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Abstract The geometrical formulation of the quantum1

Hamilton–Jacobi theory shows that the quantum potential is2

never trivial, so that it plays the rôle of intrinsic energy. Such3

a key property selects the Wheeler–DeWitt (WDW) quantum4

potential Q[g jk] as the natural candidate for the dark energy.5

This leads to the WDW Hamilton–Jacobi equation with a6

vanishing kinetic term, and with the identification7

� = − κ2

√
ḡ

Q[g jk].8

This shows that the cosmological constant is a quantum1 9

correction of the Einstein tensor, reminiscent of the von10

Weizsäcker correction to the kinetic term of the Thomas–11

Fermi theory. The quantum potential also defines the Mad-12

elung pressure tensor. The geometrical origin of the vac-13

uum energy density, a strictly non-perturbative phenomenon,14

provides strong evidence that it is due to a graviton con-15

densate. Time independence of the regularized WDW equa-16

tion suggests that the ratio between the Planck length and17

the Hubble radius may be a time constant, providing an18

infrared/ultraviolet duality. We speculate that such a dual-19

ity is related to the local to global geometry theorems for20

constant curvatures, showing that understanding the universe21

geometry is crucial for a formulation of Quantum Gravity.22

1 Introduction23

In spite of the tremendous efforts, understanding the origin of24

the cosmological constant [1–3] is still an open question. In25

this paper we show that the cosmological constant is naturally26

interpreted in terms of the quantum potential associated to the27

spatial metric tensor. The starting point concerns the geomet-28

rical formulation of the Quantum Hamilton–Jacobi Equation29

(QHJE), suggested by the x−ψ duality observed in [4] and30

introduced in [5–10] (see [11] for a short review). In the fol-31

lowing we call such a formulation, which differs with respect32

a e-mail: matone@pd.infn.it (corresponding author)

to the Bohmian one, Geometrical Quantum Hamilton–Jacobi 33

(GQHJ) theory. Such a theory reproduces the main results of 34

Quantum Mechanics (QM), including energy quantization 35

and tunneling, without using any probabilistic interpretation 36

of the wave function, which is one of the problems in formu- 37

lating a consistent theory of quantum gravity. 38

Another consequence of the GQHJ theory is that if space 39

is compact, then there is no notion of particle trajectory [12]. 40

It follows that the GQHJ theory reproduces the results of 41

QM following a geometrical approach without the axiomatic 42

interpretation of the wave function as probability amplitude. 43

The idea underlying the geometrical derivation of the 44

QHJE is that, like General Relativity (GR), even QM has a 45

geometrical interpretation. This is done by imposing the exis- 46

tence of point transformations connecting different states, 47

which, in turn, leads to a cocycle condition that uniquely 48

fixes the QHJE. It is then immediate to show that the QHJE 49

implies the Schrödinger equation. In such a formulation, it 50

has been shown that the quantum Hamilton characteristic 51

function S is non-trivial even in the case of the free particle 52

with vanishing energy. Such a result is deeply related to the 53

solution of Einstein’s paradox, discussed later, and concern- 54

ing the classical limit of bound states in the de Broglie–Bohm 55

theory. 56

In the present paper we are interested in the fact that, unlike 57

in the de Broglie–Bohm theory, the quantum potential in the 58

GQHJ theory is never trivial [5–10]. This happens even in 59

the case of a free particle with vanishing energy. It is just 60

such a property that led in [13] to the proposal that there 61

is a deep relation between QM and gravity. In particular, it 62

was emphasized that the characteristic property of the quan- 63

tum potential is its universal nature, which is, like gravity, a 64

property possessed by all forms of matter. Subsequently, the 65

deep relation between gravity and QM was also stressed by 66

Susskind in his GR = QM paper [14] and where it is empha- 67

sized that where there is quantum mechanics there is also 68

gravity. An explicit relation between quantum mechanics and 69
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gravity arises in the case of the free particle with vanishing70

energy, whose quantum potential includes the Planck length71

ℓP =
√

h̄G/c3 [13]72

Q(x) = h̄2

4m
{S, x} = − h̄2

2m

ℓ2
P

(x2 + ℓ2
P )2

, (1.1)73

where { f, x} = f ′′′/ f ′ − 3
2 ( f ′′/ f ′)2 is the Schwarzian74

derivative of f . Such a result follows by requiring that, in75

the case of a free particle of energy E , the QHJE consis-76

tently reproduces both the h̄ → 0 and E → 0 limits. On the77

other hand, since in the problem there are no scales, one is78

forced to use universal constants. It turns out that the Planck79

length is the only candidate satisfying the limit conditions, a80

result related to the invariance of the quantum potential under81

Möbius transformations of S. Since E = 0 corresponds to82

the ground state, it follows that Q can be considered as an83

intrinsic energy.84

The GQHJ theory includes another relation between QM85

and geometry of the universe. Namely, compactness of space86

would imply that the energy spectra are quantized [12]. The87

essential reason is that solutions of the Schrödinger equation88

should satisfy gluing conditions, so implying a quantized89

spectra, even in the case of the free particle [12]. This is also90

connected to the problem of definition of time. To see this,91

note that while in classical mechanics we have the equiva-92

lence between the definition of trajectory given by p = ∇S93

and the one following by Jacobi theorem, that is94

p = �∇S ←→ t − t0 = ∂S

∂ E
, (1.2)95

at the quantum level the two definitions do not coincide. As96

shown in [12,15–23], trajectories, if any, should be defined97

by the Jacobi theorem. On the other hand, since a compact98

universe implies a quantized energy spectra, it follows that99

in this case the derivative of S with respect to E is ill-defined100

[12].1 We then have101

Compact Universe −→ {En} −→ ∂S

∂ E
is ill-defined102

−→ no notion of trajectories. (1.3)103

This leads to a possible relation between the problem of time104

in GR and the fact that time is not an observable in QM.105

It should be stressed that in Quantum Field Theory (QFT),106

even particle’s spatial position is represented by parameters,107

so that, like time, even such a notion does not correspond to108

an observable.109

It is worth mentioning that the GQHJ theory has been110

inspired by uniformization theory, with the Schrödinger111

1 An alternative to the ill-defined derivative ∂E S is to consider finite
differences in the E−S plane. One may easily check that this leads to
a heuristic uncertainty relation between E and t .

