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1 Introduction

In a fundamental theory of quantum gravity, the thermodynamic properties of black holes

should emerge from a microscopic statistical description. A major achievement of string

theory has been to provide precisely the microstates accounting for the entropy of certain

classes of supersymmetric black holes [1]. While most of the original work focused on

asymptotically flat black holes, in the last few years there has been a lot of progress on

black holes in Anti de Sitter (AdS) space and their holographic dual conformal field theories

(CFT’s), starting with [2, 3] (see [4] for a review and a comprehensive list of references).
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In this paper we will be interested in supersymmetric, asymptotically AdS black holes with

non-trivial rotation, where very recent progress has been made in [5–13].

The main reason for considering asymptotically AdS spacetimes is that quantum grav-

ity in such spaces can be understood in terms of a dual CFT via the AdS/CFT correspon-

dence, and this makes it in principle possible to provide a complete characterization of the

black hole microstates.1 Conversely, studying black hole solutions to string theory teaches

us about the statistical behavior of interesting ensembles of states in holographic CFT’s.

For both sides of the correspondence to be under good control, one typically demands some

supersymmetry to be preserved.

A general feature that has been identified in the last few years is that the Bekenstein-

Hawking entropy of BPS black holes in AdS arises from an extremization principle [2, 3, 15–

17]. The entropy is indeed the Legendre transform of a rather simple, homogeneous entropy

function of rotational and electric chemical potentials ωi, ϕI , subject to a linear, complex

constraint that schematically reads

∑

i

ωi −
∑

I

ϕI = 2π i . (1.1)

Since field theory partition functions are more directly computed as a function of chemical

potentials (that is background fields) rather than charges (that is expectation values), it is

convenient to recast the problem of the black hole entropy into the one of computing the

corresponding entropy function. Of course, this is just a change of statistical ensemble.

It is thus interesting to ask what is the physical interpretation of the entropy function,

both on the gravity and the field theory side of the holographic correspondence. In the

case of rotating black holes, the question is subtle because the saddle point values of both

the rotational and electric chemical potentials turn out to be complex, as enforced by the

constraint (1.1). Although this may not be surprising if one recalls that rotating spacetimes

are related to complex saddles of the gravitational path integral [18, 19], it is not obvious

how to read the chemical potentials in (1.1) from the black hole solution. These issues

were solved in [5], where it was found that the entropy function for a class of rotating

BPS black holes in AdS5 is the supergravity on-shell action after taking a specific BPS

limit, that goes along a supersymmetric trajectory in the space of complexified solutions.

Further, the constraint (1.1) was interpreted as a regularity condition for the Killing spinor

of the supersymmetric solution, which is anti-periodic when going around the compactified

Euclidean time in the smooth cigar-like geometry.2

In this paper, we extend the analysis of [5] to other classes of rotating, asymptotically

AdS black holes in different dimensions. While the five-dimensional black hole discussed

in [5] carries two angular momenta and one electric charge (dual to the R-charge of generic

1For extremal black holes (irrespective of asymptotics) one can also isolate an AdS2 region by zooming in

on the near horizon. Then one can use the AdS2/CFT1 correspondence to formulate the entropy problem at

the full quantum level, following Sen’s approach [14]. However the relevant CFT1 is not known in general.

We will comment on the relation of our asymptotically AdS analysis with Sen’s approach later on in this

section.
2The entropy function of non-rotating BPS black holes has been related to the supergravity on-shell

action in [20–22] for AdS4 black holes and in [23] for AdS6 black holes.
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four-dimensional N = 1 superconformal field theories), here we discuss the case with one

angular momentum and multiple electric charges. We also analyze four-, six- and seven-

dimensional black holes. The solutions we consider were presented in [24, 25]. In addition

to the Bekenstein-Hawking entropy S, these carry macroscopic energy E, angular momenta

Ji and electric charges QI (with some of the possible angular momenta or electric charges

being set equal in the explicit solutions of [24, 25]). Conjugate to the charges E, Ji, QI

one has the chemical potentials β,Ωi,ΦI , where β is the inverse Hawking temperature, Ωi

are the angular velocities and ΦI are the electrostatic potentials of the black hole. The

corresponding expressions can be read off from the solution by standard methods [24].

In five and four dimensions, we explicitly evaluate the Euclidean action I of the finite-

temperature, non-supersymmetric solution using holographic renormalization, and verify

that it satisfies the quantum statistical relation

I = βE − S − β ΩiJi − β ΦIQI . (1.2)

This well-known relation, first proposed for quantum gravity in [18] (see e.g. [26] for a

discussion in relation with holography) is expected to hold in full generality, and we assume

that it is also satisfied in six and seven dimensions. The quantum statistical relation makes

it manifest that the on-shell action has an interpretation as a thermodynamic potential.

From a microscopic point of view, the latter corresponds to minus the logarithm of the

grand-canonical partition function, while the entropy is the logarithm of the microcanonical

partition function.

Starting from the non-supersymmetric and non-extremal solution, we want to reach

the BPS locus in parameter space, namely the solution that is both supersymmetric and ex-

tremal. Motivated by the fact that in the dual field theory one is mostly interested in study-

ing a supersymmetric ensemble of states, we adopt the strategy of [5] and first impose super-

symmetry, namely that the supergravity Killing spinor equations are solved. This amounts

to precisely one condition on the parameters of the original solution, and it is important to

remark that it does not automatically imply vanishing of the temperature.3 In Lorentzian

signature, this supersymmetric solution has causal pathologies unless one also sends the

temperature to zero [24]. However, here we are interested in semi-classical saddle points of

the Euclidean path integral, and thus allow for more general solutions by complexifying (one

of) the remaining parameters. Further, building on ideas of [27], we introduce the variables

ωi = β
(

Ωi − Ωi ⋆
)

, ϕI = β (ΦI − ΦI⋆) , (1.3)

where Ωi ⋆ and ΦI ⋆ are the (frozen) values taken by Ωi and ΦI in the BPS solution. The

variables (1.3) are the chemical potentials conjugate to the angular momentum and electric

charges when one identifies the generator of “time” translations with the conserved quan-

tity {Q,Q}, where Q is the supercharge.4 The asymptotic analysis of the supergravity

3For this reason, throughout the paper we will carefully distinguish between supersymmetry and ex-

tremality. A quantity evaluated after imposing both supersymmetry and extremality will be called “BPS”

and denoted by the symbol ⋆ in the formulae. For instance, S⋆ is the BPS entropy.
4In odd dimensions, there are some subtleties with the regularization of a priori divergent quantities

that we will address in section 2.
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solution defines the dual superconformal field theory (SCFT) partition function, Z. From

the previous considerations, one infers the following Hamiltonian representation:

Z = Tr
[

e−β{Q,Q}+ωiJi+ϕIQI
]

, (1.4)

where there is no (−1)F due to anti-periodicity of the supercharge. It was shown in [5]

that upon using (1.1), Z is proportional to the superconformal index [28, 29]. Note that

we have an identification between the SCFT chemical potentials appearing in (1.4) and the

black hole variables (1.3).

For each of the cases that we analyze, we verify that after imposing supersymmetry the

variables (1.3) satisfy a linear relation of the type (1.1), and are otherwise free. Moreover,

the supersymmetric on-shell action I takes the form of a simple function of these variables,

that precisely matches the entropy functions proposed in [15–17]. The supersymmetric

form of the quantum statistical relation (1.2) is

I = −S − ωiJi − ϕI QI , (1.5)

and the first law of thermodynamics in the supersymmetric ensemble reads

dS + ωi dJi + ϕI dQI = 0 . (1.6)

The Legendre transform of I (subject to the constraint (1.1)) is in general a complex

quantity, so it cannot be immediately identified with the entropy of the Lorentzian solu-

tion. However, demanding reality of the Legendre transform, which amounts to a specific

condition on the charges, one finds precisely the Bekenstein-Hawking entropy of the su-

persymmetric and extremal black hole [5, 6]. The saddle point values of the chemical

potentials remain complex and match the ones that we obtain from the solution by taking

the zero-temperature limit of (1.3). We thus conclude that the BPS limit of black hole

thermodynamics described above gives a derivation of the proposed entropy functions and

the related extremization principles, based on black hole thermodynamics and semiclassical

Euclidean quantum gravity. This extends the results of [5] and shows that the procedure

presented there has general validity. It is important to emphasize that the on-shell action

entering in the quantum statistical relation is first defined in a regular Euclidean solution

where the Wick-rotated time has been compactified and the metric is positive-definite.

After the on-shell action has been computed in this way, one can extend its value to a

complexified solution by analytic continuation [18]. As it should be clear from the discus-

sion above, we find that this complexification is crucial for the on-shell action to eventually

match the proposed entropy functions.

We observe that for the same solutions of [24, 25] studied in this paper, the BPS limit

of the quantum statistical relation was also considered in [6, 17]. However our limit is

different precisely because it reaches the physical BPS black hole through a complexified

family of solutions, specified by supersymmetry. The limit taken in [6, 17] appears similar

to the one originally discussed in [27], in that it yields real chemical potentials that satisfy

just the real part of (1.1). Correspondingly, the on-shell action in this limit does not match

the entropy functions proposed in [15–17].
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A related comment concerns the connection of our approach with Sen’s entropy func-

tion formalism, which is based on a near-horizon analysis of extremal black holes (regardless

of supersymmetry) [14, 30]. Sen’s formalism leads to real chemical potentials and a real

entropy function. Correspondingly, it was shown in [31] that this is matched by an extremal

limit of black hole thermodynamics where all quantities remain real. As discussed in [5,

section 3.3], there is in fact a continuous family of extremal limits of black hole thermody-

namics, all leading to a meaningful entropy function and an associated constraint between

chemical potentials. However only the manifestly supersymmetric limit discussed above

leads to the entropy functions proposed in [15–17]. It would be interesting to investigate

further the relation between this supersymmetric limit and Sen’s near-horizon approach.

The rest of the paper is organized as follows. We start in section 2 by studying the

five-dimensional solutions and making contact with the results of [5]. We continue in

section 3 by analyzing the four-dimensional solutions, while in section 4 we turn to six

dimensions and in section 5 we move to seven dimensions. In each case we start with a

brief review of the finite-temperature, non-supersymmetric solution, and then discuss our

BPS limit. We conclude in section 6. Appendix A and appendix B contain the details

on the computation of the on-shell action in five and four dimensions, respectively, while

appendix C describes the Legendre transformation reproducing the Bekenstein-Hawking

entropy of the general BPS black hole solutions to five-dimensional Fayet-Iliopoulos gauged

supergravity constructed in [32, 33].

2 Rotating AdS5 black holes with multiple electric charges

In this section we study the BPS limit of AdS5 black hole thermodynamics. In [5] a new

BPS limiting procedure was defined and applied to the solution of [34], which has two

independent angular momenta and —being constructed within five-dimensional minimal

gauged supergravity— just one electric charge. Here we discuss a different setup, including

multiple electric charges. We will focus on solutions to U(1)3 Fayet-Iliopoulos gauged

supergravity, that is N = 2 supergravity coupled to two vector multiplets and with a U(1)

gauging of the R-symmetry. This theory uplifts to type IIB supergravity on S5, hence

the dual SCFT is N = 4 SYM or an orbifold thereof. The most general set of black

hole conserved charges in the theory is given by the energy, three electric charges and

two angular momenta. When imposing supersymmetry and extremality these satisfy two

relations, hence the BPS solution carries four independent conserved charges [33]. Here

we will discuss a solution where the two angular momenta are set equal while the three

electric charges are independent, originally found in [35] and further discussed in [24]. This

solution contains the three-parameter BPS black hole of [32].5

We first check the finite-temperature quantum statistical relation by explicitly com-

puting the Euclidean on-shell action using holographic renormalization. Then we impose

supersymmetry and obtain complex chemical potentials satisfying the constraint (1.1) (with

5The solution where all the conserved charges are independent was given in [36]. Solutions with restricted

set of independent charges were also found in [37–39].
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one rotational chemical potential ω). We further find that the supersymmetric on-shell ac-

tion reproduces the entropy function. Then we show that these properties are preserved in

the BPS limit.

2.1 The non-supersymmetric finite-temperature solution

We start by briefly reviewing the non-supersymmetric, finite temperature solution of [35],

mostly following the presentation of [24]. The five-dimensional action is6

S =
1

16π

∫
[(

R+ 4g2
3

∑

I=1

(

XI
)−1 − 1

2
∂~φ 2

)

⋆ 1− 1

2

3
∑

I=1

(

XI
)−2

F I ∧ ⋆F I

− 1

6
|ǫIJK |AI ∧ F J ∧ FK

]

, (2.1)

where AI , I = 1, 2, 3, are Abelian gauge fields, with field strength F I = dAI , while ~φ =

(φ1, φ2) are real scalar fields and

X1 = e
− 1√

6
φ1− 1√

2
φ2 , X2 = e

− 1√
6
φ1+

1√
2
φ2 , X3 = e

2√
6
φ1 . (2.2)

This theory is a consistent truncation of type IIB supergravity on S5, where the AI arise

as Kaluza-Klein vector fields gauging the U(1)3 ⊂ SO(6) isometries of S5 [40]. It is also a

consistent truncation of five-dimensional maximal SO(6) supergravity. We describe how it

fits in the framework of Fayet-Iliopoulos gauged N = 2 supergravity in appendix A.

