
www.ui.ac.ir

THE DIAMETER OF THE NON-NILPOTENT GRAPH OF A FINITE GROUP

ANDREA LUCCHINI* AND DANIELE NEMMI

Communicated by Alireza Abdollahi

Abstract

We prove that the graph obtained from the non-nilpotent graph of a finite group by deleting the isolated vertices is connected with diameter at most 3 . This bound is the best possible.

1. Introduction

Suppose that G is a group, and define the non-nilpotent graph \mathcal{N}_{G} of G as follows: the vertices of \mathcal{N}_{G} are the elements of G, and two vertices are joined whenever they do not generate a nilpotent subgroup. Let \mathcal{R}_{G} be the subgraph of \mathcal{N}_{G} induced by $G \backslash \operatorname{nil}(G)$, where $\operatorname{nil}(G)=\{x \in G \mid$ $\langle x, y\rangle$ is nilpotent for all $y \in G\}$. A. Abdollahi and M. Zarrin [1] proved that if G is finite, then $\operatorname{nil}(G)$ coincides with the hypercenter $Z_{\infty}(G)$ of G and that \mathcal{R}_{G} is connected, with $\operatorname{diam}\left(\mathcal{R}_{G}\right) \leq 6$. They proved that $\operatorname{diam}\left(\mathcal{R}_{G}\right)=2$ in several cases. This could lead to conjecture that $\operatorname{diam}\left(\mathcal{R}_{G}\right)=2$ for every finite group G, but this is false. Andrew Davis, Julie Kent and Emily McGovern, three students of the Missouri State University, investigated the non-nilpotent graph of the semidirect product $\langle a\rangle \rtimes \operatorname{Sym}(4)$, where $|a|$ is odd and $a^{\sigma}=a^{\operatorname{sgn}(\sigma)}$ for every $\sigma \in \operatorname{Sym}(4)$. Let $g=a^{i} \sigma \in G$. If $\langle a, g\rangle$ is not nilpotent, then $\sigma \notin \operatorname{Alt}(4)$, while if $\langle(1,2)(3,4), g\rangle$ is not nilpotent then σ is a 3-cycle. This implies that the vertices a and $(1,2)(3,4)$ do not have a common neighbor in the graph \mathcal{R}_{G}, so $\operatorname{dist}_{\mathcal{R}_{G}}(a,(1,2)(3,4)) \geq 3$. However this is the worst possible situation. Indeed our main result is the following.

[^0]DOI: http://dx.doi.org/10.22108/toc.2020.122329.1719

Theorem 1.1. If G is a finite group, then $\operatorname{diam}\left(\mathcal{R}_{G}\right) \leq 3$.
Our second result says that if $\operatorname{dist}_{\mathcal{R}_{G}}(x, y)=3$, then at least one of the two elements x and y belong to the Fitting subgroup $F(G)$ of G.

Theorem 1.2. If G is a finite group and $x, y \notin F(G)$, then $\operatorname{dist}_{\mathcal{R}_{G}}(x, y) \leq 2$.

2. Proofs of Theorems 1.1 and 1.2

Throughout this section, we will say that g is a p-element, where p is a prime, meaning that the order of g is a power of p.

Lemma 2.1. Let G be a finite group and let $g \in G$. If H is a subgroup of G and $g \notin H$, then there exist a prime p and a positive integer n such that g^{n} is a p-element and $g^{n} \notin H$.

Proof. Let $|g|=p_{1}^{n_{1}} \cdots p_{r}^{n_{r}}$, with p_{1}, \ldots, p_{r} distinct primes. For $1 \leq i \leq r$, set $m_{i}=\prod_{j \neq i} p_{j}^{n_{j}}$. Since $\left\langle g^{m_{1}}, \ldots, g^{m_{r}}\right\rangle=\langle g\rangle \not \leq H$, there exists $i \in\{1, \ldots, r\}$ such that the p_{i}-elements $g_{i}^{m_{i}}$ does not belong to H.

Lemma 2.2. Let p be a prime and x a p-element of a finite group G. If $x \notin Z_{\infty}(G)$, then there exist a prime $q \neq p$ and a q-element y such that $\langle x, y\rangle$ is not nilpotent.

