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ABSTRACT. We prove that the graph obtained from the non-nilpotent graph of a finite group by

deleting the isolated vertices is connected with diameter at most 3. This bound is the best possible.

1. Introduction

Suppose that G is a group, and define the non-nilpotent graph Ng of G as follows: the vertices
of Ng are the elements of G, and two vertices are joined whenever they do not generate a nilpo-
tent subgroup. Let R¢g be the subgraph of Mg induced by G \ nil(G), where nil(G) = {z € G |
(x,y) is nilpotent for all y € G}. A. Abdollahi and M. Zarrin [1] proved that if G is finite, then
nil(G) coincides with the hypercenter Z.(G) of G and that R¢ is connected, with diam(R¢g) < 6.
They proved that diam(R¢) = 2 in several cases. This could lead to conjecture that diam(Rqg) = 2
for every finite group G, but this is false. Andrew Davis, Julie Kent and Emily McGovern, three
students of the Missouri State University, investigated the non-nilpotent graph of the semidirect
product (a) x Sym(4), where |a| is odd and a® = a*#™(%) for every o € Sym(4). Let g = a’c € G. If
(a,g) is not nilpotent, then o ¢ Alt(4), while if ((1,2)(3,4), g) is not nilpotent then o is a 3-cycle.
This implies that the vertices a and (1,2)(3,4) do not have a common neighbor in the graph R¢, so
distr,,(a, (1,2)(3,4)) > 3. However this is the worst possible situation. Indeed our main result is the

following.
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Theorem 1.1. If G is a finite group, then diam(Rq) < 3.

Our second result says that if distg,(x,y) = 3, then at least one of the two elements z and y
belong to the Fitting subgroup F(G) of G.

Theorem 1.2. If G is a finite group and x,y ¢ F(G), then distr,,(z,y) < 2.

2. Proofs of Theorems 1.1 and 1.2

Throughout this section, we will say that g is a p-element, where p is a prime, meaning that the

order of g is a power of p.

Lemma 2.1. Let G be a finite group and let g € G. If H is a subgroup of G and g ¢ H, then there

exist a prime p and a positive integer n such that g" is a p-element and g" ¢ H.

Proof. Let |g| = p{*---ppr, with pq,...,p, distinct primes. For 1 < i <r, set m; = H#i p?j. Since
(g™,...,9g™) = (g9) £ H, there exists i € {1,...,7} such that the p;-elements g;"* does not belong
to H. O

Lemma 2.2. Let p be a prime and x a p-element of a finite group G. If v ¢ Zoo(G), then there exist
a prime q # p and a g-element y such that (z,y) is not nilpotent.

Proof. Suppose, by contradiction, that (z,y) is nilpotent for every g-element y and every prime g # p.
Let K :=(Q | Q € Syl,(G),q # p). Then K is a normal subgroup of G and K < Cg(x). Moreover
|G/ K| is a p-group, so if P is a Sylow subgroup of G containing z, then G = K P. Let g be an arbitrary
element of G and write g = ab, with @ € K and b € P. Then (x,29) = (z,2%) = (2,2°) < P. By a
theorem of R. Baer (see for example [2, 2.12]) x € Op(G). In particular, if z is a p-element of G, then
(x, z) is a p-group. Now let g be an arbitrary element of G and write ¢ = a3, where « is a p-element,
B a p/-element and [, 3] = 1. We have (z,9) = (x,a8) = (z,a,8) = (z,a)(f) = (z,a) x (8),
since § € K < Cg(x). But, as we noticed before, (x, a) is a p-group, and so (x, g) = (r,a) x () is
nilpotent. This implies = € nil(G) = Zo(G), against our assumption. O

Proof of Theorem 1.1. Let 1,22 be two distinct elements of G\ Zo(G). By Lemma 2.1, there exist

! is a py-element, z5'? is a pe-element

two positive integers m1, ms and two primes p1, pa such that "
and 27", 25" ¢ Z(G). By Lemma 2, there exist two primes ¢1 # p1 and g2 # p2, a g1-element z; and
a gp-element zp such that (z7",z1) and (x5'?, z2) are not nilpotent. If (21, z2) is not nilpotent, then
(21, 21, 22, x2) is a path in the graph R« joining 21 and x and distr,, (21, z2) < 3. So we may assume
that (z1, z2) is nilpotent. If ¢1 # go, then (z1, 2z2) = (2122). This implies that (1, z122) = (1, 21, 22)
and (x9,z122) = (x9, 21, 22) are not nilpotent, and (z1,z122,22) is a path in Rg. If ¢ = g2, then
q1 # p2. If (x1, z2) is not nilpotent, then (z1, 22, z2) is a path in R¢. Otherwise (z]", z2) < (z1, 22)

is nilpotent, hence (z]", z2) = (] 22) and (z1, 21, 2] 22, z2) is a path in Rg. O
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Lemma 2.3. Let G be a finite group. If x,y ¢ F(G) and ged(|z|, [y|) = 1, then distr, (z,y) < 2.

Proof. Assume, by contradiction, distg,(z,y) > 2. Since x,y ¢ F by [2, 2.12] there exist g and h
™'Y are not nilpotent).

h*1>

in G such that (z,29) and (y,y") (and consequently also <3:,x971> and (y,y
If <x9,yh71> were nilpotent, then [29,y"] = 1 and (m,a:gyhfl,y) would a path in R¢g. So (z9,y
(and consequently also (z, yh71971> and (29", )) is not nilpotent. We prove, by induction on n, that
(x(gh)n,y> is not nilpotent, for every n € N. Indeed, assuming that (x(gh)n, y) is not nilpotent, then
(x(gh)n,y(gh)_1> is also non nilpotent, otherwise [2(9M)" y(gh)_l] =1and (m,x(gh)ny(gh)_l, y) would be
a path in Rqg. But then, taking n = |gh|, we get that (z,y) is not nilpotent and distg,(z,y) = 1,

against our assumption. ]

Lemma 2.4. Let G be a finite soluble group and let p be a prime. If g1, g2 € G\nil(G) are p-elements
such that distr,, (g1, 92) > 2, then g1, 92 € Op(G).

Proof. Let C := Cg(g1) and Cy := Cg(g2). By Lemma 2.2, there exist a prime ¢ # p and a ¢-
element z such that (g1, x) is not nilpotent. Let K be a p-complement in G containing x. It must
be K C C; U, (indeed if y € K\ (C1 U Cy), then (g1,y, g2) would be a path in R¢). Hence either
K < (Cj or K < (5. However x € K \ C1, so we must exclude the first possibility and conclude
K < Cy. In particular |G : Co| is a p-power and therefore G = Co P, being P a Sylow p-subgroup of
G containing gp. As in the proof of Lemma 2.2, applying Baer’s theorem we conclude g2 € O,(G).
With the same argument we can prove g1 € Oy(G). O

Proof of Theorem 2.2. By Lemma 2.1, we may assume that there exists two primes p and ¢ such that
x is a p-element and y is a g-element. By Lemma 2.3, we may assume p = ¢. If z,y ¢ R(G) (where
R(G) denotes the soluble radical of G), then, by [3, Theorem 6.4], there exists z € G such that (z, z)
and (y, z) are not soluble. Hence (z, z,y) is a path in R¢ and distgr,, (z,y) < 2. So it is not restrictive
to assume x € R(G). In particular H = R(G)(y) is a soluble group containing x, so by Lemma 2.4,
either distr,(z,y) < distg, (z,y) < 2 or z,y € F(H). However in the second case, we would have
x € F(H)NR(G) < F(R(G)) < F(G). O
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