The solution is expressed in terms of coordinates (t, r, θ, φ, ψ) and uses the following

left-invariant 1-forms on a three-sphere S3 parameterized by (θ, φ, ψ):

σ1 + i σ2 = e−iψ(dθ + i sin θ dφ) ,

σ3 = dψ + cos θ dφ . (2.3)

These will make SU(2) × U(1) symmetry manifest. The metric, scalar fields and gauge

fields read:

ds25 = (H1H2H3)
1/3

[

− r2 Y

f1
dt2 +

r4

Y
dr2 +

r2

4

(

σ2
1 + σ2

2

)

+
f1

4r4H1H2H3

(

σ3 −
2f2
f1

dt

)2
]

, (2.4)

XI =
(H1H2H3)

1/3

HI
, (2.5)

AI = AI
t dt+AI

ψ σ3 , (2.6)

where

AI
t =

2m

r2HI
sI cI + αI , AI

ψ =
ma

r2HI
(cI sJ sK − sI cJ cK) , (2.7)

6In this paper we set to 1 the Newton constant G.
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and the indices I, J,K in AI
ψ are never equal. Here we introduced the following functions

of the radial coordinate r:

HI = 1 +
2ms2I
r2

,

f1 = r6H1H2H3 + 2ma2r2 + 4m2a2
[

2 (c1c2c3 − s1s2s3) s1s2s3 − s21s
2
2 − s22s

2
3 − s23s

2
1

]

,

f2 = 2ma (c1c2c3 − s1s2s3) r
2 + 4m2a s1s2s3 ,

f3 = 2ma2(1 + g2r2) + 4 g2m2a2
[

2(c1c2c3 − s1s2s3)s1s2s3 − s21s
2
2 − s22s

2
3 − s23s

2
1

]

,

Y = f3 + g2r6H1H2H3 + r4 − 2mr2 , (2.8)

and sI , cI are shorthand notations for:

sI = sinh δI , cI = cosh δI , I = 1, 2, 3 . (2.9)

The solution depends on the five parameters m, δ1, δ2, δ3, a. In the temporal com-

ponent of the gauge fields we also introduced a constant gauge choice αI , that will be

fixed soon. The five parameters should satisfy suitable inequalities, so that the spatial

components of the metric are positive for r > r+, where r+ denotes the position of the

outer horizon, given by the largest positive root of Y (r). This is a Killing horizon since

the Killing vector

V =
∂

∂t
+ 2

f2(r+)

f1(r+)

∂

∂ψ
(2.10)

is null at r = r+. To the outer event horizon we can associate the quantities:

S =
π2

2

√

f1(r+) , β = 4π r+
√

f1(r+)

(

dY

dr
(r+)

)−1

,

Ω = 2
f2(r+)

f1(r+)
, ΦI =

2m

r2+HI(r+)

(

sI cI +
1

2
aΩ (cI sJ sK − sI cJ cK)

)

, (2.11)

where S is the Bekenstein-Hawking entropy computed as 1
4 the area of the horizon, β =

T−1 = 2π
κ is the inverse Hawking temperature obtained from the surface gravity κ, Ω is

the angular velocity relative to a non-rotating frame at infinity as read off from the Killing

vector V , and ΦI are the electrostatic potentials,7 defined as

ΦI = ιV A
I |r+ − ιV A

I |∞ . (2.12)

Corresponding to the five parameters there are five independent conserved charges.

These are the energy E for translations along ∂
∂t , the angular momentum J for rotations

along − ∂
∂ψ , and three electric charges QI . Their values are:

E = E0 +
1

4
mπ

(

3 + a2g2 + 2 s21 + 2 s22 + 2 s23
)

,

J =
1

2
maπ (c1 c2 c3 − s1 s2 s3) ,

QI =
1

2
mπ sI cI . (2.13)

7We corrected a minus sign typo in the expression for ΦI given in eq. (3.10) of [24], see also [6].
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In [24], the electric charges and the angular momentum above were computed using the

boundary integrals8

QI = − 1

16π

∫

S3
bdry

(

XI
)−2

⋆ F I ,

J =
1

16π

∫

S3
bdry

⋆ d (gψµdx
µ) , (2.14)

while the energy E was obtained by integrating the first law of thermodynamics,

dE = T dS +ΩdJ +ΦI dQI . (2.15)

The integration constant E0 was fixed to zero in [24] by requiring that E vanishes in the

limiting case m = 0 where the solution becomes empty AdS5, which is regarded as the

vacuum solution (see [41] for more details on this approach to computing the energy).

One can also compute the same charges within the framework of holographic renor-

malization. We do so in appendix A, adopting a minimal subtraction scheme. As expected

from the analysis of [26], we find agreement with the expressions above for the angular

momentum J and the electric charges QI . The energy E also agrees, except that the AdS

mass E0 now takes the non-vanishing value

E0 =
3π

32 g2
. (2.16)

The on-shell action of this solution does not appear to have been computed in the

literature before. We have done so, again using holographic renormalization. The action

must be evaluated on a regular Euclidean section of the solution. The Euclideanization is

obtained by the Wick rotation t = −iτ , together with the continuation of the parameter

a to purely imaginary values. After the action is computed one can take a back to the

original real domain, or choose to analytically continue the solution to more general complex

values of the parameters [18]. As usual, regularity of the Euclidean section leads to identify

the length of the circle parameterized by the Euclidean time τ with the inverse Hawking

temperature, that is
∫

dτ = β. A further regularity condition is that the contraction of

the Killing vector (2.10) with the gauge fields vanishes at the horizon,

ιV AI |r=r+ = 0 . (2.17)

This leads us to fix the constant gauge choice αI introduced in (2.7) as

αI = −ΦI , (2.18)

where ΦI is the electrostatic potential (2.11). We describe the rest of the computation of

the on-shell action in appendix A and just provide the final result here:

I = I0 −
πβ

12

[

2m
(

c1s1Φ
1 + c2s2Φ

2 + c3s3Φ
3
)

+ 4m2g2
(

s21s
2
2 + s21s

2
3 + s22s

2
3

)

+ 3m(g2a2 − 1) + 3g2r4+ + 2m
(

2g2r2+ − 1
) (

s21 + s22 + s23
)

]

, (2.19)

8In the formula for the electric charge, we omitted the contribution from the Chern-Simons term in the

action, since this vanishes in the solution of interest (because F I → 0 as r → ∞). This implies that a priori

different definitions of the electric charge such as the Maxwell charge, the Page charge, and the charge that

arises from integrating the holographic current, actually coincide in the present background.
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where

I0 = βE0 (2.20)

is the on-shell action of empty AdS5 at temperature β.

One can check that the quantities above satisfy the quantum statistical relation:

I = βE − S − β Ω J − β ΦI QI . (2.21)

From a microscopic point of view, this is interpreted as the relation between a grand-

canonical partition function I = − logZgrand, seen as a function of the chemical potentials,

I = I(β,Ω,ΦI), and the microcanonical partition function S = logZmicro, seen as a function

of the charges S = S(E, J,QI). The charges are obtained by varying I with respect to the

chemical potentials as

E =
∂I

∂β
, J = − 1

β

∂I

∂Ω
, QI = − 1

β

∂I

∂ΦI
. (2.22)

Let us comment on the contribution E0 to the energy and the corresponding I0 in the

on-shell action. These are sensitive to the regularization adopted: had we computed the

action using the background subtraction method as done for similar solutions in e.g. [41–

43], we would have found the same result (2.19), but with I0 = 0. Indeed background

subtraction regularizes the divergence due to the infinite spacetime volume in a way dif-

ferent from holographic renormalization. It does so by subtracting the action of empty

AdS space, with a boundary at large distance r̄ matched to the boundary of the black

hole solution, and then sends r̄ → ∞. In this way the action I is measured relative to the

action of the AdS vacuum which results from taking m = 0. Therefore in this approach

I0 = 0 by construction. The quantum statistical relation is still satisfied, provided one

chooses E0 = 0 for the AdS mass by the same logic. Within the framework of holographic

renormalization, one can shift E0 (and I0) to any desidered value by adding a finite, lo-

cal counterterm to the action. Specifically, by adding to the Lorentzian action the finite

boundary term ς
8π

∫

d4x
√
hR2, where ς is a parameter, hij is the boundary metric and R its

Ricci curvature, one obtains the shift I0 → I0 − 9πgβς and E0 → E0 − 9πgς.9 In fact, the

boundary field configuration of the solution we are considering implies that this is the only

independent finite term that respects diffeomorphism and gauge invariance. Since it can

be shifted by an arbitrary constant via a local counterterm, E0 (and I0) is an ambiguous

quantity, which does not have an intrinsic meaning. The AdS/CFT correspondence identi-

fies E0 with the Casimir energy of the dual conformal field theory on S3×R, and the same

argument leads to conclude that this quantity does not have intrinsic value [44]. However,

the situation changes in the presence of additional symmetries, such as supersymmetry. In

a supersymmetric setup the R2 counterterm is not allowed, hence E0 does acquire physical

meaning [44, 45]. In fact, in [46, 47] E0 has been interpreted as the consequence of a su-

percurrent anomaly, which is physical in nature. It may be possible to see this as a mixed

9This counterterm also yields a trivial − 3ς
2π

∇2R contribution to the trace of the energy-momentum

tensor, while the “minimal subtraction” scheme that we used to reach (2.16) is characterized by the fact

that the trace of the holographic energy-momentum tensor does not contain trivial ∇2R terms.
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anomaly and thus shift it away by adding local counterterms that restore supersymmetry

at the expense of breaking part of the diffeomorphisms, along the lines of [48–50].10

The solution admits an extremal limit. This can be seen by considering the function

Y (r) in the metric (2.4). Being a cubic polynomial, this can be written as

Y (r) = g2(r2 − r2+)(r
2 − r20)(r

2 − r2−) , (2.23)

where the roots r2+ ≥ r20 ≥ r2− are related to the parameters of the solution as:

r2+ + r20 + r2− = −2m(s21 + s22 + s23)− g−2 ,

r2+r
2
0 + r20r

2
− + r2−r

2
+ = 4m2(s21s

2
2 + s22s

2
3 + s23s

2
1) + 2m(a2 − g−2) ,

r2+r
2
0r

2
− = −8m3s21s

2
2s

2
3 − g−2f3(r = 0) . (2.24)

From (2.11) we observe that the product of the temperature and the entropy is proportional

to

TS =
π

8

Y ′(r+)
r+

=
πg2

4
(r2+ − r20)(r

2
+ − r2−) , (2.25)

hence the limit in which the roots r2+ and r20 coalesce corresponds to the extremality

condition T = 0 (as long as the horizon area remains finite). It is important to notice that

this condition does not imply supersymmetry. We turn to supersymmetry next.

2.2 The BPS solution

It was found in [24] that one solution to the supergravity Killing spinor equations exists if

the parameters satisfy:

a g =
1

eδ1+δ2+δ3
. (2.26)

Hence the solution preserves two supercharges. For simplicity, we set g = 1 from now on in

this section (this can easily be restored by dimensional analysis). We also find it convenient

to trade the parameters δI for new parameters µI , defined as

e4δI =
µI (µJ + 2) (µK + 2)

(µI + 2)µJ µK
, (2.27)

where the indices I, J,K are never equal. In terms of the µI , the supersymmetry condi-

tion (2.26) reads

a =

(

µ1 µ2 µ3

(µ1 + 2) (µ2 + 2) (µ3 + 2)

)1/4

. (2.28)

After this is imposed, closed timelike curves in the solution can be avoided by taking

m = m⋆ ≡
1

2

√

µ1µ2µ3(µ1 + 2)(µ2 + 2)(µ3 + 2) , (2.29)

which using (2.24) implies that the horizons at r+ and r0 merge,

r0 → r⋆ ← r+ , (2.30)

10Similar considerations apply to the on-shell action discussed in [5], which was originally computed in [43]

using the background subtraction method. We have checked that the same expression for the on-shell action

is recovered if one uses holographic renormalization, again up to the E0 vacuum energy factor.
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their common location being given by11

r2⋆ ≡ 1

2

(

√

µ1µ2µ3(µ1 + 2)(µ2 + 2)(µ3 + 2)− µ1µ2 − µ2µ3 − µ3µ1 − µ1µ2µ3

)

. (2.31)

Therefore the supersymmetry condition (2.26) together with the requirement (2.29) of no

causal pathologies implies extremality. We call the solution that is both supersymmetric

and extremal the BPS black hole solution.

The BPS solution thus obtained was first found in [32], and depends on the three real

parameters µI , I = 1, 2, 3. Regularity of the metric requires these to satisfy

µI > 0 , 4µ1µ2µ3 (µ1 + µ2 + µ3 + 1) > (µ1µ2 + µ2µ3 + µ3µ1)
2 , (2.32)

which implies r2⋆ > 0. In our analysis below we will assume that the µI are chosen so that

these conditions are satisfied. The BPS value of the Bekenstein-Hawking entropy is [32]:

S⋆ =
π2

4

√

4µ1µ2µ3 (µ1 + µ2 + µ3 + 1)− (µ1µ2 + µ2µ3 + µ3µ1)
2 . (2.33)

In the BPS solution, the chemical potentials take the fixed values

Ω⋆ = 2, ΦI ⋆ = 1 , (2.34)

while the inverse temperature diverges, β → ∞. The BPS charges are

E⋆ = E0 +
π

4

(

2µ1 µ2 µ3 +
3

2
(µ1 µ2 + µ2 µ3 + µ3 µ1) + µ1 + µ2 + µ3

)

,

J⋆ =
π

8
(2µ1 µ2 µ3 + µ1 µ2 + µ2 µ3 + µ3 µ1) ,

Q⋆
1 =

π

8
(2µ1 + µ1 µ2 + µ1 µ3 − µ2 µ3) , (2.35)

with Q⋆
2, Q

⋆
3 being obtained from Q⋆

1 by a cyclic permutation of the indices 1, 2, 3. As a

consequence of supersymmetry, the charges satisfy the linear relation

H⋆ ≡ E⋆ − Ω⋆ J⋆ − ΦI ⋆Q⋆
I = E0 . (2.36)

In addition, the electric charges and angular momentum satisfy the non-linear relation

Q⋆
1Q

⋆
2Q

⋆
3 +

π

4
J⋆ 2 =

(

Q⋆
1Q

⋆
2 +Q⋆

2Q
⋆
3 +Q⋆

3Q
⋆
1 −

π

2
J⋆

)(

Q⋆
1 +Q⋆

2 +Q⋆
3 +

π

4

)

, (2.37)

which is related to well-definiteness of the horizon area, that is of the entropy. The BPS

entropy can be written as a function of the charges in the suggestive form [51]

S⋆ = 2π

√

Q⋆
1Q

⋆
2 +Q⋆

2Q
⋆
3 +Q⋆

3Q
⋆
1 −

π

2
J⋆ . (2.38)

11We correct an overall minus sign typo in the corresponding expression given in eq. (3.74) of [24].
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2.3 The BPS limit

Since in the BPS solution the chemical potentials take the fixed values Ω = Ω⋆, ΦI = ΦI ⋆,

β−1 = 0, one can ask if the BPS black hole satisfies non-trivial thermodynamic relations. In

particular, one can ask what is the BPS version of the quantum statistical relation (2.21).

In [5] it was shown how to define a BPS limit of black hole thermodynamics that reaches the

BPS point along a supersymmetric trajectory in parameter space, and in this sense fully

respects supersymmetry. There are in fact many possible limits towards the BPS solution,

including the one previously proposed in [27]. However the limit of [5], that respects super-

symmetry all along the trajectory approaching the BPS locus, yields a result that agrees

with dual supersymmetric field theory computations. We thus eliminate the parameter a by

imposing the supersymmetry condition (2.26) and for the moment do not demand (2.29),

which as we reviewed above would imply extremality. Although for m 6= m⋆ the Lorentzian

solution has closed timelike curves, we are interested in saddle points of the quantum grav-

ity path integral, and thus allow ourselves to work with a complex section of the solution, to

be specified momentarily. The solution now depends on the four parameters m, µ1, µ2, µ3.