equation playing the analogous rôle of the uniformizing equa- 112

tion. In particular, the ratio of two linearly independent solu- 113

tions of the Schrödinger equation, plays the analogous rôle 114

of the inverse of the uniformizing map. The basic duality, 115

that is the Möbius symmetry, which extends to the QHJE 116

in higher dimension [24], is the defining property of the 117

Schwarzian derivative. Such a duality, that relates small and 118

large scales, and acts like the map between different funda- 119

mental domains, is at the heart of the proof of the energy 120

quantization [5–10]. The above connection between com- 121

pactness of space, discrete spectra and the analogies with 122

uniformization theory, suggests that higher dimensional uni- 123

formization theory is related to the geometry of the universe. 124

This would imply that Thurston’s geometry [25] is the appro- 125

priate framework to describe the Universe. In this context, the 126

3-torus plays a central rôle. 127

Besides (1.1), also (1.3) provides a relation between small 128

and large scales. In particular, as in the case of a particle in 129

a ring of radius R, that gives En = n2h̄2/(2m R2), n ∈ Z, 130

an analogous relation shows that the energy spacing depends 131

on the parameters defining the compact geometry of space. 132

We saw that the GQHJ theory indicates that QM and GR 133

are deeply related. In particular, in the GQHJ theory, time 134

is not a well-defined observable. On the other hand, in the 135

quantum gravity equation par excellence, that is the Wheeler– 136

DeWitt (WDW) equation [26,27], there is no time variable 137

at all. 138

The above analysis suggests considering the rôle of the 139

WDW quantum potential. In the case of quantum gravity, 140

the quantum potential represents an intrinsic energy density. 141

In analogy with the GQHJ theory and, in particular, with 142

(1.1), the natural interpretation is that the WDW quantum 143

potential in the vacuum is the one of dark energy, that is 144

� = − κ2

√
ḡ

Q[g jk], (1.4) 145

where ḡ = det g jk . We then have that the cosmological con- 146

stant is a quantum correction to the Einstein tensor. This is 147

reminiscent of the von Weizsäcker correction to the kinetic 148

term of the Thomas–Fermi theory [28]. It is worth mention- 149

ing that also the Madelung pressure tensor is defined in terms 150

of the quantum potential. 151

Since (1.4) refers to the vacuum, it follows that there are 152

no dynamical degrees of freedom, so that S = 0. This means 153

that (1.4) coincides with the WDW equation in the vacuum. 154

A consequence of our investigation is that since the met- 155

ric tensor is the only field involved in (1.4), it follows that 156

dark energy is naturally identified with a graviton conden- 157

sate. We note that, in a quite different context, the rôle of the 158

(Bohmian) quantum potential in cosmology, suggesting that 159

the vacuum is a graviton condensate, has been proposed in 160

[29]. 161
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We will argue that, as suggested by Feng’s volume average162

