V π∗

T )
]

= sup
π∈Θ

E
[
U(V π

T )
]
.

Proof. (i)⇒ (ii): suppose that NA1 holds and let U ∈ U be such that supπ∈Θ E[U+(V π
T )] < +∞.

Since U ∈ U , it holds that supπ∈Θ E[U+(xV π
T )] < +∞ for all x ≥ 0. The existence of an optimal

strategy π∗ ∈ Θ ∩ L will be shown in a constructive way by applying dynamic programming.
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For all (ω, x) ∈ Ω× R+, define UT (ω, x) := U(ω, x) and, for t = 0, 1, . . . , T − 1,

(4.3) Ut(ω, x) := ess sup
πt+1∈L0(Ft;Θt+1∩Lt+1)

E
[
Ut+1

(
ω, x(1 + 〈πt+1, Rt+1(ω)〉)

)∣∣Ft] (ω),

taking a regular version of the conditional expectation (the existence of the conditional expec-

tation will follow from the proof below).11 Proceeding by backward induction, let t < T and

suppose that Ut+1 ∈ U and

(4.4) sup
πt+1∈L0(Ft;Θt+1∩Lt+1)

E
[
U+
t+1

(
x(1 + 〈πt+1, Rt+1〉)

)]
< +∞, for all x ≥ 0.

These hypotheses are satisfied by assumption for t = T − 1 and will be shown inductively for

all t < T − 1. Since the family {E[Ut+1(x(1 + 〈πt+1, Rt+1〉))|Ft];πt+1 ∈ L0(Ft; Θt+1 ∩ Lt+1)} is

directed upward, for all x > 0 there exists a sequence (πnt+1(x))n∈N with values in Θt+1 ∩ Lt+1

such that

(4.5) lim
n→+∞

E
[
Ut+1

(
x(1 + 〈πnt+1(x), Rt+1〉)

)∣∣Ft] = Ut(x) a.s.

As a consequence of NA1, the set Θt+1 ∩ Lt+1 is closed and a.s. bounded (see Proposition 4.3).

Therefore, by [FS16, Lemma 1.64], there exists a subsequence (πnkt+1(x))k∈N converging a.s. to

an element π̂t+1(x) ∈ L0(Ft; Θt+1 ∩ Lt+1). By the same arguments used in the proof of the

implication (i) ⇒ (ii) of Theorem 2.5 (but carried out conditionally on Ft, see also [RS06,

Lemma 2.3]), the boundedness of Θt+1∩Lt+1 (see Remark 4.4), the properties of Ut+1 and (4.4)

together imply the existence of an Ft+1-measurable integrable random variable ζt+1 such that

(4.6) U+
t+1

(
x(1 + 〈πt+1, Rt+1〉)

)
≤ ζt+1, for all πt+1 ∈ L0(Ft; Θt+1 ∩ Lt+1).

Therefore, an application of Fatou’s lemma, together with the continuity of Ut+1, yields that

lim sup
k→+∞

E
[
Ut+1

(
x(1 + 〈πnkt+1(x), Rt+1〉)

)∣∣Ft] ≤ E
[
lim sup
k→+∞

Ut+1

(
x(1 + 〈πnkt+1(x), Rt+1〉)

)∣∣∣Ft]
= E

[
Ut+1

(
x(1 + 〈π̂t+1(x), Rt+1〉)

)∣∣Ft] .
Together with (4.5), this shows that

(4.7) Ut(x) = E
[
Ut+1

(
x(1 + 〈π̂t+1(x), Rt+1〉)

)∣∣Ft].
Condition (4.4) implies that Ut(x) < +∞ a.s., for all x ≥ 0, thus proving the well-posedness

of (4.3). Moreover, the same arguments employed in [RS06, Lemma 2.5] allow to show that

the optimizer π̂t+1(x) can be chosen Ft ⊗ B(R+)-measurable.12 Since the set Θt+1 ∩ Lt+1 is

convex and we assumed that Ut+1 ∈ U , the function Ut(ω, ·) inherits the strict increasingness

and concavity of Ut+1(ω, ·), for a.e. ω ∈ Ω. Furthermore, Ut(x) ≥ E[Ut+1(x)|Ft] and, therefore,