We wish to trade m for the outer horizon position r+ by solving the equation Y (r+) = 0

for m; this will make it easier to study the limit towards extremality. Since the equation

Y (r+) = 0 is of third order in m, its solution is quite complicated. To circumvent this

complication, we first change the radial coordinate r into a new coordinate R, such that:12

r2 = R2 +
m

m⋆

(

r2⋆ − µ1

)

. (2.39)

Although this breaks the symmetry in µ1, µ2, µ3, the latter will be restored in the final

results after reaching the BPS point. The position of the outer horizon is now given by the

largest root R+ of the equation Y (R) = 0. From (2.39) we see that in the new coordinate

the BPS horizon is found at

R2
⋆ = µ1 . (2.40)

Now the equation Y (R+) = 0 is only quadratic in m, and its solution can be written as:

m =
2m⋆R

4
+(R

2
+ + 1)

R4
+ (2µ1 − µ2 − µ3) +R2

+ (µ1µ2 + µ2µ3 + µ3µ1 + 2µ1)− µ1µ2µ3 ∓(R2
+ − µ1)R

,

(2.41)

where we introduced the quantity:

R =
√

R4
+(µ2 − µ3)2 − 2R2

+µ2 µ3 (µ2 + µ3 + 2) + µ2
2 µ

2
3 . (2.42)

Due to the undefined sign of the argument of this square root, the expression for m in (2.41)

may be complex. For very large R2
+ we have that R is real, thus m is real. On the other

hand, for R2
+ sufficiently close to R2

⋆ = µ1, that is sufficiently close to the extremal value,

the square root R is purely imaginary as a consequence of (2.32). Therefore close to ex-

tremality m takes a complex value. In the strict extremal limit R2
+ = R2

⋆ we have that

12In terms of the old parameters δI , the change of coordinate is expressed as r2 = R2 − 2m sinh2 δ1. This

implies r2H1 = R2. The new coordinate R should not be confused with the Ricci scalar.
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the factor multiplying R in (2.41) goes to zero, so although R is purely immaginary, m

becomes real and reaches its BPS value (2.29).

Fixing a as in (2.26) and trading m for R+ as in (2.41) identifies our family of complex-

ified, supersymmetric solutions. Evaluating the quantities (2.11) in this family of solutions

we obtain quite cumbersome expressions, that we will not display here. Remarkably, we

find that the chemical potentials obtained in this way satisfy the constraint:

β (1 + Ω− Φ1 − Φ2 − Φ3) = ∓ 2π i , (2.43)

where the sign choice follows from the one in (2.41). Although we did not manage to

derive (2.43) in full generality due to the complexity of the expressions for the chemical

potentials, we verified it with many numerical checks over a wide range of the parameters

as well as in a perturbative expansion near the BPS point. We find that eq. (2.43) is

satisfied in two slightly different ways, depending on the value of R2
+. As we described

above, for sufficiently large R2
+, m is real; however in this case β is purely imaginary, so

that (2.43) holds true.13 On the other hand, when R2
+ is close to the extremal value, m is

complex, and so are the chemical potentials β,Ω,ΦI ; still (2.43) is satisfied.

In order to make the near-extremal behavior of the different quantities appearing

in (2.43) more explicit, we set R+ = R⋆ + ǫ and study the limit ǫ → 0. We perform the

computation choosing the upper sign in (2.41) for simplicity. We find that in this limit the

“inverse temperature” β diverges as:

β =
4S⋆ + i π2

[

2µ2
1 − µ2 µ3 + µ1 (2 + µ2 + µ3)

]

4π ǫ
√
µ1 (1 + µ1 + µ2 + µ3)

+ O(ǫ0) , (2.44)

where S⋆ is the BPS entropy given in (2.33). Hence β is complex at leading order near the

BPS point. The same holds for the other chemical potentials, which read

Ω = Ω⋆ − 4S⋆ − i π2 (µ1µ2 + µ3µ1 − µ2µ3)

S⋆√µ1 (1 + µ1)
ǫ+O(ǫ2) ,

Φ1 = Φ1 ⋆ +
4S⋆ [µ1µ2 + µ3µ1 − µ2µ3]− 2iπ2

[

(1 + µ1)µ1µ2µ3 − 8(S⋆/π2)2
]

2S⋆ µ
5/2
1 (1 + µ1)µ2 µ3

ǫ

+O(ǫ2), (2.45)

with Φ2,Φ3 being obtained from Φ1 by a cyclic permutation of the µI . It follows that

1+Ω−Φ1−Φ2−Φ3 =
−4µ2

1 + 2µ2 µ3 − 2µ1 (2 + µ2 + µ3)− 8 i S⋆/π2

µ
3/2
1 (1 + µ1)

ǫ + O(ǫ2) . (2.46)

Multiplying the complex quantities (2.44) and (2.46), the factors of ǫ cancel out and one

can easily check that the finite result (2.43) is obtained.

Eq. (2.43) was understood in [5] as a regularity condition for the Killing spinor of

the supersymmetric solution, ensuring that this is antiperiodic around the Euclidean time

13We recall that β is given by the expression in (2.11), so it is purely imaginary when f1 is negative. We

find that this happens precisely in the regime where m is real. In this discussion we are assuming that R2
+

is real.
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circle of finite length β corresponding to the orbit of the Killing generator V of the horizon

given in (2.10), when the regular gauge ιV A
I |r+ = 0 is assumed. In fact the only spin

structure allowed in the topology of the cigar formed by the radial direction and the orbit

of V , which shrinks to zero size as R → R+, is the one of an antiperiodic spinor.

We now introduce new chemical potentials ω and ϕI by redefining the previous ones as:

ω = β (Ω− Ω⋆) , ϕI = β
(

ΦI − ΦI ⋆
)

. (2.47)

We also introduce the supersymmetric Hamiltonian

H = E − Ω⋆J − ΦI ⋆QI

= E − 2J −Q1 −Q2 −Q3 . (2.48)

While E is the charge for translations generated by ∂
∂t , the supersymmetric Hamiltonian

H is the charge for translations generated by the Killing vector K = ∂
∂t +Ω⋆ ∂

∂ψ that arises

as a bilinear of the Killing spinor, covariantized by the term ιKAI |∞QI = −ΦI ⋆QI . This

is related to the anticommutator of the supercharges by {Q,Q} = H − E0, where E0 is

the anomalous term induced by the supercurrent anomaly (in a renormalization scheme

that preserves diffeomorphism and gauge invariance) [46, 47]. Using the new variables, the

quantum statistical relation (2.21) can be expressed as:

I = βH − S − ω J − ϕI QI . (2.49)

We then see that ω and ϕI are the chemical potentials conjugate to J and QI , respectively,

when the time translations are generated by the supersymmetric Hamiltonian H. Since in

any supersymmetric solution {Q,Q} evaluates to zero and thus H = E0, we arrive at the

supersymmetric quantum statistical relation

I − I0 = −S − ω J − ϕI QI , (2.50)

where we used I0 = βE0. The constraint (2.43) now reads:

ω − ϕ1 − ϕ2 − ϕ3 = ∓ 2π i . (2.51)

We observe that varying the supersymmetry relation between the charges and subtracting

this from the first law (2.15), we obtain a supersymmetric form of the first law:

dS + ω dJ + ϕI dQI = 0 . (2.52)

Moreover, plugging the supersymmetric condition (2.26) and the expression (2.41) for m

into the on-shell action (2.19), we find that the latter takes the simple form:

I − I0 = π
ϕ1ϕ2ϕ3

(ω)2
. (2.53)

Notice that the right hand side of (2.53) is independent of β.

The supersymmetric charges E, J and QI are evaluated by substituting the supersym-

metry condition (2.26) and the formula (2.41) for m in (2.13). We checked that although
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the expressions thus obtained are generically complex, they satisfy the supersymmetry re-

lation H = E0. In the same way we obtain a generically complex expression for the entropy.

The fact that the entropy (that is the area of the horizon) is complex is related to the fact

that when continued back to Lorentzian signature, the supersymmetric but non-extremal

solution presents a pseudo-horizon rather than a horizon [24].

We can now take the limit to extremality by sending R+ → R⋆. Doing this, our

complexified family of supersymmetric solutions reaches the real, BPS solution of [32]. All

the main physical quantities become real; in particular the entropy and the charges take

the values (2.33), (2.35).

In the extremal limit R+ → R⋆ the temperature vanishes, therefore β diverges; at the

same time, Ω → Ω⋆, ΦI → ΦI ⋆, in such a way that the chemical potentials ω, ϕI defined

in (2.47) stay finite. We denote the BPS values of the redefined chemical potentials as

ω⋆ = lim
R+→R⋆

ω , ϕI ⋆ = lim
R+→R⋆

ϕI . (2.54)

By evaluating these limits we obtain

ω⋆ =
−2π

µ1 + µ2 + µ3 + 1

[

µ1 µ2 + µ2 µ3 + µ3 µ1
√

4µ1µ2µ3 (µ1 + µ2 + µ3 + 1)− (µ1µ2 + µ2µ3 + µ3µ1)2
± i

]

,

ϕ1 ⋆ =
π

µ1 + µ2 + µ3 + 1

[

µ1(µ
2
2 + µ2

3)− µ2 µ3(µ2 + µ3 + 2)
√

4µ1µ2µ3 (µ1 + µ2 + µ3 + 1)− (µ1µ2 + µ2µ3 + µ3µ1)2

± i (µ2 + µ3)

]

, (2.55)

with the expressions for ϕ2 ⋆ and ϕ3 ⋆ being obtained from the one for ϕ1 ⋆ through straight-

forward permutations of the indices 1, 2, 3. Therefore these chemical potentials remain

complex even after the BPS limit is taken.14 We remark that ω and ϕI are not the leading

order terms (2.34) of the chemical potentials Ω and ΦI in the BPS limit. They are instead

the next-to-leading-order terms in the expansion of Ω and ΦI around their BPS value:

Ω = Ω⋆ +
1

β
ω⋆ + . . . , ΦI = ΦI ⋆ +

1

β
ϕI ⋆ + . . . . (2.56)

Since the limit is smooth, these BPS chemical potentials still satisfy the constraint

ω⋆ − ϕ1 ⋆ − ϕ2 ⋆ − ϕ3 ⋆ = ∓ 2π i , (2.57)

and the on-shell action of the BPS solution reads

(I − I0)
⋆ = π

ϕ1 ⋆ϕ2 ⋆ϕ3 ⋆

(ω⋆) 2
. (2.58)

As argued in [5], the supersymmetric on-shell action I − I0, seen as a function of the

chemical potentials (2.47), should be regarded as minus the logarithm of the supersymmet-

ric grand-canonical partition function in the semi-classical approximation to the quantum

14Note that the argument of the square roots in (2.55) is positive due to assumption (2.32), and propor-

tional to the BPS entropy (2.33).
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gravity path integral. Therefore, its Legendre transform must be the logarithm of the mi-

crocanonical partition function, that is the entropy. This gives a physical derivation of the

extremization principle proposed in [15].

The Legendre transformation is not completely straightforward because of the con-

straint (2.51) between the chemical potentials. It was described in detail in [5, ap-

pendix B]15 and we recall here the main steps. The supersymmetric quantum statistical

relation (2.50) can be written as

I − I0 = −S − ω J − ϕI QI − Λ
(

ω − ϕ1 − ϕ2 − ϕ3 ± 2π i
)

, (2.59)

where the constraint (2.51) is enforced through a Lagrange multiplier Λ. Although the

constraint is identically satisfied in the supersymmetric solution, at this stage we are not

assuming any explicit expression for ω, ϕI , since we want to treat them as the basic variables

to be varied. Extremizing (2.59) with respect to Λ, ω, ϕI we retrieve the constraint (2.51),

together with the equations

− ∂(I − I0)

∂ω
= J + Λ , −∂(I − I0)

∂ϕI
= QI + Λ , I = 1, 2, 3 , (2.60)

which state the conjugacy relation between supersymmetric charges and chemical poten-

tials. These five equations can be solved for ω, ϕI and Λ in terms of the charges J,QI (see [5]

for the explicit expressions). By substituting the solution in (2.59), one obtains a formula

for the entropy S that is a complex function of the charges. Further demanding reality of

S, as well as of J,QI , one obtains precisely the non-linear relation (2.37) between the BPS

charges, together with the expression (2.38) for the Bekenstein-Hawking entropy of the BPS

black hole. The reality condition on S may be understood as a well-definiteness condition

for the horizon area, and this is what leads to (2.37) in the extremization procedure.

We have verified that this extremization is realized in the black hole solution. In

particular, we checked that our BPS chemical potentials (2.55) match the saddle point

value of ω, ϕI obtained by solving the extremization equations (2.60) in terms of the charges

J,QI , demanding reality of the entropy, and substituting the parameterization (2.35) of

the BPS charges. We also checked that this match still holds true when one compares the

supersymmetric but non-extremal values of ω, ϕI , even if in this case the entropy and the

charges are generically complex.

3 Rotating, electrically charged AdS4 black holes

In this section we consider a class of rotating, electrically charged, asymptotically AdS4
black holes with an uplift to M-theory. We show that a limiting procedure analogous to

the one discussed in five dimensions leads to complexified chemical potentials satisfying

the constraint (1.1) and to an on-shell action that matches the entropy function recently

proposed in [17].

15The variables used in [5, appendix B] are related to the ones used here as:

ω1 = ω2 =
ω

2
, ∆I = −ΦI , µ = −

π

4
, n = ∓1 , J1 = J2 = J , Q

there
I = −Q

here
I .
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3.1 The non-supersymmetric, finite temperature solution

The black hole solution of interest was first constructed in [52] within a consistent trun-

cation of four-dimensional N = 8, SO(8) gauged supergravity. The truncation is obtained

by restricting to the U(1)4 Cartan subgroup of SO(8) and setting the corresponding four

gauge fields pairwise equal. We start with a brief review of the solution, again referring to

the presentation of [24]. The action is:

S =
1

16π

∫
[

(R− 2V) ⋆ 1 − 1

2
dξ ∧ ⋆ dξ − 1

2
e2ξ dχ ∧ ⋆ dχ− 1

2
e−ξ F3 ∧ ⋆F3

− 1

2
χF3 ∧ F3 −

1

2 (1 + χ2e2ξ)

(

eξ F1 ∧ ⋆F1 − e2ξ χF1 ∧ F1

)

]

, (3.1)

where F1 and F3 are the field strengths of the Abelian gauge fields A1 = A2 and A3 = A4,
16

and V is the scalar potential for the axion and dilaton scalar fields χ, ξ:

V = −1

2
g2

(

4 + 2 cosh ξ + eξχ2
)

. (3.2)

The solution uses coordinates (t, r, θ, φ), where θ ∈ [0, π], φ ∼ φ + 2π parameterize a

two-sphere. In a frame that rotates at infinity, the metric reads:

ds24 = −∆r

W

(

dt− a

Ξ
sin2 θ dφ

)2
+W

(

dr2

∆r
+
dθ2

∆θ

)

+
∆θ sin

2 θ

W

(

a dt− r1r2 + a2

Ξ
dφ

)2

, (3.3)

where

ri = r + 2ms2i ,

∆r = r2 + a2 − 2mr + g2 r1 r2
(

r1 r2 + a2
)

,

∆θ = 1− a2g2 cos2 θ , W = r1 r2 + a2 cos2 θ , Ξ = 1− a2g2 , (3.4)

and si = sinh δi, ci = cosh δi, i = 1, 2. The scalar fields are given by

eξ = 1 +
r1 (r1 − r2)

W
, χ =

a (r2 − r1) cos θ

r21 + a2 cos2 θ
, (3.5)

while the gauge fields read

A1 =
2
√
2ms1c1r2
W

(

dt− a

Ξ
sin2 θ dφ

)

, A3 =
2
√
2ms2c2r1
W

(

dt− a

Ξ
sin2 θ dφ

)

. (3.6)

The solution is thus controlled by four parameters m, a, δ1, δ2. Since it is contained in

SO(8) gauged supergravity, the solution uplifts to eleven-dimensional supergravity on S7

(see [52] and references therein for the explicit uplift formulae). The dual SCFT3 is then

the ABJM theory.