Proof. Suppose, by contradiction, that $\langle x, y\rangle$ is nilpotent for every q-element y and every prime $q \neq p$. Let $K:=\left\langle Q \mid Q \in \operatorname{Syl}_{q}(G), q \neq p\right\rangle$. Then K is a normal subgroup of G and $K \leq C_{G}(x)$. Moreover $|G / K|$ is a p-group, so if P is a Sylow subgroup of G containing x, then $G=K P$. Let g be an arbitrary element of G and write $g=a b$, with $a \in K$ and $b \in P$. Then $\left\langle x, x^{g}\right\rangle=\left\langle x, x^{a b}\right\rangle=\left\langle x, x^{b}\right\rangle \leq P$. By a theorem of R. Baer (see for example [2, 2.12]) $x \in O_{p}(G)$. In particular, if z is a p-element of G, then $\langle x, z\rangle$ is a p-group. Now let g be an arbitrary element of G and write $g=\alpha \beta$, where α is a p-element, β a p^{\prime}-element and $[\alpha, \beta]=1$. We have $\langle x, g\rangle=\langle x, \alpha \beta\rangle=\langle x, \alpha, \beta\rangle=\langle x, \alpha\rangle\langle\beta\rangle \cong\langle x, \alpha\rangle \times\langle\beta\rangle$, since $\beta \in K \leq C_{G}(x)$. But, as we noticed before, $\langle x, \alpha\rangle$ is a p-group, and so $\langle x, g\rangle \cong\langle x, \alpha\rangle \times\langle\beta\rangle$ is nilpotent. This implies $x \in \operatorname{nil}(G)=Z_{\infty}(G)$, against our assumption.

Proof of Theorem 1.1. Let x_{1}, x_{2} be two distinct elements of $G \backslash Z_{\infty}(G)$. By Lemma 2.1, there exist two positive integers m_{1}, m_{2} and two primes p_{1}, p_{2} such that $x_{1}^{m_{1}}$ is a p_{1}-element, $x_{2}^{m_{2}}$ is a p_{2}-element and $x_{1}^{m_{1}}, x_{2}^{m_{2}} \notin Z_{\infty}(G)$. By Lemma 2 , there exist two primes $q_{1} \neq p_{1}$ and $q_{2} \neq p_{2}$, a q_{1}-element z_{1} and a q_{2}-element z_{2} such that $\left\langle x_{1}^{m_{1}}, z_{1}\right\rangle$ and $\left\langle x_{2}^{m_{2}}, z_{2}\right\rangle$ are not nilpotent. If $\left\langle z_{1}, z_{2}\right\rangle$ is not nilpotent, then $\left(x_{1}, z_{1}, z_{2}, x_{2}\right)$ is a path in the graph \mathcal{R}_{G} joining x_{1} and x_{2} and dist $\mathcal{R}_{G}\left(x_{1}, x_{2}\right) \leq 3$. So we may assume that $\left\langle z_{1}, z_{2}\right\rangle$ is nilpotent. If $q_{1} \neq q_{2}$, then $\left\langle z_{1}, z_{2}\right\rangle=\left\langle z_{1} z_{2}\right\rangle$. This implies that $\left\langle x_{1}, z_{1} z_{2}\right\rangle=\left\langle x_{1}, z_{1}, z_{2}\right\rangle$ and $\left\langle x_{2}, z_{1} z_{2}\right\rangle=\left\langle x_{2}, z_{1}, z_{2}\right\rangle$ are not nilpotent, and $\left(x_{1}, z_{1} z_{2}, x_{2}\right)$ is a path in \mathcal{R}_{G}. If $q_{1}=q_{2}$, then $q_{1} \neq p_{2}$. If $\left\langle x_{1}, z_{2}\right\rangle$ is not nilpotent, then $\left(x_{1}, z_{2}, x_{2}\right)$ is a path in \mathcal{R}_{G}. Otherwise $\left\langle x_{1}^{m_{1}}, z_{2}\right\rangle \leq\left\langle x_{1}, z_{2}\right\rangle$ is nilpotent, hence $\left\langle x_{1}^{m_{1}}, z_{2}\right\rangle=\left\langle x_{1}^{m_{1}} z_{2}\right\rangle$ and $\left(x_{1}, z_{1}, x_{1}^{m_{1}} z_{2}, x_{2}\right)$ is a path in \mathcal{R}_{G}.