regularization [30], and by the minisuperspace approxima-163

tion, a regularized WDW equation would need, besides the164

Planck length, the addition of an infrared scale that we iden-165

tify with the Hubble radius RH = c/H0 = 1.36 × 1026 m.166

Time independence of the regularized WDW equation would167

then imply that, like RH , even the Planck length is time-168

dependent. In particular, time independence of the WDW169

wave-functional suggests that170

K = ✁ℓP

RH

= 5.96 × 10−61, (1.5)171

may be a space-time constant. This would provide an exact172

infrared/ultraviolet duality.173

The paper is organized as follows. In Sect. 2 we shortly174

review the derivation of the WDW Hamilton–Jacobi (HJ)175

equation. Section 3 illustrates the main points of the GQHJ176

theory formulated in [5–10], focusing on its geometrical ori-177

gin and on the solution of Einstein’s paradox, which in turn178

is related to the non-triviality of the QHJE for the free par-179

ticle with E = 0. In Sect. 4 we show that, contrary to the180

de Broglie–Bohm formulation, the quantum potential is non-181

trivial even in the case of the WDW HJ equation with 3 R = 0182

and vanishing cosmological constant. In Sect. 5 we show that183

the cosmological constant is naturally interpreted in terms of184

the WDW quantum potential in the vacuum. We then derive185

the wave-functional in the minisuperspace approximation.186

Section 6 is devoted to some speculative suggestion relating187

the infrared/ultravilet duality, in the context of the regular-188

ized WDW equation, to the local to global geometry theorems189

concerning manifolds of constant curvature. It turns out that190

the global geometry is strongly constrained in case the local191

one has constant curvature. This is just the geometrical coun-192

terpart of the fact that large scale physics seems constrained193

by the physics at small scales. Another manifestation of the194

connection between QM and GR. Finally, we argue that time195

independence of the regularized WDW equation would imply196

that K is a space-time constant.197

2 WDW Hamilton–Jacobi equation198

In the Arnowitt, Deser and Misner (ADM) formulation [31],199

the space-time is foliated into a family of closed space-like200

hypersurfaces parametrized by time. One then considers such201

spatial hypersurfaces at “constant time”, as level sets of a time202

function203

�t0 = {xk |t (xk) = t0}. (2.1)204

In the following we choose the metric signature (−,+,+,+).205

Denote by gi j = 4gi j the metric tensor of the three dimen-206

sional spatial slices. Let N = (−4g00)−1/2 be the lapse and207

Nk = 4g0k the shift vector field. We then have the standard208

3+1 decomposition 209

ds2 = (Nk N k − N 2)c2dt2 + 2Nkcdxkdt + g jkdx j dxk . 210

(2.2) 211

Note that N , Nk and g jk depend on (t0, x1, x2, x3). As we 212

will see, the lapse function and the shift vector field play the 213

role of four Lagrange multipliers and describe the welding of 214

the �t ’s. The equations of motion for N and Nk are arbitrary, 215

reflecting the freedom in choosing the space-time coordinates 216

[31–33]. 217

Set ḡ = det g jk and κ2 = 8πG/c4. The Einstein–Hilbert 218

Lagrangian density can be equivalently expressed in the form 219

L = 1

2κ2
N

√

ḡ(3 R − 2� + K jk K jk − K 2), (2.3) 220

where 3 R is the intrinsic spatial scalar curvature, � the cos- 221

mological constant, K the trace of the extrinsic curvature 222

K jk = 1

N

(

1

2
g jk,0 − D( j Nk)

)

, (2.4) 223

and D j denotes the j component of the covariant derivative. 224

Let π0 and πk be the momenta conjugate to N and Nk respec- 225

tively. Since L is independent of both ∂x0 N and ∂x0 Nk , we 226

have the primary constraints π0 ≈ 0, πk ≈ 0. Here the sym- 227

bol “≈” indicates weak equality, that is the vanishing holding 228

only on the sub-manifold of the phase space constrained by 229

the primary constraints. The equality holding only when the 230

expression is identically vanishing on the full phase space 231

[33]. 232

Time conservation of the primary constraints implies sec- 233

ondary constraints, given by the weak vanishing of the super- 234

momentum, 235

Hk = −2D jπ
j

k ≈ 0, (2.5) 236

and of the super-Hamiltonian, 237

H = 2κ2Gi jklπ
i jπkl − 1

2κ2

√

ḡ(3 R − 2�) ≈ 0, (2.6) 238

where π jk is the momentum canonically conjugated to g jk , 239

that is 240

π jk = − 1

2κ2

√

ḡ(K jk − g jk K ), (2.7) 241

and 242

Gi jkl = 1

2
√

ḡ
(gik g jl + gil g jk − gi j gkl), (2.8) 243

is the DeWitt supermetric. The conservation in time of the 244

secondary constraints do not imply further constraints. 245

By a Legendre transform one gets the Hamiltonian 246

H =
∫

d3x(NH + N k
Hk), (2.9) 247
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showing that N and N k are the Lagrange multipliers of H248

and Hk respectively.249

Let	 be the Schrödinger wave-functional, that is i h̄∂t	 =250

Ĥ	. Implementation of the primary constraints at the quan-251

tum level is obtained by setting252

π̂0 = −i h̄
δ

δN
, π̂k = −i h̄

δ

δNk

, (2.10)253

so that254

− i h̄
δ	

δN
= 0, −i h̄

δ	

δNk

= 0, (2.11)255

meaning that 	 does not depend on any of the non-dynamical256

variables, that is 	 depends on g jk only.257

At the quantum level the conjugate momenta of a field258

φ would correspond to −i h̄δφ , so that, since for the δ-259

distribution in configuration space we have [δ(3)] = L−3,260

it follows that [δφ] = [φ]−1L−3. On the other hand, by (2.7)261

we have [πi j ] = MT −2, which is different from the dimen-262

sion of the canonical choice of π̂ jk , namely [−i h̄δg jk
] =263

M L−1T −1. We then have264

π̂ jk = −i h̄c
δ

δg jk

, (2.12)265

which also fixes the normalization of the classical relation266

π jk = c
δS

δg jk

, (2.13)267

where S is the functional analogue of Hamilton’s charac-268

teristic function. By (2.12), the super-momentum constraint269

reads270

Ĥk	 = 2i h̄cgk j Dl

δ	

δgl j

= 0, (2.14)271

which is satisfied if 	 is invariant under diffeomorphisms of272

the hypersurface.273

The other secondary constraint, that is Ĥ	 = 0, is the274

WDW equation275

h̄c

[

−2✁ℓ
2
P Gi jkl

δ2

δgi j δgkl

− 1

2✁ℓ
2
P

√

ḡ(3 R − 2�)

]

	[gi j ] = 0,276

(2.15)277

where ✁ℓP =
√

8π h̄G/c3 = κ
√

h̄c is the rationalized Planck278

length. Note that the secondary constraints imply Ĥ	 = 0,279

so that ∂t	 = 0, which is the origin of the problem of time.280

Let us now consider the key identity281

1

AeβS

δ2
(

AeβS
)

δgi jδgkl

= β2 δS

δgi j

δS

δgkl

+ 1

A

δ2 A

δgi jδgkl

282

+ β

2A2

[

δ

δgi j

(

A2 δS

δgkl

)

+ δ

δgkl

(

A2 δS

δgi j

)]

, (2.16)283

which holds for any complex constant β. Set β = i/h̄ and284

	 = Ae
i
h̄

S, (2.17)285

with A and S taking real values. In this respect, note that if 286

Ae
i
h̄

S is a solution, then reality of the WDW operator implies 287

that even Ae− i
h̄

S . This observation is related to the differ- 288

ences between the Bohmian and the GQHJ formulations dis- 289

cussed later. Replacing 	 in (2.15) with right hand side of 290

(2.17) gives the WDW HJ equation, corresponding to the 291

following quantum deformation of the HJ equation 292

2(cκ)2Gi jkl

δS

δgi j

δS

δgkl

− 1

2κ2

√

ḡ(3 R − 2�) 293

−2(cκ h̄)2 1

A
Gi jkl

δ2 A

δgi jδgkl

= 0, (2.18) 294

together with the continuity equation 295

Gi jkl

δ

δgi j

(

A2 δS

δgkl

)