Ut(x) is a.s. bounded from below, for every x > 0. In particular, this implies that Ut(x) is a.s.

finite valued for all x > 0 and, by concavity, continuous on (0,+∞). To prove continuity at

11In the following, for simplicity of notation, we shall omit to denote explicitly the dependence on ω in Ut(ω, x).
12While [RS06] work under no classical arbitrage and do not consider trading constraints, an inspection of the
proof of their Lemma 2.5 shows that only the a.s. boundedness of the set of allowed strategies is needed. In our
context, the latter property holds under NA1 as a consequence of Proposition 4.3.
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x = 0, note that Ut(0) ≤ lim infn→+∞ Ut(1/n). On the other hand, using (4.7), it holds that

lim sup
n→+∞

Ut(1/n) = lim sup
n→+∞

E
[
Ut+1

(
(1/n)(1 + 〈π̂t+1(1/n), Rt+1〉)

)∣∣Ft]
≤ E

[
lim sup
n→+∞

Ut+1

(
(1/n)(1 + 〈π̂t+1(1/n), Rt+1〉)

)∣∣∣Ft] = E[Ut+1(0)|Ft] = Ut(0),

where, similarly as above, the inequality follows from Fatou’s lemma using (4.6) and the second

equality follows from the continuity of Ut+1 together with the a.s. boundedness of Θt+1 ∩ Lt+1.

We have thus shown that Ut ∈ U . To complete the proof of the inductive hypothesis, it remains

to show that (4.4) holds true for each t < T − 1. For every x > 0 and πt ∈ L0(Ft−1; Θt ∩ Lt),
using repeatedly (4.7) and iterated conditioning, we have that

(4.8) E
[
U+
t

(
x(1 + 〈πt, Rt〉)

)]
≤ E

[
U+

(
x(1 + 〈πt, Rt〉)

T−t∏
k=1

(1 + 〈π̂t+k(Vt+k−1), Rt+k〉)
)]
,

with Vt := x(1+〈πt, Rt〉) and Vt+k := Vt+k−1(1+〈π̂t+k(Vt+k−1), Rt+k〉), for k = 1, . . . , T−t. Since

supπ∈Θ E[U+(xV π
T )] < +∞, inequality (4.8) implies the validity of (4.4), for all t = 0, 1, . . . , T−2.

Finally, the optimal strategy π∗ = (π∗t )t=1,...,T ∈ Θ ∩ L is defined recursively by

π∗t := π̂t(V
π∗
t−1), where V π∗

t = V π∗
t−1(1 + 〈π∗t , Rt〉), for all t = 1, . . . , T, and V π∗

0 = 1.

The optimality of π∗ follows by noting that, for any strategy π ∈ Θ,

E[U(V π
T )] ≤ E[UT−1(V π

T−1)] ≤ . . . ≤ U0(1) = E[U1(V π∗
1 )] = . . . = E[U(V π∗

T )].

(ii) ⇒ (i): in view of Proposition 4.3, this implication follows by the same argument used for

proving the implication (ii)⇒ (i) in Theorem 2.5. �

To the best of our knowledge, Theorem 4.5 provides the most general characterization of

market viability for discrete-time models under random convex constraints.

In the following definition, for π ∈ Θ, we denote by V π the stochastic process (V π
t )t=0,1,...,T .

Definition 4.6. An adapted stochastic process Z = (Zt)t=0,1,...,T satisfying Zt > 0 a.s. for all

t = 1, . . . , T and Z0 = 1 is said to be a supermartingale deflator if ZV π is a supermartingale, for

all π ∈ Θ. The set of all supermartingale deflators is denoted by D. An allowed strategy ρ ∈ Θ

is said to be a numéraire portfolio if 1/V ρ ∈ D, i.e., if V π/V ρ is a supermartingale.

