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Abstract. We prove that the graph obtained from the non-nilpotent graph of a finite group by

deleting the isolated vertices is connected with diameter at most 3. This bound is the best possible.

1. Introduction

Suppose that G is a group, and define the non-nilpotent graph NG of G as follows: the vertices

of NG are the elements of G, and two vertices are joined whenever they do not generate a nilpo-

tent subgroup. Let RG be the subgraph of NG induced by G \ nil(G), where nil(G) = {x ∈ G |
⟨x, y⟩ is nilpotent for all y ∈ G}. A. Abdollahi and M. Zarrin [1] proved that if G is finite, then

nil(G) coincides with the hypercenter Z∞(G) of G and that RG is connected, with diam(RG) ≤ 6.

They proved that diam(RG) = 2 in several cases. This could lead to conjecture that diam(RG) = 2

for every finite group G, but this is false. Andrew Davis, Julie Kent and Emily McGovern, three

students of the Missouri State University, investigated the non-nilpotent graph of the semidirect

product ⟨a⟩ ⋊ Sym(4), where |a| is odd and aσ = asgn(σ) for every σ ∈ Sym(4). Let g = aiσ ∈ G. If

⟨a, g⟩ is not nilpotent, then σ ̸∈ Alt(4), while if ⟨(1, 2)(3, 4), g⟩ is not nilpotent then σ is a 3-cycle.

This implies that the vertices a and (1, 2)(3, 4) do not have a common neighbor in the graph RG, so

distRG
(a, (1, 2)(3, 4)) ≥ 3. However this is the worst possible situation. Indeed our main result is the

following.
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Theorem 1.1. If G is a finite group, then diam(RG) ≤ 3.

Our second result says that if distRG
(x, y) = 3, then at least one of the two elements x and y

belong to the Fitting subgroup F (G) of G.

Theorem 1.2. If G is a finite group and x, y /∈ F (G), then distRG
(x, y) ≤ 2.

2. Proofs of Theorems 1.1 and 1.2

Throughout this section, we will say that g is a p-element, where p is a prime, meaning that the

order of g is a power of p.

Lemma 2.1. Let G be a finite group and let g ∈ G. If H is a subgroup of G and g /∈ H, then there

exist a prime p and a positive integer n such that gn is a p-element and gn /∈ H.

Proof. Let |g| = pn1
1 · · · pnr

r , with p1, . . . , pr distinct primes. For 1 ≤ i ≤ r, set mi =
∏

j ̸=i p
nj

j . Since

⟨gm1 , . . . , gmr⟩ = ⟨g⟩ ̸≤ H, there exists i ∈ {1, . . . , r} such that the pi-elements gmi
i does not belong

to H. □

Lemma 2.2. Let p be a prime and x a p-element of a finite group G. If x /∈ Z∞(G), then there exist

a prime q ̸= p and a q-element y such that ⟨x, y⟩ is not nilpotent.

Proof. Suppose, by contradiction, that ⟨x, y⟩ is nilpotent for every q-element y and every prime q ̸= p.

Let K := ⟨Q | Q ∈ Sylq(G), q ̸= p⟩. Then K is a normal subgroup of G and K ≤ CG(x). Moreover

|G/K| is a p-group, so if P is a Sylow subgroup of G containing x, then G = KP. Let g be an arbitrary

element of G and write g = ab, with a ∈ K and b ∈ P. Then ⟨x, xg⟩ = ⟨x, xab⟩ = ⟨x, xb⟩ ≤ P. By a

theorem of R. Baer (see for example [2, 2.12]) x ∈ Op(G). In particular, if z is a p-element of G, then

⟨x, z⟩ is a p-group. Now let g be an arbitrary element of G and write g = αβ, where α is a p-element,

β a p′-element and [α, β] = 1. We have ⟨x, g⟩ = ⟨x, αβ⟩ = ⟨x, α, β⟩ = ⟨x, α⟩⟨β⟩ ∼= ⟨x, α⟩ × ⟨β⟩,
since β ∈ K ≤ CG(x). But, as we noticed before, ⟨x, α⟩ is a p-group, and so ⟨x, g⟩ ∼= ⟨x, α⟩ × ⟨β⟩ is
nilpotent. This implies x ∈ nil(G) = Z∞(G), against our assumption. □

Proof of Theorem 1.1. Let x1, x2 be two distinct elements of G \ Z∞(G). By Lemma 2.1, there exist

two positive integers m1, m2 and two primes p1, p2 such that xm1
1 is a p1-element, xm2