The solution has an outer horizon at r = r+, defined as the largest root of ∆r. This is

a Killing horizon, generated by the vector

V =
∂

∂t′
+Ω

∂

∂φ′ , (3.7)

16In this section we use lower indices on the vector fields and the respective chemical potentials Φ.
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where the coordinates

φ′ = φ+ a g2 t , t′ = t (3.8)

define a frame that is non-rotating at infinity, and

Ω =
a
(

1 + g2 r1 r2
)

r1 r2 + a2
(3.9)

is the angular velocity of the horizon. The Bekenstein-Hawking entropy, the inverse tem-

perature and the electrostatic potentials of the black hole are given by:

S =
π
(

r1 r2 + a2
)

Ξ
, β = 4π

(

r1 r2 + a2
)

(

d∆r

dr

)−1

,

Φ1 = Φ2 =
2ms1 c1 r2
r1 r2 + a2

, Φ3 = Φ4 =
2ms2 c2 r1
r1 r2 + a2

, (3.10)

where all the functions of the radial coordinate are evaluated in r+. Here the electrostatic

potentials ΦI , I = 1, . . . , 4, are obtained from the four vector fields gauging the Cartan

subgroup of SO(8). Since these are set pairwise equal in the action (3.1), necessarily we

have Φ1 = Φ2 and Φ3 = Φ4. The energy (that is the charge associated with translations

generated by ∂
∂t′ ), the angular momentum (that is the charge associated with rotations

generated by − ∂
∂φ′ ) and the electric charges are:

E =
m

Ξ2

(

1 + s21 + s22
)

, J =
ma

Ξ2

(

1 + s21 + s22
)

,

Q1 = Q2 =
ms1 c1
2Ξ

, Q3 = Q4 =
ms2 c2
2Ξ

. (3.11)

The electric charges and the angular momentum were obtained in [24] evaluating the stan-

dard Maxwell and Komar asymptotic integrals, respectively, while the energy was computed

by integrating the first law of thermodynamics,

dE = T dS +ΩdJ + 2Φ1 dQ1 + 2Φ3 dQ3 . (3.12)

In appendix B we check that the same expressions for the charges are obtained using

holographic renormalization. We also compute the Euclidean on-shell action I by the same

method and find the result:

I =
β

2(a2g2 − 1)

{

g2r3+ + 3mg2r2+
(

s21 + s22
)

+ r+
[

a2g2 + 2m2g2
(

s41 + 4s21s
2
2 + s42

)]

+m
(

a2g2 + 4m2g2s21s
2
2 − 1

)

(s21 + s22)−m

+
2m2

[

c21s
2
1

(

2ms22 + r+
)

+ c22s
2
2

(

2ms21 + r+
)]

a2 +
(

2ms21 + r+
) (

2ms22 + r+
)

}

. (3.13)

We have explicitly verified that the on-shell action and the quantities (3.9), (3.10), (3.11)

satisfy the quantum statistical relation

I = βE − S − β Ω J − 2β Φ1Q1 − 2β Φ3Q3 . (3.14)
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3.2 The BPS solution

We will set g = 1 from now on. The solution presented above is supersymmetric if17

a =
2

e2 (δ1+δ2) − 1
. (3.15)

In the following we assume this condition and use it to eliminate a from all expressions.

We thus have a supersymmetric family of solutions described by the remaining parameters

m, δ1, δ2. It was shown in [24] that for real values of these parameters, the equation

∆r(r) = 0 determining the existence of a horizon only has a solution if

m2 = m2
⋆ ≡

cosh2(δ1 + δ2)

4 eδ1+δ2 sinh3(δ1 + δ2) c1 s1 c2 s2
, (3.16)

in which case there is a regular horizon at

r = r⋆ ≡
2m⋆ s1 s2

cosh(δ1 + δ2)
. (3.17)

This is a double root of ∆r, hence the supersymmetric solution becomes extremal and

the temperature vanishes. This gives a BPS solution that is regular on and outside the

horizon.18

The chemical potentials take the BPS values

Ω⋆ = 1 , Φ⋆
1 = Φ⋆

3 = 1 , β → ∞ , (3.18)

while the BPS charges are:

E⋆ =
(c1 c2 − s1 s2)

√

e−(δ1+δ2) (c1 s2 + c2 s1)

2 (coth (δ1 + δ2)− 2)2
√
c1 c2 s1 s2

,

J⋆ =
c1 c2 − s1 s2

2 (coth(δ1 + δ2)− 2)2
√

e3(δ1+δ2) c1 c2 s1 s2 (c1 s2 + c2 s1)
,

Q⋆
1 =

√

c1 c2 s1 s2
(

e2(δ1+δ2) − 1
)

2
√
2 c2 s2

(

e2(δ1+δ2) − 3
) , (3.19)

with Q⋆
3 being obtained from Q⋆

1 by switching s1 ↔ s2 and c1 ↔ c2. These satisfy the

relation

E⋆ − Ω⋆J⋆ − 2Φ⋆
1Q

⋆
1 − 2Φ⋆

3Q
⋆
3 = 0 , (3.20)

that is a consequence of the supersymmetry algebra. The BPS angular momentum and

electric charges also satisfy [17]

J⋆ = (Q⋆
1 +Q⋆

3)
(
√

1 + 64Q⋆
1Q

⋆
3 − 1

)

, (3.21)

17In (3.15) and (3.16), we are using the expressions given in [53], which correct typos in the corresponding

expressions of [24].
18Specializing to δ1 = δ2 gives a solution to pure gauged N = 2 supergravity in four dimensions, originally

discussed in [54, 55]. We also remark that the BPS black holes we are discussing are different from the

rotating solutions with magnetic charge recently found in [56].
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which are related to the fact the we have imposed (3.16) on top of the supersymmetry

condition (3.15) (having fixed two of the four free parameters of the solution, there cannot

be more than two independent charges). The BPS entropy reads

S⋆ =
2π

e2δ1+2δ2 − 3
, (3.22)

and can be expressed in terms of the charges as [17]:

S⋆ =
π J⋆

2(Q⋆
1 +Q⋆

3)
. (3.23)

Note that positivity of the BPS entropy restricts the allowed range of δ1 + δ2.

3.3 The BPS limit

Our BPS limit proceeds similarly to the five-dimensional case. We start by imposing the

supersymmetry condition (3.15), while for the moment we do not require (3.16). The

equation ∆r(r) = 0, with ∆r being given in (3.4), can be solved in a more general way

than (3.16), (3.17) if we allow for complex values of the parameter m. In fact, ∆r(r) = 0

can be seen as an equation for m, where the solution depends on δ1, δ2 and on the position

of the outer horizon, r+. Since ∆r(r) is a quartic polynomial in m, the solutions are rather

cumbersome. The analysis is simplified if we change the radial coordinate r into a new

coordinate R, defined as:

r = R− 2ms21 . (3.24)

The equation for the horizon becomes ∆r(R) = 0, and we denote by R+ the position of

the outer horizon. This equation is now only quadratic in m, and its solution is:

m =
R2

+ + 1− (1± i R+) coth (δ1 + δ2)

R+

(

c21 + s21 − c22 − s22
)

∓ 2 i s1 c1
, (3.25)

where R+ is treated as a parameter, on the same footing as δ1, δ2.

We now plug the expression (3.25) for m, together with the supersymmetry condi-

tions (3.15), into the different quantities summarized in subsection 3.1. After these manip-

ulations, we find that the chemical potentials in (3.10) satisfy the relation

β(1 + Ω− Φ1 − Φ3) = ∓ 2π i . (3.26)

This is completely analogous to the one found in five dimensions. We thus argue that it

has the same interpretation as an anti-periodicity condition for the Killing spinor when

this is translated around the Euclidean time circle.

Again we can introduce the redefined chemical potentials:

ω = β (Ω− Ω⋆) , ϕI = β (ΦI − Φ⋆
I) , (3.27)

where the BPS values Ω⋆,Φ⋆
I were given in (3.18). In terms of these variables, (3.26) reads:

ω − ϕ1 − ϕ3 = ∓ 2π i . (3.28)
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We find that the explicit expressions of ω, ϕI are:

ω =
4π

Υ
[c1 (c2 − 2 s2) + s1(s2 − 2 c2)]

[

R+(c
2
1 − c22 + s21 − s22)∓ 2 i c1 s1

]

,

ϕ1 = ϕ2 =
4π

Υ

(

−c21 + 2 c1 s1 + c22 − s21 + s22
)

[

R+(c1 s2 + c2 s1)∓ i e−δ1−δ2
]

, (3.29)

ϕ3 = ϕ4 =
4π

Υ

[

R+(c
2
1 − c22 + s21 − s22)∓ 2i c1s1

]

[(c1c2 + s1s2)− (1∓ i R+)(c1s2 + c2s1)] ,

where we introduced:

Υ = 2R+ (c1 s2 + c2 s1)
[

R+

(

c21 − c22 + s21 − s22
)

∓ 4 i c1 s1
]

− c1 s2 + c2 s1

− 2 sinh (3δ1 + δ2) + sinh (δ1 + 3δ2) + cosh (3δ1 + δ2)− cosh (δ1 + 3δ2) . (3.30)

The conserved quantities in (3.11) satisfy

E − Ω⋆J − 2Φ⋆
1Q1 − 2Φ⋆

3Q3 = 0 , (3.31)

which as already remarked is purely a consequence of supersymmetry. At this stage the

expressions for the charges, as well as the one for the entropy, are complex.

After using (3.15), (3.24), the on-shell action (3.13) can be written in terms of the

chemical potentials ω, ϕ1, ϕ3 as:

I =
1

2 i

ϕ1 ϕ3

ω
. (3.32)

Notice that this is independent of β, as also found in the five-dimensional analysis. Us-

ing (3.31), the quantum statistical relation (3.14) takes the supersymmetric form:

I = −S − ω J − 2ϕ1Q1 − 2ϕ3Q3 . (3.33)

We can now take the BPS limit by sending R+ → R⋆, where R⋆ is the map of the BPS

horizon position r⋆ in (3.17) under the change of coordinate (3.24), that is:

R⋆ = 2 s1 c1m⋆ tanh (δ1 + δ2) . (3.34)

In this limit, the complex expression for m in (3.25) becomes real and gives m → m⋆.

The original chemical potentials take the values (3.18). We define the BPS values of the

redefined chemical potentials ω, ϕ1, ϕ3 as

ω⋆ = lim
R+→R⋆

ω , ϕ⋆
I = lim

R+→R⋆

ϕI . (3.35)

By evaluating these quantities from (3.29), we obtain the finite values:

ω⋆ = − 16π

Θ

(

e2(δ1+δ2) − 3
) [

4 (s1 c1 + s2 c2)
√

s1 s2 c1 c2 (s1 c2 + s2 c1) eδ1+δ2

± 4 i s1 s2 c1 c2 (c1 c2 + s1 s2) e
δ1+δ2

]

,

ϕ⋆
1 = − 16π

Θ

{

√

s1 s2 c1 c2 (s1 c2 + s2 c1) e(δ1+δ2)
[

(e4δ2 − 3) e2δ1 − 4s2 c2 + 2 e−2δ1
]

∓ 2 i s2 c2

[

e2(δ1+δ2)
(

c21 + s21 + 2s1 c1 + 2s2 c2
)

− c22 − s22 − 4s2 c2

]}

, (3.36)
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where ϕ⋆
3 is obtained from ϕ⋆

1 by switching δ1 and δ2, and

Θ =e2(δ1+δ2)
(

e4δ1 + e4δ2 − 10
)

+ 6 e4(δ1+δ2) + e6(δ1+δ2) − 2
(

e−4δ1 + e−4δ2
)

− 2
[

4
(

e4δ1 + e4δ2
)

− 7
]

+ e−2(δ1+δ2)
[

5
(

e4δ1 + e4δ2
)

− 3
]

. (3.37)

These formulae show that the chemical potentials ω, ϕ1, ϕ3 remain complex even after the

BPS limit is taken. Since the limit is smooth, these still satisfy the constraint (3.28),

ω⋆ − ϕ⋆
1 − ϕ⋆

3 = ∓ 2 i π , (3.38)

the on-shell action at the BPS point reads

I⋆ =
1

2 i

ϕ⋆
1 ϕ

⋆
3

ω⋆
, (3.39)

and satisfies

I⋆ = −S⋆ − ω⋆J⋆ − 2ϕ⋆
1Q

⋆
1 − 2ϕ⋆

3Q
⋆
3 . (3.40)

The supersymmetric on-shell action (3.32) matches the entropy function proposed

in [17]. It was shown there that the BPS entropy follows from Legendre transforming this

entropy function and demanding reality of the Legendre transform. Here we have provided

a derivation of the entropy function from imposing supersymmetry in the black hole ther-

modynamics. The relation with the entropy is clear from (3.39). The expressions (3.36)

for the BPS chemical potentials match the saddle point values obtained from Legendre

transforming the entropy function, as it can be checked by plugging the formulae (3.19)

for the BPS charges in the saddles given in [17], and comparing with (3.36).