= 0. (2.19) 296

The last term in (2.18), that is 297

Q = −2(cκ h̄)2 1

A
Gi jkl

δ2 A

δgi jδgkl

, (2.20) 298

is called quantum potential. We note that in the classical limit 299

Eq. (2.18) reduces to the classical case (2.6). 300

A key difference between the GQHJ formulation and the 301

Bohmian one is that, as in the formulation of QM, the 	 in 302

(2.17) is not in general identified with the wave-functional 303

of the state of the system, rather it is a general solution of 304

the WDW equation. In the next section, we will see that it is 305

precisely such a characteristic of the GQHJ formulation that, 306

unlike the Bohmian one, implies that 307

1. there is no Einstein’s paradox, 308

2. there is a basic Möbius symmetry, associated to the 309

Schwarzian equation, 310

3. energy quantization follows without the need of any inter- 311

pretation of the wave-function, 312

4. implies that in compact space there is no notion of particle 313

trajectory. 314

An explicit example of the difference between the GQHJ 315

and Bohmian formulations associated to the WDW HJ equa- 316

tion is provided in Sect. 4. In particular, we will consider 317

the case 3 R = 0, � = 0, so that the WDW equation 318

reduces to the free functional differential equation. While 319

in the Bohmian formulation this would imply 320

	 = 0, (2.21) 321

so giving A = 0, S = 0 and Q = 0, in the GQHJ theory 322

there are non-trivial solutions. Once again, this shows that, 323

contrary to the Bohmian formulation, the quantum potential 324

in the GQHJ theory is never trivial, so that it plays the rôle 325

of intrinsic energy. 326
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3 QHJE and Einstein paradox327

In this section we shortly discuss the main aspects of the328

GQHJ theory [5–10]. Let us start by recalling Einstein’s para-329

dox (see e.g. Ref. [34], pg. 243). This concerns the issue in330

Bohmian mechanics when considering the classical limit for331

states described by a wave-function corresponding to Hamil-332

tonian eigenstates of any one-dimensional bound state. Let us333

then consider a state of definite energy E and denote by ψE334

the corresponding wave-function. In this case one can eas-335

ily show that ψE ∈ L2(R) is proportional to a real function.336

Therefore, if one sets, as in Bohm theory, ψE = Re
i
h̄

S , then S337

is a constant. On the other hand, in the Bohmian formulation,338

p = ∂x S is identified with the mechanical momentum mẋ ,339

so that, quantum mechanically, one would have p = 0. This340

would imply that, as in the case of the harmonic oscillator,341

a quantum particle would be at rest and should start moving342

in the classical limit, where S and p are non-trivial. In other343

words, it is clear that it is not possible to get a non-trivial S344

as the h̄ → 0 limit of S = 0.345

The resolution of the paradox is that the quantum ana-346

logue of S is not necessarily the phase of the wave func-347

tion. As we will show, this in fact also underlies the WKB348

approximation that, even if one starts with the identification349

ψ = exp(i SW K B/h̄), with SW K B complex, then real wave350

functions are identified with a linear combination of in and351

out waves. In our formulation, such a choice is not ad hoc352

as in the WKB approximation, rather it follows from the353

request that the cocycle condition is always satisfied [5–10].354

In particular, note that if Re
i
h̄

S is a solution of the station-355

ary Schrödinger equation (SSE), then, this is also the case356

of Re− i
h̄

S . This is the key to introduce the so-called bipolar357

decomposition358

ψE = R
(

Ae
i
h̄

S + Be− i
h̄

S
)

, (3.1)359

which is equivalent to say that the most general expression360

for S, and therefore for R, is given by361

Re
i
h̄

S = Aψ D + Bψ, (3.2)362

with ψ D and ψ two arbitrary linearly independent solutions363

of the SSE.364

As a result, in the case of a real ψE , the only constraint is365

just |A| = |B| and one gets a non-trivial S with a well-defined366

classical limit. Such a solution of Einstein’s paradox is a367

consequence of the GQHJ theory, that excludes in a natural368

way, and from the very beginning, the existence of states with369

a constant S [5–10]. The use of the bipolar decomposition370

was previously discussed by Floyd [15–23].371

Later we will see that in the case of the WDW HJ equation,372

both S and the quantum potential are non-trivial even when373

3 R = 0 and � = 0. This is the functional analogue of basic374

properties of the quantum potential in the GQHJ theory that 375

we now discuss. 376

The main point that characterizes the non-trivial properties 377

of the quantum potential is its connection with the Möbius 378

invariance of the Schwarzian derivative { f, x}, that, in order 379

to be well-defined, requires that f ∈ C2(R) and ∂2
x f dif- 380

ferentiable on R. The continuity equation ∂x (R2∂x S) = 0 381

implies that R is proportional to (∂x S)−1/2, so that the quan- 382

tum potential can be expressed in terms of S only 383

Q = h̄2

4m
{S, x}, (3.3) 384

and the QHJE associated to a SSE reduces to the single equa- 385

tion 386

1

2m

(

∂S

∂x

)2

+ V − E + Q = 0. (3.4) 387

Let us consider the basic identity 388

(

∂S

∂x

)2

= β2

2

({

e
2i
β

S
, x

}

− {S, x}
)