Lemma 2.3. Let G be a finite group. If $x, y \notin F(G)$ and $\operatorname{gcd}(|x|,|y|)=1$, then $\operatorname{dist}_{\mathcal{R}_{G}}(x, y) \leq 2$.
Proof. Assume, by contradiction, $\operatorname{dist}_{\mathcal{R}_{G}}(x, y)>2$. Since $x, y \notin F$ by [2, 2.12] there exist g and h in G such that $\left\langle x, x^{g}\right\rangle$ and $\left\langle y, y^{h}\right\rangle$ (and consequently also $\left\langle x, x^{g^{-1}}\right\rangle$ and $\left\langle y, y^{h^{-1}}\right\rangle$ are not nilpotent). If $\left\langle x^{g}, y^{h^{-1}}\right\rangle$ were nilpotent, then $\left[x^{g}, y^{-h}\right]=1$ and $\left(x, x^{g} y^{h^{-1}}, y\right)$ would a path in \mathcal{R}_{G}. So $\left\langle x^{g}, y^{h^{-1}}\right\rangle$ (and consequently also $\left\langle x, y^{h^{-1} g^{-1}}\right\rangle$ and $\left\langle x^{g h}, y\right\rangle$) is not nilpotent. We prove, by induction on n, that $\left\langle x^{(g h)^{n}}, y\right\rangle$ is not nilpotent, for every $n \in \mathbb{N}$. Indeed, assuming that $\left\langle x^{(g h)^{n}}, y\right\rangle$ is not nilpotent, then $\left\langle x^{(g h)^{n}}, y^{(g h)^{-1}}\right\rangle$ is also non nilpotent, otherwise $\left[x^{(g h)^{n}}, y^{(g h)^{-1}}\right]=1$ and $\left(x, x^{(g h)^{n}} y^{(g h)^{-1}}, y\right)$ would be a path in \mathcal{R}_{G}. But then, taking $n=|g h|$, we get that $\langle x, y\rangle$ is not nilpotent and $\operatorname{dist}_{\mathcal{R}_{G}}(x, y)=1$, against our assumption.

Lemma 2.4. Let G be a finite soluble group and let p be a prime. If $g_{1}, g_{2} \in G \backslash \operatorname{nil}(G)$ are p-elements such that $\operatorname{dist}_{\mathcal{R}_{G}}\left(g_{1}, g_{2}\right)>2$, then $g_{1}, g_{2} \in O_{p}(G)$.

Proof. Let $C_{1}:=C_{G}\left(g_{1}\right)$ and $C_{2}:=C_{G}\left(g_{2}\right)$. By Lemma 2.2, there exist a prime $q \neq p$ and a q element x such that $\left\langle g_{1}, x\right\rangle$ is not nilpotent. Let K be a p-complement in G containing x. It must be $K \subseteq C_{1} \cup C_{2}$ (indeed if $y \in K \backslash\left(C_{1} \cup C_{2}\right)$, then $\left(g_{1}, y, g_{2}\right)$ would be a path in $\left.\mathcal{R}_{G}\right)$. Hence either $K \leq C_{1}$ or $K \leq C_{2}$. However $x \in K \backslash C_{1}$, so we must exclude the first possibility and conclude $K \leq C_{2}$. In particular $\left|G: C_{2}\right|$ is a p-power and therefore $G=C_{2} P$, being P a Sylow p-subgroup of G containing g_{2}. As in the proof of Lemma 2.2, applying Baer's theorem we conclude $g_{2} \in O_{p}(G)$. With the same argument we can prove $g_{1} \in O_{p}(G)$.

Proof of Theorem 2.2. By Lemma 2.1, we may assume that there exists two primes p and q such that x is a p-element and y is a q-element. By Lemma 2.3, we may assume $p=q$. If $x, y \notin R(G)$ (where $R(G)$ denotes the soluble radical of G), then, by [3, Theorem 6.4], there exists $z \in G$ such that $\langle x, z\rangle$ and $\langle y, z\rangle$ are not soluble. Hence (x, z, y) is a path in \mathcal{R}_{G} and $\operatorname{dist}_{\mathcal{R}_{G}}(x, y) \leq 2$. So it is not restrictive to assume $x \in R(G)$. In particular $H=R(G)\langle y\rangle$ is a soluble group containing x, so by Lemma 2.4, either $\operatorname{dist}_{\mathcal{R}_{G}}(x, y) \leq \operatorname{dist}_{\mathcal{R}_{H}}(x, y) \leq 2$ or $x, y \in F(H)$. However in the second case, we would have $x \in F(H) \cap R(G) \leq F(R(G)) \leq F(G)$.

References

[1] A. Abdollahi and M. Zarrin, Non-nilpotent graph of a group, Comm. Algebra, 38 (2010) 4390-4403.
[2] I. M. Isaacs, Finite group theory, Graduate Studies in Mathematics, 92, American Mathematical Society, Providence, RI, 2008.
[3] R. Guralnick, B. Kunyavskii, E. Plotkin and A. Shalev, Thompson-like characterizations of the solvable radical, J. Algebra, 300 (2006) 363-375

Andrea Lucchini

Dipartimento di Matematica "Tullio Levi-Civita", Università degli Studi di Padova, Italy
Email: lucchini@math.unipd.it

Daniele Nemmi
Dipartimento di Matematica "Tullio Levi-Civita", Università degli Studi di Padova, Italy Email: daniele.nemmi@studenti.unipd.it

[^0]: MSC(2010): Primary: 20D60; Secondary: 05C25.
 Keywords: Distance; nilpotency; hypercenter.
 Received: 30 March 2020, Accepted: 18 April 2020.
 *Corresponding author.