4 Rotating, electrically charged AdS6 black holes

4.1 Properties of the finite-temperature solution

In this section, we turn to six dimensions, considering the asymptotically AdS6 black hole

of [25]. This is a solution to the six-dimensional N = (1, 0), SU(2) gauged supergravity

of [57], which uplifts to massive type IIA supergravity on S4/Z2 [58]. The black hole has

four conserved quantities: the energy E, two angular momenta Ja, Jb and one U(1) ⊂ SU(2)

electric charge Q. Because of the two independent angular momenta, the solution looks

slightly different in form from the other solutions considered in this paper. However the

BPS limit works in the same way as in the other cases, and is in fact very similar to the

original one discussed in [5].

The solution is specified by four parameters m, a, b, δ and has an outer horizon at

r = r+ defined as the largest root of the blackening function

R(r) = g2
[

r
(

a2 + r2
)

+ 2ms2
] [

r
(

b2 + r2
)

+ 2ms2
]

+
(

a2 + r2
) (

b2 + r2
)

− 2mr , (4.1)
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where as usual we denote s = sinh δ, c = cosh δ. The entropy and the chemical potentials

of the solution are given by

S=
2π2

[(

r2++a2
)(

r2++b2
)

+2mr+ s2
]

3ΞaΞb
,

Ωa= a

(

1+g2 r2+
)(

r2++b2
)

+2mg2 r+ s2
(

r2++a2
)(

r2++b2
)

+2mr+ s2
,

Ωb= b

(

1+g2 r2+
)(

r2++a2
)

+2mg2 r+ s2
(

r2++a2
)(

r2++b2
)

+2mr+ s2
, (4.2)

Φ=
2mr+ sc

(

r2++a2
)(

r2++b2
)

+2mr+ s2
,

1

β
=

2r2+(1+g2r2+)(2r
2
++a2+b2)−(1−g2r2+)(r

2
++a2)(r2++b2)+8mg2r3+s

2−4m2g2s4

4πr+
[(

r2++a2
)(

r2++b2
)

+2mr+ s2
] ,

where Ξa = 1−a2 g2 and Ξb = 1−b2 g2. The energy, the angular momenta and the electric

charge read

E =
2πm

3Ξa Ξb

[

1

Ξa
+

1

Ξb
+ s2

(

1 +
Ξa

Ξb
+

Ξb

Ξa

)]

, Q =
2πms c

Ξa Ξb
,

Ja =
2πma

3Ξ2
a Ξb

(

1 + Ξb s
2
)

, Jb =
2πmb

3Ξa Ξ2
b

(

1 + Ξa s
2
)

. (4.3)

These satisfy the first law of black hole thermodynamics,

dE = T dS +Ωa dJa +Ωb dJb +ΦdQ . (4.4)

For the black hole under consideration, the quantum statistical relation reads

I = β E − S − β Ωa Ja − β Ωb Jb − β ΦQ . (4.5)

While in the four- and five-dimensional cases we explicitly verified the validity of the

quantum statistical relation by computing the on-shell action, in the present case we assume

its validity and use it to obtain an expression for the on-shell action I. We will demonstrate

that chemical potentials satisfying the correct complex constraint arise from a suitably

complexified family of supersymmetric solutions, and that the expression of I on these

solutions is precisely the entropy function given in [17].

4.2 The BPS solution

For ease of computation we set g = 1 from now on. As discussed in [25], the solution is

supersymmetric if

e2δ = 1 +
2

a+ b
. (4.6)

We shall always use this condition to eliminate δ in all the expressions below. We are thus

left with the remaining three free parameters m, a, b. The supersymmetric solution is free

from closed timelike curves if and only if

m = m⋆ =
(a+ b)2 (1 + a) (1 + b) (2 + a+ b)

2 (1 + a+ b)

√

a b

1 + a+ b
. (4.7)
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Imposing both this condition and (4.6), the temperature vanishes and we obtain the BPS

solution. The BPS horizon is located at

r⋆ =

√

a b

1 + a+ b
. (4.8)

In the BPS solution, the chemical potential take the BPS values

Ω⋆
a = Ω⋆

b = 1 , Φ⋆ = 1 , β → ∞ , (4.9)

while the BPS charges are:

E⋆ = −π r⋆ (a+ b)
[

2 a2 + a (b− 1) + (b+ 1) (2b− 3)
]

3 (a− 1)2 (b− 1)2 (a+ b+ 1)
,

J⋆
a = −π r3⋆ (a+ b) (a+ 2 b+ 1)

3 b (a− 1)2 (b− 1)
,

J⋆
b = −π r3⋆ (a+ b) (2 a+ b+ 1)

3 a (a− 1) (b− 1)2
,

Q⋆ =
π r⋆ (a+ b)

(a− 1) (b− 1)
.

The quantity above satisfy the supersymmetry relation

E⋆ − Ω⋆
a J

⋆
a − Ω⋆

b J
⋆
b − Φ⋆Q⋆ = 0 . (4.10)

The BPS entropy of the BPS black hole solution reads

S⋆ =
2π2 r2⋆ (a+ b)

3 (1− a) (1− b)
, (4.11)

and satisfies the following two relations, which involve also the BPS charges [17]

S⋆ 3 − 2π2

3
S⋆ 2 − 12π2

(

Q⋆

3

)2

S⋆ +
8π4

3
J⋆
a J

⋆
b = 0 ,

Q⋆

3
S⋆ 2 +

2π2

9
(J⋆

a + J⋆
b )S

⋆ − 4π2

3

(

Q⋆

3

)3

= 0 . (4.12)

These can be used to express the BPS entropy in terms of the charges and to obtain a rela-

tion between J⋆
a , J

⋆
b , Q

⋆, analogously to what happens in the other spacetime dimensions.

In the following we assume 0 < a < 1, 0 < b < 1, which guarantee r⋆ to be real and

the BPS entropy to be real and positive.

4.3 The BPS limit

As in the previous cases, the complexified family of supersymmetric solutions is obtained by

solving the equation R(r+) = 0 for the parameter m, so that this is traded for the position

of the outer horizon r+. The equation is already of quadratic order in m, therefore we can

solve it without changing the radial coordinate. Doing so, we obtain

m =
1

2
(r+ ∓ i) (a± i r+) (b± i r+) (a+ b) (a+ b+ 2) , (4.13)
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so that m is complex for real values of a, b, r+. Plugging this expression for m in the

chemical potentials (4.2), we find that these satisfy the constraint

β (1 + Ωa +Ωb − 3Φ) = ∓2π i . (4.14)

It follows that the redefined chemical potentials

ωa = β (Ωa − Ω⋆
a) , ωb = β (Ωb − Ω⋆

b) , ϕ = β (Φ− Φ⋆) , (4.15)

satisfy

ωa + ωb − 3ϕ = ∓ 2π i . (4.16)

The black hole charges satisfy the supersymmetry condition

E − Ω⋆
a Ja − Ω⋆

b Jb − Φ⋆Q = 0 . (4.17)

Using (4.15), (4.17) in (4.5), we obtain the supersymmetric quantum statistical relation

I = −S − ωa Ja − ωb Jb − ϕQ . (4.18)

Evaluating I from this expression, we find

I =
π i

3

ϕ3

ωa ωb
, (4.19)

which reproduces the entropy function proposed in [17].

We now take the extremal limit by sending r+ → r⋆. The chemical potentials take the

limiting values

ω⋆
a =

2 i π (a− 1) (b+ i r⋆)

2 i a b r−1
⋆ + a b+ a+ b− 3 r2⋆

,

ω⋆
b =

2 i π (b− 1) (a+ i r⋆)

2 i a b r−1
⋆ + a b+ a+ b− 3 r2⋆

,

ϕ =
2 i π (a+ i r⋆) (b+ i r⋆)

2 i a b r−1
⋆ + a b+ a+ b− 3r2⋆

. (4.20)

Since the limit is smooth, these still satisfy the constraint

ω⋆
a + ω⋆

b − 3ϕ⋆ = ∓2π i , (4.21)

and the BPS on-shell action is

I⋆ =
π i

3

(ϕ⋆)3

ω⋆
a ω

⋆
b

. (4.22)

We obtained in this way a derivation of the BPS AdS6 black hole entropy function.

5 Rotating, electrically charged AdS7 black holes

Finally, we discuss asymptotically AdS7 black holes. We consider the seven-dimensional

solution originally found in [59] and further discussed in [24], and we study its BPS limit.

Since this goes through in the same way as in the previous cases, we will keep the presen-

tation short.
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5.1 Properties of the finite-temperature solution

The seven-dimensional black hole discussed in [24] is a solution to maximal SO(5) gauged

supergravity, and uplifts to eleven-dimensional supergravity on S4 [40]. We start with

a brief summary of the relevant properties of the finite-temperature solution.19 This is

controlled by four parameters m, a, δ1, δ2 and is given in terms of the following functions:

sI = sinh δI , cI = cosh δI , Ξ± = 1± a g , Ξ = 1− a2 g2 , ρ =
√
Ξ r ,

HI = 1 +
2ms2I
ρ4

, α1 = c1 −
1

2

(

1− Ξ2
+

)

(c1 − c2) , α2 = c2 +
1

2

(

1− Ξ2
+

)

(c1 − c2) ,

β1 = −aα2 , β2 = −aα1 , (5.1)

f1(r) = Ξρ6H1H2 −
4Ξ2

+m
2a2s21s

2
2

ρ4
+

ma2

2

[

4Ξ2
+ + 2c1c2(1− Ξ4

+) + (1− Ξ2
+)

2(c21 + c22)
]

,

f2(r) = −1

2
g Ξ+ ρ6H1H2 +

1

4
ma

[

2
(

1 + Ξ4
+

)

c1c2 +
(

1− Ξ4
+

) (

c21 + c22
)]

, (5.2)

Y (r) = g2ρ8H1H2 + Ξρ6 +
1

2
ma2

[

4Ξ2
+ + 2

(

1− Ξ4
+

)

c1c2 +
(

1− Ξ2
+

)2 (
c21 + c22

)

]

− 1

2
mρ2

[

4Ξ + 2a2g2
(

6 + 8ag + 3a2g2
)

c1c2 − a2g2 (2 + ag) (2 + 3ag)
(

c21 + c22
)

]

,

where r is the radial coordinate. The outer horizon is found at r = r+, defined as the

largest root of the equation Y (r) = 0.

The entropy, inverse temperature, angular velocity and electrostatic potentials on the

horizon, measured in a non-rotating frame at infinity, read:

S =
π3 ρ2

√
f1

4Ξ3
, β = T−1 = 4π g ρ3

√

Ξ f1

(

dY

dr

)−1

,

Ω = −1

g

(

g +
2 f2
f1

Ξ−

)

, ΦI =
4msI
ρ4ΞHI

(

αIΞ− + βI
2f2Ξ−
f1

)

, (5.3)

while the energy, angular momentum and electric charges are:

E =
mπ2

32 g Ξ4

[

12Ξ2
+

(

Ξ2
+ − 2

)

− 2c1c2a
2g2

(

21Ξ4
+ − 20Ξ3

+ − 15Ξ2
+ − 10Ξ+ − 6

)

+
(

c21 + c22
) (

21Ξ6
+ − 62Ξ5

+ + 40Ξ4
+ + 13Ξ2

+ − 2Ξ+ + 6
)

]

,

J = −maπ2

16Ξ4

[

4agΞ2
+ − 2c1c2(2Ξ

5
+ − 3Ξ4

+ − 1) + ag(c21 + c22)(Ξ+ + 1)(2Ξ3
+ − 3Ξ2

+ − 1)
]

,

Q1=
ms1 π

2

8 g Ξ3

[

a2g2c2 (2Ξ+ + 1)− c1
(

2Ξ3
+ − 3Ξ2

+ − 1
)

]

,

Q2=
ms2 π

2

8 g Ξ3

[

a2g2c1 (2Ξ+ + 1)− c2
(

2Ξ3
+ − 3Ξ2

+ − 1
)

]

. (5.4)

The energy is given in a scheme such that the energy of the vacuum AdS7 solution is E0 = 0.

In a different scheme, the expression above should be regarded as E − E0 (considerations

19We correct a few misprints in [24] following [6, 16].
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similar to the ones discussed in the five-dimensional case apply here). The quantities above

satisfy the first law of black hole thermodynamics,

dE = T dS + 3ΩdJ +Φ1 dQ1 +Φ2 dQ2 . (5.5)

The quantum statistical relation reads:

I = βE − S − 3β Ω J − β Φ1Q1 − β Φ2Q2 . (5.6)

As for the six-dimensional case, we will assume this is satisfied without evaluating the on-

shell action I independently. For consistency with the assumption made for the vacuum

energy, we assume we are working in a scheme where I0 = βE0 = 0. We now show that the

expression of I on the complexified family of solutions coincides with the entropy function

of [16], and that the constraint on the chemical potentials arises in the same way as in the

previous sections.

5.2 The BPS solution

We will set g = 1 from now on. The solution is supersymmetric (preserving two super-

charges) if [24]

a =
2

3(1− eδ1+δ2)
. (5.7)

We will always use this relation to eliminate a in the expressions below. The remaining

parameters are m, δ1, δ2. For simplicity we will set δ1 = δ2 ≡ δ (and similarly c1 = c2 ≡ c,

s1 = s2 ≡ s), the extension to the case δ1 6= δ2 being straightforward although more

involved. We thus have Φ1 = Φ2 ≡ Φ and Q1 = Q2 ≡ Q.

Closed timelike curves are avoided by taking

m = m⋆ =
4 e−3δ (c+ 2 s)3

729 c2 s6
, (5.8)

imposing this in addition to (5.7) implies vanishing of the temperature and thus leads to

the BPS solution. The BPS horizon is located at

r2⋆ = − 16

3 (2 e2δ − 3 e4δ + 5)
, (5.9)

note that, since r2⋆ should be positive, the equation above implies

e2δ >
5

3
. (5.10)

This is a physical condition on the parameter δ and we shall assume it in the following.

The chemical potentials take the BPS values

Ω⋆ = 1 , Φ⋆ = 2 , β → ∞ . (5.11)
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The BPS charges are:

E⋆ =
16π2

(

−21 e4δ + 18 e6δ + 7
)

3 (5− 3 e2δ)
4
(e2δ + 1)

2 ,

J⋆ =
16π2

[

9 e2δ
(

e2δ + 2
)

− 23
]

9 (5− 3 e2δ)
4
(e2δ + 1)

2 ,

Q⋆ = −π2 tanh δ e−3δ

(c− 4 s)3
, (5.12)

and satisfy the supersymmetry relation

E⋆ − 3Ω⋆J⋆ − 2Φ⋆Q⋆ = 0 . (5.13)

The BPS entropy reads

S⋆ =
2π3

√
c+ 8 s

3 e4δ
√
3 c3 (4 s− c)3

, (5.14)

and can be written in terms of the charges as [6]:

S⋆ = 2π

√

32 (Q⋆)3 − 3π2 (J⋆)2

32Q⋆ − π2
. (5.15)

5.3 The BPS limit

In order to study the complexified family of supersymmetric solutions, we solve the equation

Y (r+) = 0 for the parameter m, thus trading it for the position of the outer horizon r+.