, (3.5) 389

where β is a constant with the dimension of an action. Such 390

an identity implies that the QHJE (3.6) can be also expressed 391

in the form 392

{

exp

(

2i

h̄
S

)

, x

}

= 4m2

h̄
(E − V ). (3.6) 393

The solution of this non-linear differential equation is 394

exp

(

2i

h̄
S

)

= γ

[

ψ D

ψ

]

, (3.7) 395

where ψ and ψ D are two real linearly independent solu- 396

tions of the SSE and γ [ f ] is an arbitrary, generally complex, 397

Möbius transformation of f 398

γ [ f ] = A f + B

C f + D
. (3.8) 399

Thanks to the Möbius invariance of the Schwarzian deriva- 400

tive, one may consider a Möbius transformation of exp(2i S/h̄), 401

that we denote again by 402

γ

[

exp

(

2i

h̄
S

)]

, (3.9) 403

leaving V − E invariant. On the other hand, since this corre- 404

sponds to the transformation 405

S −→ S̃ = h̄

2i
log γ

[

exp

(

2i

h̄
S

)]

, (3.10) 406

we see that there is a non-trivial mixing between the kinetic 407

term and the quantum potential in (3.4). 408

In [5–10] the QHJE was derived by a slight modification of 409

the way one gets the classical HJ equation. Namely, instead of 410

looking for maps from (x, p) to (X, P), seen as independent 411

variables, such that the new Hamiltonian is the trivial one, 412
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H̃ = 0, we looked for transformations x → x̃ such that Ṽ −413

Ẽ = 0, but with the transformation of p fixed by imposing414

that S(x) transforms as a scalar function. We then have415

S̃(x̃) = S(x), (3.11)416

holding for any pair of physical systems, including the one417

with V − E = 0.418

A key consequence of (3.11) is that S(x) can never be a419

constant. In particular, imposing that (3.11) holds even when420

the coordinate x refers to the state with V − E = 0, forces421

the introduction of an additional term in the classical HJ422

equation. Then, one considers three arbitrary states, denoted423

by A, B and C , and imposes the condition coming from the424

commutative diagram of maps425

A

ր
B

−→
ց

C

426

Implementation of such a consistency condition is equivalent427

to a cocycle condition that fixes the additional term to be the428

quantum potential [5–10]. The outcome is just the QHJE.429

Another feature of the above formulation is that the quan-430

tum potential is never trivial even in the case V − E = 0.431

In particular, a careful analysis of the quantum potential for432

a free particle with vanishing energy shows that the h̄ → 0433

and E → 0 limits in the case of the free particle of energy E ,434

leads to the appearance of the Planck length in the expression435

for the quantum potential Q of a free particle with E = 0,436

given in Eq. (1.1). It should be stressed that the present for-437

mulation leads to a well-defined power expansion in h̄ for438

S. This is different with respect to the WKB approximation439

since SWKB is defined by440

ψ = exp

(

i

h̄
SWKB

)

, (3.12)441

so that, in general, SWKB takes complex values. The GQHJ442

theory is also different with respect to the de Broglie–Bohm443

theory. Besides the case of real wave-functions illustrated444

above, also the quantum potential (1.1) turns out to be differ-445

ent. The difference also appears in the case of the free particle446

of energy E . Indeed, the solution of Eq. (3.4) with V = 0 is447

S = h̄

2i
log

(

Ae
2i
h̄

√
2m Ex + B

Ce
2i
h̄

√
2m Ex + D

)

. (3.13)448

Here the constants are chosen in such a way that S �=449

±
√

2m Ex . Such a choice, fixed by the consistency con-450

dition that the non-trivial SE=0 is obtained from S in the451

E → 0 limit, relates p-x duality, also called Legendre dual-452

ity, and Möbius invariance of the Schwarzian derivative [5–453

10]. Another consistency condition comes from the classical454

limit. Since Scl = ±
√

2m Ex , we have455

lim
h̄−→0

log

(

Ae
2i
h̄

√
2m Ex + B

Ce
2i
h̄

√
2m Ex + D

)

h̄
2i

= ±
√

2m Ex, (3.14) 456

implying that the constants A, B, C and D depend on h̄ [5– 457

10]. 458

The above analysis shows that S is the natural quantum 459

analog of the classical Hamiltonian characteristic function. 460

The formulation solves Einstein’s paradox and the power 461

expansion of S in h̄ is completely under control. Furthermore, 462

it leads to a dependence of S on the fundamental constants, 463

shedding light on the quantum origin of interactions. It also 464

implies that if space is compact, then time parametrization 465

cannot be defined [12]. The formulation, that follows from 466

the simple geometrical principle (3.11), extends to arbitrary 467

dimensions and to the relativistic case as well [24]. It repro- 468

duces, together with other features, such as energy quantiza- 469

tion, the non existence of trajectories, without assuming any 470

interpretation of the wave-function. 471

4 The WDW HJ equation with 3
R = 0 and � = 0 472

Let us go back to the WDW equation by considering the case 473

3 R = 0, � = 0 474

Gi jkl

δ2

δgi jδgkl

	 = 0. (4.1) 475

Setting 	 = Ae
i
h̄

S , the WDW HJ equation reads 476

Gi jkl

δS

δgi j

δS

δgkl

− h̄2

A
Gi jkl

δ2 A

δgi jδgkl

= 0. (4.2) 477

As shown in the previous section, a key difference between 478

the GQHJ formulation and the Bohmian one, is that in the lat- 479

ter Re
i
h̄

S is identified with the wave-function describing the 480

physical state. This is not in general the case in the GCHJ for- 481

mulation. In the Bohmian interpretation, the only admissible 482

solution of Eq. (4.1) is the one where the wave-functional is 483

trivial, so that, as in the case of the free particle with E = 0, 484

one would have 	 = 0, implying A = 0, S = 0 and Q = 0. 485

In the following we show that, as in the case of (1.1), the 486

general solution of (4.1) implies non-trivial A, S and Q. 487

Note that in the case of (4.1) the formulation does not 488

suffer the well-known problem of the WDW equation, due 489

to the presence of the second-order functional derivative at 490

the same point: such an operator is in general ill-defined 491

since it may lead to δ(3)(0)-singularities. On the other hand, 492

the wave functional 	[gi j ] now depends linearly on gi j , so 493

that the action of the second-order functional derivative on 494

	[gi j ] is well-defined. We then have 495

	[gi j ] = Ae
i
h̄

S = T g + C, (4.3) 496
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where497