2 is a p2-element

and xm1
1 , xm2

2 /∈ Z∞(G). By Lemma 2, there exist two primes q1 ̸= p1 and q2 ̸= p2, a q1-element z1 and

a q2-element z2 such that ⟨xm1
1 , z1⟩ and ⟨xm2

2 , z2⟩ are not nilpotent. If ⟨z1, z2⟩ is not nilpotent, then
(x1, z1, z2, x2) is a path in the graph RG joining x1 and x2 and distRG

(x1, x2) ≤ 3. So we may assume

that ⟨z1, z2⟩ is nilpotent. If q1 ̸= q2, then ⟨z1, z2⟩ = ⟨z1z2⟩. This implies that ⟨x1, z1z2⟩ = ⟨x1, z1, z2⟩
and ⟨x2, z1z2⟩ = ⟨x2, z1, z2⟩ are not nilpotent, and (x1, z1z2, x2) is a path in RG. If q1 = q2, then

q1 ̸= p2. If ⟨x1, z2⟩ is not nilpotent, then (x1, z2, x2) is a path in RG. Otherwise ⟨xm1
1 , z2⟩ ≤ ⟨x1, z2⟩

is nilpotent, hence ⟨xm1
1 , z2⟩ = ⟨xm1

1 z2⟩ and (x1, z1, x
m1
1 z2, x2) is a path in RG. □

DOI: http://dx.doi.org/10.22108/toc.2020.122329.1719

http://dx.doi.org/10.22108/toc.2020.122329.1719


Trans. Comb. 9 no. 2 (2020) 111-114 A. Lucchini and D. Nemmi 113

Lemma 2.3. Let G be a finite group. If x, y /∈ F (G) and gcd(|x|, |y|) = 1, then distRG
(x, y) ≤ 2.

Proof. Assume, by contradiction, distRG
(x, y) > 2. Since x, y /∈ F by [2, 2.12] there exist g and h

in G such that ⟨x, xg⟩ and ⟨y, yh⟩ (and consequently also ⟨x, xg−1⟩ and ⟨y, yh−1⟩ are not nilpotent).

If ⟨xg, yh−1⟩ were nilpotent, then [xg, y−h] = 1 and (x, xgyh
−1
, y) would a path in RG. So ⟨xg, yh−1⟩

(and consequently also ⟨x, yh−1g−1⟩ and ⟨xgh, y⟩) is not nilpotent. We prove, by induction on n, that

⟨x(gh)n , y⟩ is not nilpotent, for every n ∈ N. Indeed, assuming that ⟨x(gh)n , y⟩ is not nilpotent, then

⟨x(gh)n , y(gh)−1⟩ is also non nilpotent, otherwise [x(gh)
n
, y(gh)

−1
] = 1 and (x, x(gh)

n
y(gh)

−1
, y) would be

a path in RG. But then, taking n = |gh|, we get that ⟨x, y⟩ is not nilpotent and distRG
(x, y) = 1,

against our assumption. □

Lemma 2.4. Let G be a finite soluble group and let p be a prime. If g1, g2 ∈ G\nil(G) are p-elements

such that distRG
(g1, g2) > 2, then g1, g2 ∈ Op(G).

Proof. Let C1 := CG(g1) and C2 := CG(g2). By Lemma 2.2, there exist a prime q ̸= p and a q-

element x such that ⟨g1, x⟩ is not nilpotent. Let K be a p-complement in G containing x. It must

be K ⊆ C1 ∪ C2 (indeed if y ∈ K \ (C1 ∪ C2), then (g1, y, g2) would be a path in RG). Hence either

K ≤ C1 or K ≤ C2. However x ∈ K \ C1, so we must exclude the first possibility and conclude

K ≤ C2. In particular |G : C2| is a p-power and therefore G = C2P, being P a Sylow p-subgroup of

G containing g2. As in the proof of Lemma 2.2, applying Baer’s theorem we conclude g2 ∈ Op(G).

With the same argument we can prove g1 ∈ Op(G). □

Proof of Theorem 2.2. By Lemma 2.1, we may assume that there exists two primes p and q such that

x is a p-element and y is a q-element. By Lemma 2.3, we may assume p = q. If x, y /∈ R(G) (where

R(G) denotes the soluble radical of G), then, by [3, Theorem 6.4], there exists z ∈ G such that ⟨x, z⟩
and ⟨y, z⟩ are not soluble. Hence (x, z, y) is a path in RG and distRG

(x, y) ≤ 2. So it is not restrictive

to assume x ∈ R(G). In particular H = R(G)⟨y⟩ is a soluble group containing x, so by Lemma 2.4,

either distRG
(x, y) ≤ distRH

(x, y) ≤ 2 or x, y ∈ F (H). However in the second case, we would have

x ∈ F (H) ∩R(G) ≤ F (R(G)) ≤ F (G). □
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