This equation is of quadratic order in m, therefore it is immediately solved as:

m = −c+ 2 s

648 s6

{

[

3 r2+
(

c2 − 8 c s+ s2 + 1
)

+ 8 e−2δ
]

R (5.16)

+ r2+ (4 s− c)
[

2 r2+
(

7
(

c2 + s2
)

+ 4 c s− 9
)

− 2e−2 δ − 18
]

+ 16 e−3δ

}

,

where

R =
√

4 e−2δ − 2 r2+ [7 (c2 + s2) + 4 c s− 9] . (5.17)

We now show that this square root is imaginary. Using the expression for r⋆ given in (5.9),

we can write

R =

√

√

√

√

4−
16 r2+

(

r2⋆ − r⋆
√

r2⋆ + 1 + 1
)

r2⋆
, (5.18)

and using the physical condition r+ > r⋆ it is easy to see that the argument satisfies the

inequality

4−
16 r2+

(

r2⋆ − r⋆
√

r2⋆ + 1 + 1
)

r2⋆
< 4− 8 r2+

r2⋆
< 0 , (5.19)

showing that the square root is always imaginary. The expression for m given in (5.16) is

therefore complex. This identifies our complexified family of solutions.
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Plugging the above expression for m in the chemical potentials, we find that these

satisfy the constraint

β (1 + 3Ω− 2Φ) = ∓2π i . (5.20)

Again we can introduce the redefined chemical potentials

ω = β (Ω− Ω⋆) , ϕ = β (Φ− Φ⋆) . (5.21)

We checked that the on-shell action is given in terms of these variables by

I = − π3

128

ϕ4

ω3
. (5.22)

The BPS on-shell action and the BPS chemical potentials satisfy the supersymmetric quan-

tum statistical relation

I = −S − 3ω J − 2ϕQ . (5.23)

At this point we take the extremal limit by sending r+ → r⋆. The limiting values of

the chemical potentials are:

ω⋆ = − 6π

(c+ 8 s) Θ

√

2 (16 c s+ c2 + s2 + 1) (c− 4 s)

[

c
(√

3−
√
−8 tanh δ − 1

)

+ 4 s
(√

−8 tanh δ − 1 + 2
√
3
)

]

,

ϕ⋆ = − 64π

Θeδ
√

2 (c2 + 16 c s+ s2 + 1)

(√
3 e−δ (c+ 8 s) + 9 c s

√
−8 tanh δ − 1

)

, (5.24)

where we have defined

Θ = 8 c s
(

√

−3 (8 tanh δ + 1)− 18
)

+
(

23
√

−3 (8 tanh δ + 1)− 9
)

(

c2 + s2
)

− 9
(

√

−3 (8 tanh δ + 1) + 1
)

. (5.25)

These BPS chemical potentials satisfy the constraint

3ω⋆ − 2ϕ⋆ = ∓ 2π i , (5.26)

which is completely analogous to what we have found in lower dimensions. In terms of

these chemical potentials, the on-shell action reads

I⋆ = − π3

128

(ϕ⋆)4

(ω⋆)3
. (5.27)

This completes our derivation of the BPS entropy function from black hole thermodynam-

ics.
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6 Discussion

The main result of this paper has been to extend the BPS limit of rotating AdS black hole

thermodynamics defined in [5] to five-dimensional solutions with more than one electric

charge, as well as to other spacetime dimensions. In each case, we have provided a deriva-

tion of the extremization principle leading to the Bekenstein-Hawking entropy, by showing

that the entropy functions of [15–17] are the supergravity action I = I(ω, ϕ) evaluated on

a complexified family of supersymmetric solutions, and that the supersymmetric chemical

potentials ω, ϕ indeed satisfy the corresponding extremization equations.

The analysis of several examples across different spacetime dimensions demonstrates

that this approach is general and should play a role towards understanding the thermody-

namics of BPS black holes in AdS. As summarized in section 1, the gravitational analysis

also defines the microscopic, dual SCFT partition function which should reproduce the

entropy function in the large N regime. Progress in this direction has been made recently,

and the entropy function for rotating BPS black holes in AdS5 has been obtained from a

dual SCFT4 by different methods: from a version of the supersymmetric Casimir energy

in [5], from a Cardy-like limit of the superconformal index in [6, 8, 9, 11–13] (see also [10]

for an AdS6/CFT5 study), and from the large N limit of the N = 4 SYM index in [7]. The

AdS4/CFT3 case is also interesting: the class of black holes studied in this paper uplifts to

eleven-dimensional supergravity on S7, hence the dual field theory is the ABJM theory on

S1 × S2, with an anti-periodic supercharge and chemical potentials satisfying the complex

constraint. It should thus be possible to retrieve the entropy function by evaluating the

partition function (1.4) for the ABJM theory at large N .

On the gravity side, there are some generalizations of our work that it would be inter-

esting to consider. Our analysis of the solutions of [24, 25] strongly indicates that the same

BPS limit will work when the most general set of electric charges and angular momenta is

turned on in each spacetime dimension, although in many cases the corresponding asymp-

totically AdS black hole solutions are still to be constructed, and the explicit check may

be technically hard to perform. Specifically, in the context of eleven-dimensional super-

gravity on S7, one could relax the condition of pairwise equal electric charges within the

U(1)4 consistent truncation of SO(8) maximal supergravity, though the finite-temperature

asymptotically AdS4 solution with four independent electric charges in addition to the an-

gular momentum has not been found yet.20 In four dimensions, one could also switch on

magnetic charges. For type IIB supergravity on S5, one could analyze the solution carrying

two independent angular momenta and three independent electric charges given in [36]. For

massive type IIA supergravity on S4/Z2, the solution of [25] discussed here already car-

ries all possible independent electric charges and angular momenta available within known

consistent truncations, although one may still search for asymptotically AdS6 black holes

carrying a non-vanishing electric charge for the additional U(1) ⊂ SU(2) isometry of S4

working directly in ten dimensions (this charge would be dual to a flavor charge of the

D4-D8-O8 SCFT5). For eleven-dimensional supergravity on S4, a solution carrying two in-

dependent electric charges and three independent angular momenta is likely to exist within

20Very recently, the corresponding BPS solution has been constructed in [60].

– 30 –



J
H
E
P
0
9
(
2
0
1
9
)
0
7
9

the U(1)2 truncation of seven-dimensional SO(5) maximal supergravity, but has not been

found yet. Nevertheless, the known solutions allow to partially relax the condition of equal

electric charges and equal angular momenta we imposed: one could take the two electric

charges in the solution of [24] to be independent, or consider the solution with equal electric

charges but independent angular momenta given in [61].

We would like to comment further on five-dimensional black holes, going beyond S5

compactifications of type IIB supergravity. The imprint of S5 in the five-dimensional super-

gravity considered in this paper is found in the specific number of vector multiplets (three,

gauging the U(1)3 ⊂ SO(6) isometry group of S5) and in the form of the CIJK tensor con-

trolling the matter couplings (see appendix A for details). Multi-charge, supersymmetric

AdS5 black holes are known more generally in five-dimensional Fayet-Iliopoulos gauged su-

pergravity with an arbitrary number nV of vector multiplets and an arbitrary choice of the

tensor CIJK , I, J,K = 1, . . . , nV +1 (under the assumption that the scalar manifold is sym-

metric) [32, 33]. The solutions carry angular momenta J⋆
1 , J

⋆
2 and nV +1 electric chargesQ⋆

I .

An entropy function whose Legendre transform should reproduce the Bekenstein-Hawking

entropy of these black holes has been conjectured in [16, appendix A] and reads

I =
π

24

CIJKϕIϕJϕK

ω1 ω2
. (6.1)

In appendix C we prove that this is indeed true, provided the chemical potentials satisfy

the constraint

ω1 + ω2 − 3X̄Iϕ
I = ∓ 2πi , (6.2)

and in addition one demands reality of the Legendre transform. Here we give the saddle

point expressions for the BPS chemical potentials of the black holes in [32], which carry

one angular momentum J⋆
1 = J⋆

2 and nV + 1 electric charges Q⋆
I . Generalizing our formu-

lae (2.55), we infer that these BPS chemical potentials read:

ω⋆
1 = ω⋆

2 ≡ 1

2
ω⋆ = − π

1 + α1

[

α2
√

4 (1 + α1)α3 − α2
2

± i

]

,

ϕI ⋆ =
9π

1 + α1
CIJKqJ

[

α2 X̄K − (1 + α1) qK
√

4 (1 + α1)α3 − α2
2

± i X̄K

]

, (6.3)

where X̄K are the values taken by the scalar fields in the supersymmetric AdS5 solu-

tion, while the real parameters qI , α1 = 27
2 C

IJKX̄IX̄JqK , α2 = 27
2 C

IJKX̄IqJqK , α3 =
9
2C

IJKqIqJqK control the solution in [32]. In appendix C we show that the expressions (6.3)

are indeed saddles of the extremization problem leading to the black hole entropy.

The entropy function (6.1) has been reproduced from a dual SCFT4 viewpoint by

taking the Cardy-like limit of the superconformal index in [13]. Some of the black hole

solutions of [32, 33] may uplift to type IIB supergravity on Sasaki-Einstein manifolds and

thus have an SCFT4 dual, however the uplift is only known for the case of S5, or in a

single-charge limit where the black holes are solutions to minimal gauged supergravity.

This is in part due to the fact that a consistent truncation of type IIB supergravity on

five-dimensional Sasaki-Einstein manifolds including all Kaluza-Klein vector fields gauging
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the relevant internal symmetries has not been found to date. For these reasons, the details

of the matching with the dual SCFT are not fully under control yet. In addition, the

non-extremal solutions which are the starting point of our limiting procedure are only

known within the U(1)3 theory discussed here. Clearly it would be interesting to construct

new asymptotically AdS black holes in five-dimensional supergravity (for instance relaxing

the assumption that the scalar manifold is symmetric), study their uplift to type IIB

supergravity on different Sasaki-Einstein manifolds, and extend the results of the present

paper by investigating their BPS limit. Similar considerations can be made for black holes

in spacetime dimension different than five.

Although constructing the full asymptotically AdSd solution would be desiderable, for

the purpose of studying the extremization principle it may be sufficient to focus on the

simpler near-horizon geometry, upon identifying the near-horizon counterpart of our BPS

limit. This approach, once promoted to the full ten- or eleven-dimensional supergravity

theory, may also lead to a generalization of the extremization principle of [62–64] to the

case of rotating horizons with no magnetic charge.

In five dimensions, there are also recently found black holes that are just asymptotically

locally AdS5, since the S
3 spatial part of the conformal boundary is squashed [65–67]. It has

been shown in [66] that the expression of the Bekenstein-Hawking entropy of these black

holes in terms of the charges is the same as in the round S3 case, provided one uses the Page

electric charges of the solution. Hence the entropy function should also be the same, pro-

vided the electric potentials ϕI are those conjugate to the Page charges. It would be inter-

esting to show this from the on-shell action by implementing the BPS limit discussed here.
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A The on-shell action of AdS5 black holes

In this appendix, we evaluate the holographic charges and the on-shell action of the AdS5
black holes studied in section 2. In order to remove the divergences due to the infinite

spacetime volume we adopt holographic renormalization and use the counterterms for

Fayet-Iliopoulos gauged supergravity given in [66].

In this paper we fix the five-dimensional Newton constant as G = 1. The Lorentzian

metric has mostly plus (−,+, . . . ,+) signature. In d dimensions, the Hodge star is de-

fined as ⋆(dxµ1 ∧ · · · ∧ dxµk) = 1
(d−k)!ǫ

µ1...µk
µk+1...µd

dxµk+1 ∧ · · · ∧ dxµd , with ǫ01...(d−1) =
√

| det gµν | .
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The bosonic action of five-dimensional N = 2 supergravity coupled to nV vector mul-

tiplets and with Fayet-Iliopoulos gauging is:

S =
1

16π

∫
[

(R− 2V) ⋆1−QIJdX
I∧ ⋆dXJ −QIJF

I∧ ⋆F J − 1

6
CIJKF I∧ F J∧AK

]

,

(A.1)

where AI are Abelian gauge fields with field strength F I = dAI , I = 1, . . . , nV + 1, CIJK

is a constant symmetric tensor, and the real scalar fields XI are subject to the constraint

1

6
CIJKXIXJXK = 1 , (A.2)

so that there are only nV dynamical scalars. The kinetic matrix QIJ is given by

QIJ =
9

2
XIXJ − 1

2
CIJKXK , (A.3)

where the lower-index scalar fields XI are defined as

XI =
1

6
CIJKXJXK . (A.4)

We assume that the scalar fields parameterize a symmetric space. In this case the

CIJK tensor satisfies the identity

CIJKCJ ′(LMCPQ)K′ δJJ
′
δKK′

=
4

3
δI(LCMPQ) . (A.5)

This condition is satisfied by the U(1)3 theory we will focus on momentarily. The same

assumption was made in [32, 33] to construct general supersymmetric black hole solutions

to Fayet-Iliopoulos gauged supergravity. Denoting by X̄I the constant values of the scalars

XI in the supersymmetric AdS5 vacuum, the scalar potential can be written as

V = −6 g2 X̄I XI , (A.6)

where g is a coupling constant keeping track of the gauging (the Fayet-Iliopoulos gauging

parameters VI are related to the X̄I as VI = gX̄I ; therefore the X̄I should be seen as pa-

rameters of the Lagrangian and not of the solution). Given the real superpotential function

W = 3 g X̄I X
I (A.7)

appearing in the supersymmetry variation of the gravitino, the scalar potential can be

obtained via the formula:

V =
1

2

(

QIJ − 2

3
XI XJ

)

∂W
∂XI

∂W
∂XJ

− 2

3
W2 . (A.8)

Our spacetime M can be seen as a foliation of co-dimension one hypersurfaces of

constant r. We denote the hypersurfaces by ∂Mr, while Mr will be the interior region

bounded by ∂Mr. The metric has the form:

ds25 = grr dr
2 + hij(r, x) dx

i dxj , (A.9)

– 33 –



J
H
E
P
0
9
(
2
0
1
9
)
0
7
9

where i, j = 0, . . . , 3 and hij(r, x) is the induced metric on ∂Mr. In order to regulate the

large-distance divergences, we impose a cutoff r̄, so that the solution extends only up to

r = r̄. Holographic renormalization introduces suitable local counterterms on ∂Mr̄ which

cancel the divergences appearing in the supergravity action for r̄ → ∞. This yields the

renormalized action

Sren = lim
r̄→∞

Sreg , (A.10)

where the regulated action Sreg is the sum of three pieces:

Sreg = Sbulk + SGH + Sct . (A.11)

Here, Sbulk is the bulk supergravity action (A.1) evaluated on the regulated spacetime Mr̄.