T g :=
∫

d3xT
jk(x)g jk(x), (4.4)498

with T jk(x) an arbitrary complex tensor density field of499

weight 1 and C a complex constant. The most general expres-500

sion of S is501

exp

(

2i

h̄
S

)

= T g + C

T̄ g + C̄
, (4.5)502

and for A we have503

A = |T g + C |. (4.6)504

By (2.13) and (4.5), it follows that at the quantum level the505

momentum conjugate to g jk is506

π jk = c
δS

δg jk(x)
= h̄c Im

(

T jk(x)

T g + C

)

, (4.7)507

so that the kinetic term in the WDW HJ equation reads508

2(cκ)2Gi jkl(x)
δS

δgi j (x)

δS

δgkl(x)
509

= 2(cκ h̄)2

√
ḡ

(

Tkl(x)

T g + C

)

Im

(

T kl(x)

T g + C

)

510

−1

2

[

Im

(

Tr T (x)

T g + C

)]2
}

. (4.8)511

Note that, by (4.2), this also corresponds to −Q[g jk]. Fur-512

thermore, one may easily check that such an expression of513

Q[g jk] is just the functional analogue of the quantum poten-514

tial of the free particle of vanishing energy (1.1).515

5 Cosmological constant from the quantum potential516

The discrepancy between the measured value of the cos-517

mological constant and the theoretical prediction follows by518

considering �/κ2 as a contribution to the effective vacuum519

energy density ρe f f = ρ+�/κ2, where 〈Tµν〉 = ρgµν . Con-520

sidering the QFT vacuum energy density as due to infinitely521

many zero-point energy of harmonic oscillators, we get (here522

h̄ = c = 1)523

ρ =
∫ �U V

0

4πk2dk

(2π)3

1

2

√

k2 + m2 ≈ �4
U V

16π2
≈ 1071 GeV4,524

(5.1)525

where �U V is the Planck mass. A result which is in com-526

plete disagreement with the estimation, based on experimen-527

tal data, ρe f f ≈ 10−47 GeV4.528

A problem with the above derivation is that it is based on529

the perturbative formulation of QFT. This corresponds to use530

the canonical commutation relations of the free theory that531

selects the vacuum of the free theory. On the other hand, the532

true vacuum of non-trivial QFT’s is highly non-perturbative 533

and is not unitarily equivalent to the free one. As a matter 534

of fact, perturbation theory erroneously treats the quantum 535

fields evolving as the free ones between point-like interaction 536

events. From the physical point of view, the rôle of renormal- 537

ization is to iteratively change the parameters of the theory, 538

that then will depend on the physical scale. In other words, 539

perturbation theory is a way to mimic the interacting theory 540

by a free one, with the parameters becoming scale dependent. 541

It has been observed in [35] that the cutoff corresponding 542

to the value of the cosmological constant may be related to 543

an infrared/ultraviolet duality. In particular, the authors of 544

[35], inspired by the Bekenstein bound S � π M2
P L2 for the 545

total entropy in a volume of size L3, proposed the following 546

relation between the infrared cutoff 1/L and �U V 547

L3�4
U V � L M2

P . (5.2) 548

An estimation of the infrared scale of QFT can be derived by 549

considering the precision tests of the electron’s anomalous 550

magnetic moment ae. In this respect, as observed in [36], an 551

estimate of the correction to the usual calculation imposed 552

by the IR scale µ is 553

δae ≈ α

π

(

µ

me

)

≈ 4 × 10−9 µ

1 eV
. (5.3) 554

Requiring that such an indeterminacy be smaller than the 555

uncertainty of the theoretical prediction for ae gives 556

µ ≤ 10−2 eV, (5.4) 557

which is the value corresponding to the cutoff that leads to 558

the same order of magnitude of the experimental value of ρ. 559

The above analysis indicates that the cosmological con- 560

stant is related to the infrared problem, a non-perturbative 561

phenomenon concerning the structure of the vacuum which 562

has physically measured consequences. For example, QED 563

finite transition amplitudes are obtained by summing over 564

states with infinitely many soft photons. 565

We saw that, unlike in Bohmian mechanics, the quantum 566

potential is never trivial [5–10]. This is the case even for the 567

free particle of vanishing energy, implying that the quantum 568

potential plays the rôle of particle intrinsic energy. Further- 569

more, Eq. (1.1) shows that the quantum potential includes 570

the Planck length, which arises by consistency conditions in 571

considering the E → 0 and h̄ → 0 limits [13]. This was one 572

the reasons suggesting a strict relationship between QM and 573

GR [13] (see also [14]). We then have the following result: 574

The WDW quantum potential in the vacuum corresponds 575

to an intrinsic energy density. 576

It is then natural to make the identification 577

Q[g jk] = −
√

ḡρvac, (5.5) 578
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ρvac = �/κ2. Since in this case the only degrees of freedom579