We now prove a version of the fundamental theorem of asset pricing based on NA1 in the

presence of convex constraints, extending Theorem 2.9 to the multi-period case. In a continuous-

time semimartingale setting, the general version of this result is given in [KK07, Theorem 4.12].

By relying on the same approach adopted in the proof of Theorem 2.9, we can give a simple and

short proof in a general discrete-time setting.

Theorem 4.7. The following are equivalent:

(i) the NA1 condition holds;

(ii) D 6= ∅;
(iii) there exists the numéraire portfolio.

Proof. (i) ⇒ (iii): let t ∈ {1, . . . , T} and consider a family (fn)n∈N of measurable functions

such that fn : Rd → (0, 1] and E[log(1 + ‖Rt‖)fn(Rt)] < +∞, for each n ∈ N, and fn ↗ 1 as
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n → +∞ (see the proof of Theorem 2.9). For each n ∈ N, let Ut,n(ω, x) := log(x)fn(Rt(ω)),

for all (ω, x) ∈ Ω × (0,+∞). For each n ∈ N, it holds that Ut,n ∈ U . By Proposition 4.3, NA1

implies that Θt∩Lt is a.s. bounded and, therefore, inequality (2.7) conditionally on Ft−1 implies

that ess supπt∈L0(Ft−1;Θt∩Lt) E[U+
t,n(1 + 〈πt, Rt〉)|Ft−1] < +∞ a.s. Using again the boundedness

of Θt ∩ Lt, this can be shown to imply the existence of an element ρnt ∈ L0(Ft−1; Θt ∩ Lt) such

that

E
[
Ut,n(1 + 〈ρnt , Rt〉)

∣∣Ft−1

]
= ess sup

πt∈L0(Ft−1;Θt∩Lt)
E
[
Ut,n(1 + 〈πt, Rt〉)

∣∣Ft−1

]
a.s.

By the same reasoning as in (2.8)-(2.9) (now conditionally on Ft−1), we obtain that

E
[
〈πt − ρnt , Rt〉
1 + 〈ρnt , Rt〉

fn(Rt)

∣∣∣∣Ft−1

]
≤ 0 a.s., for all πt ∈ Θt and n ∈ N.

Since Θt ∩ Lt is bounded and closed, we can assume that (ρnt )n∈N converges a.s. to an element

ρt ∈ L0(Ft−1; Θt ∩Lt) as n→ +∞ (up to passing to a suitable subsequence, see [FS16, Lemma

1.64]). Since fn ↗ 1 as n→ +∞, an application of Fatou’s lemma gives that

E
[
〈πt − ρt, Rt〉
1 + 〈ρt, Rt〉

∣∣∣∣Ft−1

]
≤ 0 a.s., for all πt ∈ L0(Ft−1; Θt).

Let π = (πt)t=1,...,T ∈ Θ. Then, for each t ∈ {1, . . . , T − 1}, the last inequality implies that

E
[
V π
t

V ρ
t

∣∣∣∣Ft−1

]
=
V π
t−1

V ρ
t−1

E
[

1 + 〈πt, Rt〉
1 + 〈ρt, Rt〉

∣∣∣∣Ft−1

]
≤
V π
t−1

V ρ
t−1

a.s.,

thus proving that the strategy ρ = (ρt)t=1,...,T corresponds to the numéraire portfolio.

(iii)⇒ (ii): this implication is immediate by Definition 4.6.

(ii)⇒ (i): this implication follows by the same argument used in the proof of Theorem 2.9. �

Finally, we mention that the proof of Theorem 2.12 can be similarly extended to the multi-

period case, thus providing a utility maximization proof of the fundamental theorem of asset

pricing for no classical arbitrage, in the spirit of [Rog94] (see also [KaS09, Section 2.1.4]). Theo-

rem 2.15 also admits a direct extension to the multi-period setting, with an identical statement.
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