Using the trace of the Einstein equation as well as the Maxwell equation this can be put

in the form:

Sbulk = − 1

12π

∫

Mr̄

V ⋆ 1− 1

24π

∫

Mr̄

d
(

AI ∧QIJ ⋆ F J
)

. (A.12)

SGH is the Gibbons-Hawking boundary integral,

SGH =
1

8π

∫

∂Mr̄

d4 x
√
hK , (A.13)

where h = |dethij |, and K = hij Kij is the trace of the extrinsic curvature tensor Kij =
1

2
√
grr

∂hij

∂r . Finally, the counterterm action Sct is given by:

Sct = − 1

8π

∫

∂Mr̄

d4x
√
h (W + ΞR) , (A.14)

where R is the Ricci scalar of the induced metric hij and the function Ξ is [66]:

Ξ =
1

4 g
XI X̄

I . (A.15)

In Sct we have omitted terms involving log r̄ as they vanish on asymptotically AdS solutions,

such as those of interest in this paper.

The holographic energy-momentum tensor is defined as:

〈Tij〉 = − lim
r̄→∞

2r̄2g2√
h

δSreg

δhij

=
1

8π
lim
r̄→∞

r̄2g2
[

−Kij +K hij −W hij + 2Ξ

(

Rij −
1

2
Rhij

)]

, (A.16)

where Rij and R are the Ricci tensor and the Ricci scalar of hij , respectively. The holo-

graphic currents sourced by the boundary values of the gauge fields AI
i are:

〈jiI〉 = lim
r̄→∞

r̄4g4√
h

δSreg

δAI
i

= − 1

48π
lim
r̄→∞

r̄4g4

[

ǫijkl
(

QIJ ⋆ F J +
1

6
CIJKAJ ∧ FK

)

jkl

]

. (A.17)
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Again in 〈Tij〉 and in 〈jiI〉 we are omitting the contribution arising from logarithmic terms

in Sct, as their variation vanishes in the solution of interest. We can also introduce the one-

point function of the scalar operators sitting in the same supermultiplet as the holographic

currents:

〈OI〉 = lim
r̄→∞

(

r̄2g2 log
(

r̄2g2
) 1√

h

δSreg

δXI

)

=
1

4π
Q̄IJ ϕ

J (0) , (A.18)

where Q̄IJ is the kinetic matrix evaluated on the supersymmetric AdS5 vacuum, and ϕI (0)

is the coefficient of the O(r−2) term in the expansion of the scalar fields XI . We refer

to [66] for details on the derivation of these quantities in general asymptotically locally

AdS5 solutions to Fayet-Iliopoulos gauged supergravity.

We want to apply the formulae above to the U(1)3 theory discussed in section 2. This

is obtained by setting nV = 2 and CIJK = |ǫIJK |, where ǫIJK is the totally anti-symmetric

symbol. Moreover the Fayet-Iliopoulos gauging parameters are fixed by stating that in the

supersymmetric AdS5 vacuum the scalars take the equal values:

X̄I = 1 ⇒ X̄I =
1

3
. (A.19)

With these choices, eqs. (A.2)–(A.6) specialize to:

X1X2X3 = 1 ,

XI =
1

3

(

XI
)−1

,

QIJ =
1

2
diag

(

(

X1
)−2

,
(

X2
)−2

,
(

X3
)−2

)

,

V = −2 g2
3

∑

I=1

(

XI
)−1

. (A.20)

Plugging these expressions in (A.1), we retrieve the action of the U(1)3 model given in (2.1).

The superpotential (A.7) and the function (A.15) entering in the holographic counterterms

read:

W = g
(

X1 +X2 +X3
)

.

Ξ =
1

12 g

[

(

X1
)−1

+
(

X2
)−1

+
(

X3
)−1

]

. (A.21)

We are now in the position of computing the holographic quantities for the solution

reviewed in section 2.1. Due to the symmetries of the solution, the holographic energy-

momentum tensor can be written as

〈Tij〉 dxi dxj = 〈Ttt〉 dt2 + 〈Tθθ〉
(

σ2
1 + σ2

2

)

+ 〈Tψψ〉σ2
3 + 2 〈Ttψ〉 dt σ3 , (A.22)
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and (A.16) gives for its components:

〈Ttt〉 =
8 g3m

(

a2g2 + 2 s21 + 2 s22 + 2 s23 + 3
)

+ 3g

64π
,

〈Ttψ〉 =
a g3m (s1 s2 s3 − c1 c2 c3)

4π
,

〈Tθθ〉 =
8 g2m

(

−3 a2g2 + 2 s21 + 2 s22 + 2 s23 + 3
)

+ 3

768π g
,

〈Tψψ〉 =
8 g2m

(

9 a2g2 + 2 s21 + 2 s22 + 2 s23 + 3
)

+ 3

768π g
. (A.23)

Evaluating (A.17) we find that the only non-vanishing components of the electric currents

are

〈jtI〉 = −mg3 cI sI
4π

,

〈jψI 〉 =
mag5(cI sJ sK − sI cJ cK)

2π
, (A.24)

where the indices I, J,K are never equal, while from (A.18) we obtain for their scalar

operator superpartners:

〈OI〉 =
m

12π

(

−2 s2I + s2J + s2K
)

. (A.25)

The holographic energy-momentum tensor and the holographic currents are conserved,

∇i〈Tij〉 = 0 , ∇i〈jiI〉 = 0 , (A.26)

where ∇i is the Levi-Civita connection of the metric on the conformal boundary, which

reads

ds2bdry = −dt2 + ds2(S3
bdry) , with ds2(S3

bdry) =
1

4g2
(

σ2
1 + σ2

2 + σ2
3

)

. (A.27)

We can thus introduce the energy E and the angular momentum J , defined as the conserved

holographic charges associated with the Killing vectors ∂
∂t and − ∂

∂ψ , respectively. These

are obtained by integrating the corresponding components of the energy-momentum tensor

on the boundary three-sphere S3
bdry. We find:

E =

∫

S3
bdry

ui 〈Tit〉 vol
(

S3
bdry

)

= E0 +
1

4
πm

(

a2g2 + 2 s21 + 2 s22 + 2 s23 + 3
)

,

J = −
∫

S3
bdry

ui 〈Tiψ〉 vol
(

S3
bdry

)

=
1

2
π am (c1 c2 c3 − s1 s2 s3) , (A.28)

where

E0 =
3π

32 g2
, (A.29)

and we used u = ∂
∂t for the unit timelike vector on the conformal boundary, as well as

vol
(

S3
bdry

)

= 1
8g3

σ1 ∧ σ2 ∧ σ3 . We also obtain the conserved electric charges:

QI =

∫

S3
bdry

vol(S3
bdry)ui〈jiI〉 = − 1

16π

∫

S3
bdry

(

X−2
I ⋆ F I +

1

6
CIJK AJ ∧ FK

)

=
1

2
mπ sIcI ,

(A.30)
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where it should be noted that the Chern-Simons term evaluates to zero, implying that in

this case the holographic charges are the same as the standard Maxwell charges in (2.14).

These expressions for E, J and QI coincide with those obtained in [24] by other methods

and reported in section 2.1.
Next we evaluate the on-shell action. This should be computed in a regular Euclidean

section of the solution. We have already described the Euclideanization and the regularity
conditions to be imposed in the paragraph around eq. (2.18). Here we keep using the
Lorentzian notation until the last step, taking nevertheless into account the conditions that
make the Euclidean section regular. We start from the bulk contribution, written in the
form (A.12). The integral over the radial coordinate is performed from the outer horizon r+
up to r̄. Furthermore, applying the Stokes theorem to the second term of (A.12) we get:21

Sbulk = − 1

12π

∫

Mr̄

V ⋆ 1 +
1

24π

∫

∂Mr̄

QIJ AI ∧ ⋆F J − 1

24π

∫

∂Mr+

QIJ AI ∧ ⋆F J . (A.31)

The first term is easily evaluated recalling the expression for V in (A.20) and performing

the bulk integral. We obtain:

− 1

12π

∫

Mr̄

V ⋆ 1 =

[

−1

4
πg2

(

r̄4 − r4+
)

− 1

3
πmg2

(

s21 + s22 + s23
) (

r̄2 − r2+
)

]
∫

dt , (A.32)

where we displayed only the terms that do not vanish in the limit r̄ → ∞. The terms in-

volving r̄ arise by evaluating the primitive function at the boundary, while those involving

r+ are the contribution of the horizon. In order to evaluate the second and the third terms

it is convenient to fix a vielbein basis for the five-dimensional metric (2.4). We choose:

e0 = r (H1H2H3)
1/6

√
Y√
f1

dt , e1 = r2
(H1H2H3)

1/6

√
Y

dr , e2 =
r

2
(H1H2H3)

1/6 σ1 ,

e3 =
r

2
(H1H2H3)

1/6 σ2 , e4 =

√
f1

2r2 (H1H2H3)
1/3

(

σ3 −
2 f2
f1

dt

)

. (A.33)

In this basis, the gauge fields read

AI = DI e0 + EI e4 , (A.34)

where:

DI =

(

AI
t + 2AI

ψ

f2
f1

) √
f1

r (H1H2H3)
1/6

√
Y

,

EI = AI
ψ

2r2 (H1H2H3)
1/3

√
f1

, (A.35)

while the field strengths read:

F I = LI e01 +M I e14 +N I e23 ,

⋆F I = −LI e234 +M I e023 +N I e014 , (A.36)

21The application of the Stokes theorem introduces a minus sign, i.e.
∫

M
d(. . . ) = −

∫

∂M
(. . . ). This is

because we chose the positive orientation to be dt ∧ dr ∧ σ1 ∧ σ2 ∧ σ3.
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with

LI = −
[

(

AI
t

)′
+
(

AI
ψ

)′ 2 f2
f1

] √
f1

r3 (H1H2H3)
1/3

,

M I = 2
(

AI
ψ

)′
(H1H2H3)

1/6

√
Y√
f1

,

N I = −
4AI

ψ

r2 (H1H2H3)
1/3

, (A.37)

where a prime denotes a derivative with respect to r. It follows that

(

QIJ A
I ∧ ⋆F J

) ∣

∣

∂M
= −1

2

3
∑

I=1

(XI)−2
(

DILI + EIM I
)

e0234 . (A.38)

Using this formula we can evaluate the second and third term of (A.31). It is crucial to

notice that regularity of the Euclidean section requires to choose the gauge as in (2.18).

Doing so, we find that the horizon contribution vanishes while the boundary one gives the

finite term:

1

24π

∫

∂Mr̄

(

QIJ A
I ∧ ⋆F J

)

=
1

6
πm

[(

c1 s1Φ
1 + c2 s2Φ

2 + c3 s3Φ
3
)]

∫

dt . (A.39)

The evaluation of the Gibbons-Hawking term (A.13) is straightforward and gives:

SGH =

{

π g2 r̄4 +
π

12

[

9 + 16mg2
(

s21 + s22 + s23
)]

r̄2 (A.40)

+
πm

6

[

− (6 + s21 + s22 + s23) + 2g2
(

3a2 + 4m
(

s21 s
2
2 + s21 s

2
3 + s22 s

2
3

))

]

}
∫

dt .

Recalling (A.21), the counterterm action (A.14) evaluates to:

Sct =

{

− 3

4
π g2 r̄4 +

1

4
π r̄2

[

−4mg2
(

s21 + s22 + s23
)

− 3
]

+
3πm

4
(1− a2g2)

− πm2g2
(

s21 s
2
2 + s21 s

2
3 + s22 s

2
3

)

− 3π

32 g2

}
∫

dt . (A.41)

The regularized on-shell action Sreg is the sum of the four terms (A.32), (A.39), (A.40)

and (A.41). Adding these up, the divergences cancel out. Taking r̄ → ∞ yields:

Sren =

{

− 3π

32g2
+

π

12

[

2m
(

c1s1Φ
1 + c2s2Φ

2 + c3s3Φ
3
)

+ 4m2g2
(

s21s
2
2 + s21s

2
3 + s22s

2
3

)

+ 3m(g2a2 − 1) + 3g2r4+ + 2m
(

2g2r2+ − 1
) (

s21 + s22 + s23
)

]

}
∫

dt . (A.42)

The Euclidean action is obtained by performing the Wick rotation t → −iτ and recalling

that the Euclidean and the Lorentzian actions are related as e−I = eiSren|t→−iτ in the grav-

itational path integral. Effectively this means that we just have to replace
∫

dt → −
∫

dτ

in the expression above. As usual, regularity of the Euclidean solution as r → r+ fixes the

circumference of the Euclidean time circle to be
∫

dτ = β, where β is the inverse Hawking

temperature given in (2.11). In this way we reach the result reported in (2.19).
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B The on-shell action of AdS4 black holes

In this appendix, we evaluate the on-shell action and the holographic charges of the four-

dimensional solution in section 3. As in the five-dimensional case, we use the method of

holographic renormalization.

The four-dimensional metric has the same form as (A.9), where now i, j = 0, . . . , 2.

The renormalized action is again Sren = limr̄→∞ Sreg with Sreg = Sbulk+SGH+Sct . Using

the Einstein equation, the bulk supergravity action (3.1) can be recast into

Sbulk = − 1

16π

∫

Mr̄

(

− 2V ⋆ 1− 1

2
e−ξF3 ∧ ⋆F3 −

1

2 (1 + χ2 e2ξ)
eξF1 ∧ ⋆F1

− 1

2
χF3 ∧ F3 +

χ e2ξ

2 (1 + χ2 e2ξ)
F1 ∧ F1

)

. (B.1)

The Gibbons-Hawking boundary integral is defined as in five dimensions,

SGH =
1

8π

∫

∂Mr̄

d3x
√
hK . (B.2)

The counterterm action reads

Sct = − 1

8π

∫

∂Mr̄

d3x
√
hW

(

1 +
1

4 g2
R

)

, (B.3)

where the real superpotential reads

W = g eξ/2
√

χ2 + (e−ξ + 1)
2
. (B.4)

We have obtained this superpotential by specializing the results of [22] to our case. This

reference derived the holographic counterterms for Fayet-Iliopoulos U(1)4 supergravity,

that is four-dimensional N = 2 supergravity coupled to three vector multiplets and with an

Abelian gauging of the R-symmetry. This is related to the theory considered in the present

paper by setting the four gauge fields pairwise equal, and the same for the scalar symplectic

sections, X0 = X1 = (e−ξ + iχ)−1/2, X2 = X3 = (e−ξ + iχ)1/2. It should be noted that

the counterterm (B.3) is compatible with supersymmetry provided a combination of the

scalar fields is given Neumann boundary conditions [68]; this means that our renormalized

action is a function of vevs for the operators dual to these scalars, and of sources for the

other operators [22].