are the ones associated to the metric tensor, the dark energy580

should correspond to a graviton condensate.581

In this context, we stress that the vacuum energy is a purely582

quantum property and the absence of the kinetic term does583

not imply, as in the de Broglie–Bohm theory, the Einstein’s584

paradox. The fact that the cosmological constant is a quan-585

tum correction to the Einstein tensor given in terms of the586

quantum potential, is reminiscent of the von Weizsäcker cor-587

rection to the kinetic term of the Thomas–Fermi theory. Fur-588

thermore, we note that the quantum potential also defines the589

Madelung pressure tensor.590

Now observe that the absence of propagating degrees of591

freedom implies that the quantum potential in (5.5) corre-592

sponds to the one of the WDW HJ equation without the593

kinetic term, that is594

S = 0. (5.6)595

Let us choose a metric with vanishing 3 R. Equation (5.6)596

implies a nice mechanism, namely by (2.18) it follows that597

in this case the continuity equation is trivially satisfied, so598

that Eq. (5.5), that by (5.6) is the full WDW HJ equation,599

coincides with the WDW equation (2.15) with 	 = A. In this600

way the contribution to the WDW HJ equation comes only601

from the quantum potential. In other words, since by (5.6)602

	 takes real values, it follows by the definition of Q[gi j ] in603

(2.20), that Eq. (5.5) is just the WDW equation in the vacuum604

− 2✁ℓ
2
P Gi jkl

δ2

δgi jδgkl

A = −
√

ḡ

✁ℓ
2
P

�A. (5.7)605

Note that such an equation is just the functional analog of a606

stationary Schrödinger equation with negative energy. This607

suggests considering the role of fundamental scales. To this608

end we adapt the analysis that led to Eq. (1.1), to the case609

of Eq. (5.7). The main difference is that now the problem610

includes both small and large scales. To see how fundamental611

constants may appear in the present context, we first derive612

an explicit solution of Eq. (5.7) in the case of the Friedmann–613

Lemaître–Robertson–Walker background.614

Let us then consider the line element615

ds2 = −N (t)2c2dt2 + a2(t)d�2
k , (5.8)616

where617

d�2
k = dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2), (5.9)618

is the spatial line element of constant curvature k. In such an619

approximation the Hilbert–Einstein equation in the vacuum,620

with k = 0, reads621

SH E = V0

κ2

∫

dt

(

−3aȧ2

Nc
− Nca3�

)

, (5.10)622

where 623

V0 =
∫

drdθdφr2 sin θ. (5.11) 624

In such a minisuperspace approximation, the WDW equation 625

(5.7) reads 626

(

d2

da2
+ 12

V 2
0 �

✁ℓ
4
P

a4

)

AF L RW = 0, (5.12) 627

whose solution is a linear combination of the Bessel functions 628

of first and second kind 629

AF L RW (a) = √
a(α J1/6(Ca3) + βY1/6(Ca3)), (5.13) 630

where 631

C = 2
V0

✁ℓ
2
P

√

�

3
. (5.14) 632

In this approximation of the WDW equation, besides the 633

Planck length, there is also another fundamental constant, � 634

itself, and a natural choice, suggested by (5.14), would be 635

V0 = �−3/2. (5.15) 636

Such a result provides an indication on the possible appear- 637

ance of scales related to the WDW equation. Nevertheless, 638

the analysis should be done in the framework of the origi- 639

nal WDW equation, not just considering its minisuperspace 640

approximation. A key aspect is that the WDWW equation 641

is ill-defined, in particular it must be regularized, a problem 642

which is completely missing in the minisuperspace approxi- 643

mation. In the following, we will see that a fundamental scale 644

may in fact appear as an infrared regulator. In agreement with 645

Dirac’s idea, we then will suggest that fundamental constants 646

may be dynamical variables. 647

6 Infrared/ultraviolet duality and local to global 648

geometry theorems 649

In this section we make some speculation concerning the 650

infrared/ultraviolet duality in the context of the WDW equa- 651

tion, which is the natural framework to investigate the rela- 652

tions between the structure of the Universe and small scales. 653

We saw that such an equation includes both large and small 654

scales that can be interpreted as infrared and ultraviolet cut- 655

offs, that should appear in a well-defined version of the WDW 656

equation. It is clear that such an investigation should include 657

a careful analysis of the involved local and global geometries. 658

A well-known problem with the WDW equation, is that 659

due to the second-order functional derivative evaluated at the 660

same point, it presents, in general, δ(3)(x = 0)-singularities. 661

This is analogous to the normal ordering singularities in QFT, 662

due to the joining of two legs of the same vertex; so giving 663

the Feynman propagator evaluated at 0. Similarly, the infinite 664
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volume limit can be interpreted as the integral representation665