We now evaluate the terms above on the solution. Displaying only the contributions

that do not vanish in the limit r̄ → ∞, the bulk action (B.1) yields

Sbulk =

∫

dt

2(a2g2 − 1)

{

g2(r̄3 − r3+) + 3g2m(r̄2 − r2+)(s
2
1 + s22)

+ (r̄ − r+)
[

a2g2 + 2m2g2(s41 + 4 s21s
2
2 + s42)

]

− 2m2
[

c21 s
2
1

(

2ms22 + r+
)

+ c22 s
2
2

(

2ms21 + r+
)]

a2 +
(

2ms21 + r+
) (

2ms22 + r+
)

}

, (B.5)
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the Gibbons-Hawking term gives:

SGH =

∫

dt

2 (1− a2g2)

{

3g2r̄3 + 9mg2r̄2(s21 + s22) +

[

5

3
a2g2 + 6m2g2(s41 + 4s21s

2
2 + s42) + 2

]

r̄

+m

(

5

3
a2g2 + 12m2g2s21s

2
2 − 1

)

(

s21 + s22
)

− 3m

}

, (B.6)

while the counterterm action evaluates to:

Sct =

∫

dt

1− a2g2

{

− g2r̄3 − 3g2m r̄2
(

s21 + s22
)

−
[

1

3
a2g2 + 2m2g2

(

s41 + 4s21s
2
2 + s42

)

+ 1

]

r̄

−m

(

1

3
a2g2 + 4m2g2s21s

2
2

)

(

s21 + s22
)

+m

}

. (B.7)

Adding up these three expressions and sending r̄ → ∞, we obtain our result for the

renormalized action:

Sren =

∫

dt

2(1− a2g2)

{

g2r3+ + 3mg2r2+
(

s21 + s22
)

+ r+
[

a2g2 + 2m2g2
(

s41 + 4s21s
2
2 + s42

)]

+m
(

a2g2 + 4m2g2s21s
2
2 − 1

)

(s21 + s22)−m

+
2m2

[

c21s
2
1

(

2ms22 + r+
)

+ c22s
2
2

(

2ms21 + r+
)]

a2 +
(

2ms21 + r+
) (

2ms22 + r+
)

}

. (B.8)

The Euclidean on-shell action I is obtained by Wick-rotating t = −iτ and identifying

τ ∼ τ +β, where β was given in (3.10). Differently from the five-dimensional case, there is

no subtlety related to the choice of a regular gauge, because the four-dimensional action is

gauge-invariant. Therefore one simply has I = −iSren|∫ dt→−iβ Our final result is displayed

in (3.13).

The holographic energy-momentum tensor is given by:

〈Tij〉 = − lim
r̄→∞

2 r̄ g√
h

δSreg

δhij

= − 1

8π
lim
r̄→∞

r̄ g

[

Kij − (K −W)hij −
1

2 g2
W

(

Rij −
1

2
Rhij

)]

. (B.9)

The charges appearing in (3.11) are evaluated in a frame which is non-rotating at infinity,

so in order to compare with those expressions it is convenient to use the time and angular

coordinates t′, φ′ defined in (3.8). Here we report only the components 〈Tt′t′〉 and 〈Tt′φ′〉,
since these are the only ones needed to compute the energy and the angular momentum:

〈Tt′t′〉 =
g2m

(

s21 + s22 + 1
) (

1− a2g2 cos2 θ
)

(2− 2a2g2 cos2 θ + a2g2 sin2 θ)

8π (a2g2 − 1)2
,

〈Tt′φ′〉 = 3 a g2m
(

s21 + s22 + 1
)

sin2 θ
(

a2g2 cos2 θ − 1
)

8π (a2g2 − 1)2
. (B.10)

The asymptotic metric at r → ∞ is

ds2 =
dr2

g2r2
+ g2r2 ds2bdry , (B.11)
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where the metric on the conformal boundary reads in the non-rotating frame

ds2bdry = −∆θ

Ξ
dt′2 +

dθ2

g2∆θ
+

sin2 θ dφ′2

g2Ξ
, (B.12)

and ∆θ,Ξ were given in (3.4).22 Using these expressions we can evaluate the conserved

charges E and J , associated with the symmetries generated by ∂
∂t′ and − ∂

∂φ′ , respectively.

We obtain:

E =

∫

Σbdry

ui 〈Tit′〉 vol (Σbdry) =
m

Ξ2

(

1 + s21 + s22
)

,

J = −
∫

Σbdry

ui 〈Tiφ′〉 vol (Σbdry) =
am

Ξ2

(

1 + s21 + s22
)

. (B.13)

where u =
√

Ξ
∆θ

∂
∂t′ is the unit, outward-pointing timelike vector and Σbdry is the two-

dimensional Cauchy surface at the boundary, with metric induced from (B.12). These

expressions coincide with the ones computed in [52] and reported in (3.11). The electric

charges obtained from the holographic currents 〈ji〉 also agree with those in (3.11).

C Legendre transform of general AdS5 black hole entropy function

In this appendix, we prove that the Legendre transform of the entropy function (6.1) leads

to the entropy of the asymptotically AdS5 BPS black holes of [32, 33]. These are solutions

to five-dimensional Fayet-Iliopoulos gauged supergravity coupled to nV vector multiplets,

which carry angular momenta J⋆
1 , J

⋆
2 and nV + 1 electric charges Q⋆

I . The proof is a

generalization to Fayet-Iliopoulos gauged supergravity of the procedure presented in [5,

appendix B] for the U(1)3 theory. Although straightforward, this requires extensive use of

the properties of the tensor CIJK and for this reason we discuss it in some detail.

We start from the function of the rotational and electric chemical potentials ωi, i = 1, 2,

and ϕK , K = 1, . . . , nV + 1, proposed in [16]:

I =
π

24

CIJKϕIϕJϕK

ω1 ω2
. (C.1)

We want to compute the Legendre transform, subject to the constraint

ω1 + ω2 − 3X̄KϕK = 2πin , (C.2)

where n is a real number, and we recall from appendix A that X̄K are the values taken

by the scalar fields in the supersymmetric AdS5 solution, which can be traded for the

Fayet-Iliopoulos gauging parameters. Following [5], we set up the extremization problem

S(QK , Ji) = ext{ϕK , ωi,Λ}
[

− I − ϕKQK − ωiJi − Λ(ω1 + ω2 − 3X̄KϕK − 2πin)
]

, (C.3)

22The metric (B.12) is related by a Weyl transformation and a change of coordinate to the canonical

metric on R× S2: Ξ
∆θ

ds2bdry = −dt2 + 1

g2

(

dθ′ 2 + sin2 θ′ dφ′ 2
)

, with tan θ =
√

1− a2g2 tan θ′. We will not

need to implement this transformation here.
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where Λ is a Lagrange multiplier implementing the constraint, and ωi = ωi. The extrem-

ization equations obtained from (C.3) are

− ∂I

∂ϕK
= QK − 3X̄K Λ , − ∂I

∂ωi
= Ji + Λ , (C.4)

together with the constraint (C.2) that follows from varying with respect to Λ. Using the

identity (A.5), it is not hard to see that the equations above imply

0 =
1

6
CIJK(−QI + 3X̄I Λ)(−QJ + 3X̄J Λ)(−QK + 3X̄K Λ)− π

4
(J1 + Λ)(J2 + Λ) . (C.5)

This can be written as

0 = p0 + p1Λ + p2Λ
2 + Λ3 , (C.6)

with

p0 = −1

6
CIJKQIQJQK − π

4
J1J2 ,

p1 =
3

2
CIJKX̄IQJQK − π

4
(J1 + J2) ,

p2 = −9

2
CIJKX̄IX̄JQK − π

4
. (C.7)

The cubic equation (C.6) is straightforwardly solved for Λ, and we denote by “Roots” the

set of three solutions. We can also solve the rest of the equations (C.4), together with

the constraint (C.2), and in this way determine the saddle point values of the chemical

potentials ωi, ϕI . These read:

ωi =
1

6
ΞCIJKQ̃IQ̃JQ̃K |ǫij |J̃j , ϕI = −1

2
ΞCIJKQ̃JQ̃K J̃1J̃2 , (C.8)

where we introduced Q̃I = QI − 3X̄IΛ, J̃i = Ji + Λ, along with

Ξ =
4πin

3J̃1J̃2CIJKX̄IQ̃JQ̃K + 1
3(J̃1 + J̃2)CIJKQ̃IQ̃JQ̃K

, (C.9)

and it is understood that Λ ∈ Roots.

Now the same argument used in [5] shows that the Legendre transform reads

S = extΛ∈Roots (2πinΛ) , (C.10)

and that S is real and positive if and only if one imposes

p0 = p1p2 , (C.11)

and picks the purely imaginary root Λ = i
√
p1 if n < 0, or Λ = −i

√
p1 if n > 0. Recall-

ing (C.7), we see that (C.11) is a constraint on the charges. Assuming this condition, the

Legendre transform (C.10) reads

S = 2π|n| √p1

= π|n|
√

6CIJKX̄IQJQK − π (J1 + J2) . (C.12)
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For n = ∓1, this is the Bekenstein-Hawking entropy of the black holes of [32, 33], in the

form first given in [51]. This concludes our proof.

Specializing to the U(1)3 model, which as we reviewed in appendix A implies taking

C123 = 1 and X̄I = 1
3 , all the expressions above reduce to those given in [5, appendix B],

upon identifying Qhere
I = −Qthere

I , ϕI
here = −∆I there and µthere = −π

4 . Moreover, for

n = ∓1 the constraint (C.2) is perfectly consistent with the one we obtained in section 2

analyzing the black hole solution to the U(1)3 model.

For the multi-charge solution of [32], where the two angular momenta are set equal, we

can show that the explicit expressions for the chemical potentials we gave in (6.3) satisfy

the saddle point expressions (C.8). The solution of [32] is controlled by real parameters

qI , α1 =
27

2
CIJKX̄IX̄JqK , α2 =

27

2
CIJKX̄IqJqK , α3 =

9

2
CIJKqIqJqK . (C.13)

The explicit formulae for the BPS black hole entropy and charges in terms of these param-

eters are [32]:

S⋆ =
1

4
π2

√

4 (1 + α1)α3 − α2
2 , J⋆

1 = J⋆
2 ≡ J⋆ =

π

8
(α2 + 2α3) ,

Q⋆
I =

3

4
π

(

qI −
1

2
α2X̄I +

3

2
CIJKX̄JCKLMqLqM

)

. (C.14)

The charges satisfy the relation (C.11); correspondingly, the BPS solution has just nV + 1

independent parameters, though there are nV +2 charges J⋆, Q⋆
I . In order to compare (C.8)

with (6.3), we need to evaluate CIJKQ̃JQ̃K , CIJKQ̃IQ̃JQ̃K , CIJKX̄IQ̃JQ̃K in terms of

the parameters. Straightforward though tedious computations making repeated use of the

identity (A.5) lead us to:23

CIJKQ̃⋆
JQ̃

⋆
K =

1

8

[

π2

(

(1 + α1)α3 −
1

4
α2
2

)

+ 16Λ2

]

X̄I

+
9

16

[

π2

(

1 + α1 +
1

2
α2

)

− 4πΛ

]

CIJKqJqK

− 9

16

[

π2 (α2 + 2α3) + 8πΛ
]

CIJKX̄JqK ,

CIJKQ̃⋆
IQ̃

⋆
JQ̃

⋆
K =

3π3

32

(

(

1 + 2α1 + α2
1 − α3

)

α3 +
1

2
(α1 − 1)α2α3 −

1

4
(2 + α1)α

2
2 −

1

8
α3
2

)

− 3π2

8

(

α1α3 + α2 + 3α3 −
1

4
α2
2

)

Λ +
3π

4
(2α1 + α2)Λ

2 − 6Λ3 ,

CIJKX̄IQ̃
⋆
JQ̃

⋆
K =

π2

24

(

α1α3 + α2 + 3α3 −
1

4
α2
2

)

− π

6
(2α1 + α2) Λ + 2Λ2 . (C.15)

We are interested in the case where the Legendre transform is real and positive, and

n = ∓1. We thus substitute Λ = ±i
√
p1 = ± i

2πS
⋆ in the formulae above. Note that then

the term proportional to X̄I in the first line of (C.15) vanishes. Plugging (C.14), (C.15)

into (C.8), (C.9), we obtain precisely the expressions for the chemical potentials given

in (6.3). As a consistency check, we also verified that (6.1), (6.3), (C.14) satisfy the

supersymmetric quantum statistical relation I⋆ = −S⋆ − ω⋆J⋆ − ϕI⋆Q⋆
I .

23These expressions also hold for the solution of [33], where the two angular momenta are different.
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[43] W. Chen, H. Lü and C.N. Pope, Mass of rotating black holes in gauged supergravities,

Phys. Rev. D 73 (2006) 104036 [hep-th/0510081] [INSPIRE].

[44] B. Assel, D. Cassani, L. Di Pietro, Z. Komargodski, J. Lorenzen and D. Martelli, The

Casimir energy in curved space and its supersymmetric counterpart, JHEP 07 (2015) 043

[arXiv:1503.05537] [INSPIRE].

[45] B. Assel, D. Cassani and D. Martelli, Supersymmetric counterterms from new minimal

supergravity, JHEP 11 (2014) 135 [arXiv:1410.6487] [INSPIRE].

[46] I. Papadimitriou, Supercurrent anomalies in 4d SCFTs, JHEP 07 (2017) 038

[arXiv:1703.04299] [INSPIRE].

[47] O.S. An, Anomaly-corrected supersymmetry algebra and supersymmetric holographic

renormalization, JHEP 12 (2017) 107 [arXiv:1703.09607] [INSPIRE].

[48] P. Benetti Genolini, D. Cassani, D. Martelli and J. Sparks, The holographic supersymmetric

Casimir energy, Phys. Rev. D 95 (2017) 021902 [arXiv:1606.02724] [INSPIRE].

[49] P. Benetti Genolini, D. Cassani, D. Martelli and J. Sparks, Holographic renormalization and

supersymmetry, JHEP 02 (2017) 132 [arXiv:1612.06761] [INSPIRE].

[50] C. Closset, L. Di Pietro and H. Kim, ’t Hooft anomalies and the holomorphy of

supersymmetric partition functions, JHEP 08 (2019) 035 [arXiv:1905.05722] [INSPIRE].

[51] S. Kim and K.-M. Lee, 1/16-BPS black holes and giant gravitons in the AdS5 × S5 space,

JHEP 12 (2006) 077 [hep-th/0607085] [INSPIRE].
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