of the δ-distribution in momentum space at zero momentum.666

In other words, δ(3)(p = 0) can be interpreted as the infinite667

volume limit of the space volume divided by (2π)3. A related668

method is used, for example, in deriving the effective action669

for λφ4
4 in Euclidean space to get the dependence of the cou-670

pling constant on the mass scale. In that case, the infrared reg-671

ularization was done by supposing that the Euclidean space672

is S4 rather than R
4, and then considering S4 as the surface of673

a five-dimensional sphere, so that one obtains a finite result674

and avoids such an infrared divergence.675

The outcome of such an analysis is that in general singu-676

larities may be removed by taking into account the physical677

scales. What is crucial is to preserve diffeomorphism invari-678

ance. In this respect, we recall that [−i h̄δg jk
] = M L−1T −1,679

while for the δ-distribution in configuration space we have680

[δ(3)] = L−3. This means that, besides the Planck length,681

a well-defined regularized version of the WDW equation682

should also involve a large scale cutoff. An explicit example683

of such a mechanism is the one in the interesting paper by684

Feng, who proposed the volume average regularization [30].685

Feng’s regularization introduces a factor 1/V , with V natu-686

rally identified with the space volume. In particular, Feng’s687

regularized WDW equation has the structure688

Ĥ[✁ℓP , V,�; gi j ]	[gi j ] = 0, (6.1)689

see, for example, Eq. (2.24) of [30]. Feng’s regularization is690

related to the standard heat kernel and point splitting regu-691

larizations [37–41]. In particular, it corresponds to averaging692

the displacement in the point splitting regularization.693

The dual rôle of the δ-distributions in x and p spaces,694

shows that infrared and ultraviolet dualities are related to695

x-p duality, another manifestation of the dual property of696

the Fourier transform, which in fact is at the heart of the697

Heisenberg uncertainty relations.698

Even if a well-defined version of the WDW functional699

differential equation is still unknown, it is clear that, as700

Eq. (5.12) shows, besides the Planck length it should701

also include a cosmological scale, making manifest an702

infrared/ultraviolet duality. A related issue concerns the703

Möbius symmetry of the Schwarzian derivative. In this704

respect, it was shown in [24] that even in the geometrical705

derivation of the QHJE in higher dimensions, there is an706

underlying global conformal symmetry, the generalization of707

the Möbius symmetry of the Schwarzian derivative. This is a708

crucial property, whose implementation requires a compact709

space, which in turn would imply that the energy spectra are710

quantized [12]. As a consequence, since by Jacobi theorem711

[15–23]712

t − t0 = ∂S

∂ E
, (6.2)713

it follows that time-parametrization is ill-defined for discrete 714

spectra, so that trajectories would never exist if space is com- 715

pact [12]. The mentioned conformal transformation includes 716

the space inversion relating large and small scales 717

xk → l2xk/r2, (6.3) 718

r2 = ∑D
1 x2

k , with l a length scale. This is another hint that an 719

infrared/ultraviolet duality should appear in the cosmologi- 720

cal context, and then in a well-defined version of the WDW 721

equation. A similar situation arises in the uniformization the- 722

ory by Klein, Koebe and Poincaré, where negatively curved 723

Riemann surfaces have fundamental domains in their univer- 724

sal covering, e.g. the upper half-plane H, which are related 725

by Fuchsian transformations, that is discrete subgroups of2
726

SL(2, R). 727

Finding an infrared/ultraviolet duality in the cosmological 728

context could be used to consider the local to global theorems 729

relating local and global geometries. In particular, according 730

to Thurston [25], the global geometry is strongly constrained 731

in case the local one has constant curvature. Interestingly, 732

according to Bieberbach [42,43], all compact flat manifolds 733

are finitely covered by tori, a result that in three dimension 734

was previously obtained by Schoenflies [44]. The underlying 735

idea is that the local structure of space provides information 736

on its global structure, which includes the information on the 737

topological structure and on points at large distances. 738

The discussed connection between compactness of space, 739

discrete spectra and the analogies with uniformization theory, 740

suggests that higher dimensional uniformization theory is 741

right framework to investigate the geometry of the universe. 742

It is clear that the solution of a well-defined version of 743

the WDW equation should involve transcendental functions; 744

a property which already appears in the minisuperspace 745

approximation. As such, the dependence on the cosmolog- 746

ical constant should be in the form of some dimensionless 747

constant K, that is 748

A[gi j ] = F[K; gi j ]. (6.4) 749

Note that K should be the same for any choice of the time 750

slicing in the ADM foliation, so that K should be time- 751

independent. Since the Planck length is naturally interpreted 752

as ultraviolet cutoff, we have 753

K = ✁ℓP

LU

, (6.5) 754

with LU a fundamental length describing the geometry of 755

the Universe. The obvious candidate for LU is the Hubble 756

radius RH = c/H0 = 1.36 × 1026 m, whose size is of the 757

2 This is in fact deeply related to the weak/strong duality transforma-
tions of the effective coupling constant τ → −1/τ of Seiberg–Witten
theory, that, in the case of pure SU(2), posses a Ŵ(2) ⊂ SL(2, R) sym-
metry.
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same order of the radius of the observable universe and that,758

besides �, is the only quantity which is spatially constant.759

We then have,760

K = ✁ℓP

RH

= 5.96 × 10−61. (6.6)761

Furthermore, since A must depend on �, the space-time inde-762

pendence of K implies that763

A[gi j ] = F[D
√

�; gi j ], (6.7)764

with D, [D] = L , a space-time constant.765

Equation (6.6) would imply that the Planck length is time-766

dependent. This is in agreement with the Dirac idea that fun-767

damental constants are dynamical variables. On the other768

hand, the most natural candidate for time variation is just the2 769

Planck constant h̄. The point is that the Einstein field equa-770

tion contains �, c and G, and a possible time dependence771

of such constants would break diffeomorphism invariance.3 772

Therefore, preserving such an invariance means that only773

h̄, that in fact appears only in considering the WDW equa-774

tion, can change. On the other hand, Eq. (6.6) implies an775

infrared/ultraviolet duality, where the large scale is given by776

RH , whose time dependence is the same of the scale rep-777

resenting the quantum regime, that is (the square root of)778

h̄.779

We stress that time variation of fundamental constants is a780

crucial and widely investigated subject [45–47]. In a different781

context, time dependence of the Planck constant has been782

investigated in the interesting paper [48].783

We conclude by observing that very recently, in [49], it784

has been argued by a different perspective, that the GQHJ4 785

theory introduced in [5–10], could in fact be at the origin of786

the cosmological constant.787
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